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Abstract
Essential proteins are indispensable for living organisms to maintain life activities and play

important roles in the studies of pathology, synthetic biology, and drug design. Therefore,

besides experiment methods, many computational methods are proposed to identify essen-

tial proteins. Based on the centrality-lethality rule, various centrality methods are employed

to predict essential proteins in a Protein-protein Interaction Network (PIN). However,

neglecting the temporal and spatial features of protein-protein interactions, the centrality

scores calculated by centrality methods are not effective enough for measuring the essenti-

ality of proteins in a PIN. Moreover, many methods, which overfit with the features of essen-

tial proteins for one species, may perform poor for other species. In this paper, we

demonstrate that the centrality-lethality rule also exists in Protein Subcellular Localization

Interaction Networks (PSLINs). To do this, a method based on Localization Specificity for

Essential protein Detection (LSED), was proposed, which can be combined with any cen-

trality method for calculating the improved centrality scores by taking into consideration

PSLINs in which proteins play their roles. In this study, LSED was combined with eight cen-

trality methods separately to calculate Localization-specific Centrality Scores (LCSs) for
proteins based on the PSLINs of four species (Saccharomyces cerevisiae, Homo sapiens,
Mus musculus and Drosophila melanogaster). Compared to the proteins with high centrality

scores measured from the global PINs, more proteins with high LCSs measured from

PSLINs are essential. It indicates that proteins with high LCSs measured from PSLINs are

more likely to be essential and the performance of centrality methods can be improved by

LSED. Furthermore, LSED provides a wide applicable prediction model to identify essential

proteins for different species.
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Introduction
Different proteins play different roles and have different degrees of importance in biological
activities of organisms. There is a kind of proteins, named essential proteins, which are needed
by living organisms to maintain life activities, and the organism cannot survive or grow with-
out them [1, 2]. The study of essential proteins can facilitate other researches. For example,
determining a minimal set of essential genes for a simplest free-living organism is fundamental
in synthetic biology [3, 4]. In the field of the resistance to antibiotics and toxicity, studying the
essential proteins in bacteria and viruses can help design new antimicrobial drugs, since the
bacteria and viruses may die from removing, interrupting or obstructing their essential proteins
[5].

Essential proteins can be identified by biological experiments, such as single gene knockout
[6], RNA interference [7] and conditional knockout [8]. However, these experiments are both
time consuming and inefficient, and can only be applied to a few species. Thus, it is appealing
to develop highly reliable and efficient computational methods to identify essential proteins.

Fast growth in the amount of available Protein-Protein Interactions (PPIs) has provided
unprecedented opportunities for detecting essential proteins at the network level. In Saccharo-
myces cerevisiae, proteins with high degrees in a Protein-protein Interaction Network (PIN)
are more likely to be encoded by essential genes and thus more likely to be essential proteins
[9]. From the perspective of topology, highly connected proteins can maintain the basic struc-
tures of PIN, and the whole PIN will collapse if these proteins are removed. This phenomenon
is called the centrality-lethality rule in biological networks [10]. Thus some centrality methods
have been used to measure the essentiality of proteins, for example, Degree Centrality (DC)
[9], Betweenness Centrality (BC) [11], Closeness Centrality (CC) [12], Subgraph Centrality
(SC) [13], Eigenvector Centrality (EC) [14], and Information Centrality (IC) [15]. Later on,
some other centrality measures have been proposed by looking into the topology properties of
essential proteins’ neighborhoods. By investigating the essentiality of proteins and their neigh-
bors in Saccharomyces cerevisiae PIN, Lin et al. [16] proposed maximum neighborhood com-
ponent and density of maximum neighborhood component algorithms to identify essential
proteins. Li et al. [17] found that the neighbors of non-essential hubs seldom interact with each
other, thus they proposed a method based on local average connectivity. Wang et al. [18] pro-
posed a centrality measure based on edge clustering coefficient, named NC.

However, the available PPI data is incomplete and contains false-positives, which will affect
the accuracy of essential protein prediction methods that are solely based on topology. Much
information provided by the high-throughput experiments can help reduce the influence of
false-positives and capture the characteristics of essential proteins from other angles. Thus a
new trend to improve the essential protein identification is to integrate other information with
PINs. Based on the combination of logistic regression-based model and function similarity, Li
et al. [19] proposed a weighting method to evaluate the confidence of each PPI, and the accura-
cies of nine centrality measures in the weighted network were improved. Luo et al. [20] utilized
Gene Ontology to obtain a weighted network, and calculated local topological characteristics of
proteins in the weighted networks to identify essential proteins. Recently, the relationship
between protein essentiality and their cluster property have been considered when identifying
essential proteins. Elena et al. [21] reexamined the connection between the network topology
and essentiality. As a result, they observed that the majority of hubs are essential due to their
involvement in Essential Complex Biological Modules, a group of densely connected proteins
with shared biological functions enriched in essential proteins. Based on this observation, Ren
et al. [22] integrated the topology of PINs and protein complexes information to predict essen-
tial proteins. Li et al. [23] proposed a new prediction method based on Pearson correlation
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coefficient and edge clustering coefficient, named PeC, and Tang et al. [24] proposed a
Weighted Degree Centrality method (WDC). Both PeC andWDC integrate network topology
with gene expression profiles. Considering that essential proteins tend to be conservative, Peng
et al. [25] proposed an iteration method (ION) for predicting essential proteins by integrating
the protein orthology information [26] with PINs.

In addition, some machine learning methods have been developed for identifying essential
proteins. For example, Acencio et al. [27] constructed a decision tree-based meta-classifier and
trained it on datasets with the integration of network topological features, cellular localization
and biological process, to explore essential proteins. Zhong et al. [28] proposed a GEP-based
method to predict essential proteins by combining biological features, classical topological fea-
tures, and other composed features computed by the PeC, WDC and ION methods. However,
when applying to other species, the performances of these supervised machine learning meth-
ods may be affected by the differences between the training species and the prediction species
[29]. All above methods try to improve the essential protein identification from different
angles. However, due to the incompleteness and the dynamics of PPIs, it still lacks efficient
methods to identify essential proteins accurately for different species.

In the network-based methods aforementioned, the PINs are constituted by all PPIs avail-
able at the moment which may take place in different subcellular localizations (denoted as
global PINs). However, proteins must be localized at their appropriate subcellular compart-
ments to perform their desired functions [30–34], and PPIs can take place only when proteins
are in the same subcellular localization [31, 35]. In this paper, we demonstrated that the cen-
trality-lethality rule also exists in Protein Subcellular Localization Interaction Networks
(PSLINs), which are constituted by proteins and their PPIs in the same subcellular localization.
A number of proteins and essential proteins from different PSLINs are significantly different.
This paper proposes a method based on Localization Specificity for Essential protein Detection
(LSED), which can be combined with any centrality method to calculate Localization-specific
Centrality Scores (LCSs) for proteins based on PSLINs. LSED combined with a certain central-
ity method XC is denoted as LSED-XC, in which the centrality method XC is applied to each
PSLIN to calculate centrality scores of proteins. Based on the centrality scores from different
PSLINs, a Localization-specific Centrality Score (LCS) is calculated for each protein and the
localization-specific essential proteins are largely explored. The results show that, compared to
the proteins with high centrality scores measured from the global PINs, more proteins with
high LCSs measured from PSLINs are essential. It indicates that compared with the centrality
method XC applied to the global PINs, LSED-XC can improve the accuracy of centrality meth-
ods for essential protein predictions of different species.

Materials and Methods

Materials
In this study, the prediction methods were applied to four species (Saccharomyces cerevisiae,
Homo sapiens,Mus musculus, and Drosophilamelanogaster) for essential protein identification.
The PINs of four species were downloaded from Biogrid database [36]. All these PINs are the
mixtures of PPIs from different subcellular localizations, and are considered as the global PINs.
Their statistics are summarized in Table 1. For each species, the known essential proteins were
extracted from DEG [2] and used as the benchmark set to evaluate the essential protein
predictions.

The localization information of proteins in COMPARTMENTS database [37] was used in
this study. The subcellular localizations (or compartments) in a cell are generally classified into
the following 12 categories: 1) Chloroplast, 2) Endoplasmic, 3) Cytoskeleton, 4) Golgi, 5) Cytosol,
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6) Lysosome(or Vacuole), 7)Mitochondrion, 8) Endosome, 9) Plasma, 10) Nucleus, 11) Peroxi-
some and 12) Extracellular, where Chloroplast only exists in plant cells [38]. These labeled com-
partments are used to annotate the localization of proteins based on the supporting evidence.
The number of proteins annotated by these compartments in the global PIN of each species is
listed in Table 1.

The Framework of LSED
The LSED method mainly contains four steps, as shown in Fig 1. Given a global PIN and sub-
cellular localization information of proteins, firstly, a PSLIN was constructed for each subcellu-
lar localization. Secondly, the confidence level of each PSLIN is calculated according to the size
of the PSLIN. In the third step, a centrality method is applied to each PSLIN for calculating the
centrality scores of proteins in the PSLIN. Then the LCS of each protein is calculated based on
its centrality scores in different PSLINs and the confidence levels of these PSLINs. Finally, the
proteins are sorted by their LCSs in descending order. The details of each step will be discussed
in the following subsections.

Construction of PSLINs
The PPIs in a global PIN are identified from various in vitro conditions without knowledge of
subcellular localization where they take place. Proteins must be localized to the correct com-
partments [30–34] and the interacting protein pairs should be in the same subcellular localiza-
tion [31, 35]. Thus, a global PIN can be divided into a number of PSLINs based on subcellular
localizations. A eukaryotic cell can be divided into 11 compartments, Endoplasmic, Cytoskele-
ton, Golgi, Cytosol, Lysosome(or Vacuole),Mitochondrion, Endosome, Plasma, Nucleus, Peroxi-
some and Extracellular, where Lysosome only exists in animal cells. The PSLIN of each
compartment is constituted by the proteins localized in this compartment and their interac-
tions. If a protein is annotated by multiple subcellular localizations, it will appear in multiple
PSLINs. Let G = (V, E) denote the global PIN, and Loc(i) denote the set of proteins in compart-
ment i. The PSLIN of compartment i can be denoted as Si = (Vi, Ei), where Vi = {vjv 2 V\Loc
(i)}, and Ei = {e(u, v)je(u, v) 2 E, u 2 Vi, v 2 Vi}. As shown in Fig 2, with the subcellular locali-
zation information of proteins, the PSLINs can be generated by mapping the global PIN to
each compartment separately. For more information about the PSLINs of Saccharomyces cere-
visiae,Homo sapiens,Mus musculus, and Drosophila melanogaster, see S1 Dataset, S2 Dataset,
S3 Dataset and S4 Dataset in the Supporting Information files of this paper.

Table 1. Statistics of proteins, PPIs, essential proteins, and proteins annotated by 11 labeled compart-
ments in the global PIN of each species.

Species # Protein # PPI # Essential protein # Annotated protein

Saccharomyces cerevisiae 6,304 81,614 1,098 4,317

Homo sapiens 16,275 143,611 2,342 12,905

Mus musculus 6,582 17,460 1,304 5,523

Drosophila melanogaster 8,020 36,334 255 2,910

#Protein, #PPI, #Essential protein, and #Annoted Protein denote the numbers of proteins, PPIs, essential

proteins and proteins annotated by 11 labeled compartments in the global PIN of each species,

respectively.

doi:10.1371/journal.pone.0130743.t001
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Fig 1. The schematic of LSEDmethod.

doi:10.1371/journal.pone.0130743.g001
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Localization-specific Centrality Score
A protein may appear in several different PSLINs, and it will have several centrality scores cal-
culated from these PSLINs. A LCS is calculated to measure the essentiality of proteins. The LCS
of a protein depends on its centrality scores from various PSLINs and the reliability of these
centrality scores. In this study, the reliability of the centrality score from a PSLIN is measured
by the confidence level of the PSLIN. The size of a network is defined as the number of proteins
in the network. Intuitively, the larger its size, the higher confidence level of a PSLIN should be
(see more explanations in Discussion). Let SMax denote the PSLIN with the largest size (con-
taining the largest number of proteins), j�j denotes the size of the PSLIN �. Therefore, in this
study, the confidence level of a PSLIN is calculated by the ratio of its size to the largest size of
PSLINs as follows.

CðSiÞ ¼
jSij
jSMaxj

ð1Þ

Fig 2. Construction of PSLIN. A network in the left represents a global PIN. A eukaryotic cell in the center can be divided into 11 compartments,
Endoplasmic, Cytoskeleton,Golgi, Cytosol, Lysosome(or Vacuole),Mitochondrion, Endosome, Plasma, Nucleus, Peroxisome and Extracellular, where
Lysosome only exists in animal cells. For each compartment, a PSLIN of this compartment is constituted by the proteins localized in this compartment and
their interactions. With the subcellular localization information of proteins, the PSLINs can be generated by mapping the global PIN to each compartment
separately.

doi:10.1371/journal.pone.0130743.g002
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where Si is the PSLIN of compartment i. From the definition, the value of C(Si) is in the range
of (0, 1]. For more information about the confidence levels of different PSLINs of four species,
see S1 Table in the Supporting Information files of this paper.

The details for calculating the LCSs of proteins is described Algorithm 1. To calculate the
LCSs of proteins, firstly, all PSLINs are sorted in descending order according to their confi-
dence levels. Then, the centrality scores of each protein in the sorted PSLINs are calculated. If a
protein appears in a PSLIN, its centrality score in the PSLIN is calculated by a centrality
method; otherwise, its centrality score is zero. Later on, for each protein, its LCS is calculated
based on its centrality scores computed from the sorted PSLINs and the confidence levels of
these PSLINs. After the LCSs of all proteins in the global PIN are calculated, the proteins are
sorted in descending order by their LCSs.

Evaluation Metrics
Selecting a certain number of proteins as candidates for essential proteins, the percentage of
true essential proteins can be calculated according to the list of known essential proteins. Many
centrality methods were evaluated by comparing the percentage/number of essential proteins
in the top ranked proteins (the proteins with high centrality scores) [16–18, 25, 39–41]. In this
paper, we also adopt this metric to evaluate the prediction accuracy of each method.

Algorithm 1 The calculation of LCS

1: Input: The sorted PSLINs set PS = {S1, . . ., Si, . . ., SnjC(Si−1)� C(Si)� C(Si
+1)} and the protein set V

2: // n is the number of PSLINs and V denotes all the proteins in the global
PIN.

3: Output: The LCSs of proteins in V
4:
5: //Calculate the centrality scores of each protein in PSLINs
6: for i = 1; i� n; i++ do
7: // Calculate the centrality score Ess(p, Si) of each protein p in PSLIN Si
8: for each protein p 2 V do
9: if p 2 Si then
10: Ess(p, Si) is calculated by a centrality method
11: else
12: Ess(p, Si) = 0
13: end if
14: end for
15: end for
16:
17: //Calculate the LCS of each protein p
18: for each protein p 2 V do
19: LCS(p) = 0
20: for i = 1; i� n; i++ do
21: if Essðp; SiÞ⪈LCSðpÞ then
22: LCS(p) = LCS(p)+(Ess(p, Si)-LCS(p))�C(Si)
23: end if
24: end for
25: end for
26: Sort the proteins in descending order by their LCSs
27: Output the LCSs of proteins in V

Comparison of the Top Percentages of Ranked Proteins. Assume that proteins are
sorted by their centrality scores in descending order. The top 1%, 5%, 10%, 15%, 20%, and 25%
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of ranked proteins are selected as predicted essential proteins, and then the percentage of true
essential proteins correctly identified by each method is compared. In this paper, LSED-XC
represents LSED is combined with a certain centrality method XC. XC can be DC, IC, EC, SC,
BC, CC, NC, as well as ION, while the corresponding LSED-XC can be LSED-DC, LSED-IC,
LSED-EC, LSED-SC, LSED-BC, LSED-CC, LSED-NC, as well as LSED-ION. In the compari-
son of the enrichment level of essential proteins in the top percentages of ranked proteins, Eqs
(2)–(5) are defined to explain the comparison between LSED-XC and XC methods.

Accuracy (Acc): given a certain value of c, the accuracy of a methodM in the top c% of
ranked proteins is defined as the percentage of true essential proteins identified by methodM
in the top c% of ranked proteins, calculated according to Eq (2).

AccðM; cÞ ¼ TP
N

� 100% ð2Þ

where TP is the number of true essential proteins identified by methodM in the top c% of
ranked proteins, and N is the number of the top c% of ranked proteins.

Improved accuracy (IAcc): the improved accuracy of method LSED-XC in the top c% of
ranked proteins, calculated according to Eq (3), is defined as the improvement of the Acc of
LSED-XC compared to the Acc of the corresponding method XC.

IAccðLSED� XC; cÞ ¼ AccðLSED� XC; cÞ � AccðXC; cÞ
AccðXC; cÞ ð3Þ

Average Improved Accuracy(AIAcc): the average value of improved accuracy of a method
LSED-XC is defined as the average value of the IAcc of LSED-XC in different top percentages
of ranked proteins, and is calculated according to Eq (4), where Topcset is a set of different per-
centages.

AIAccðLSED� XC;TopcsetÞ ¼

X

c2Topcset
IAccðLSED� XC; cÞ

jTopcsetj ð4Þ

where jTopcsetj denotes the number of different percentages in Topcset.
Comparison of the Average Accuracy over Species. To evaluate the prediction accuracy

of each method more comprehensively, the average accuracy (AKAcc) of a methodM in the
top c% of ranked proteins over more than one species is calculated by Eq (5).

AKAccðM; c; kÞ ¼

Xk

i¼1

AcciðM; cÞ

k
ð5Þ

where k is the number of species, Acci(M, c) is the accuracy ofM in the top c% of ranked pro-
teins of species i. The higher the AKAcc gained by a method, the higher the likelihood of suc-
cess prediction for different species.

Results
To recheck the centrality-lethality rule in the scope of PSLINs, we carried out experiments for
four species, Saccharomyces cerevisiae, Homo sapiens,Mus musculus, and Drosophila melano-
gaster. In our experiments, seven typical topology-based centrality methods (DC, IC, EC, SC,
BC, CC, and NC) and a centrality method integrating with other biological knowledge (ION)
were adopted, respectively. LSED was combined with these centrality methods (denoted by
LSED-XC) to calculate centrality scores from PSLINs separately. The proteins were sorted by
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the LCSs calculated with LSED-XC in descending order. Specifically, the orthology frequency
of each protein in a species needed by ION [25] was calculated among 272 species from
INPARANIOD database [26]. In addition, for the sake of comparison, each centrality method
was applied to the global PINs independently, and the proteins were sorted by centrality scores
in descending order, too. In the following, top 1%–25% means the set 1%, 5%, 10%, 15%, 20%,
25%. For more information about the proteins of each species with LCSs calculated by
LSED-XC and centrality scores calculated by the corresponding centrality methods, see S1 File,
S2 File, S3 File and S4 File in the Supporting Information files of this paper.

Saccharomyces cerevisiae
Fig 3 shows the percentage of true essential proteins identified by LSED-XC methods and XC
methods in each top percentage of ranked proteins of Saccharomyces cerevisiae. For most
topology-based centrality methods, we can observe that the percentages of true essential pro-
teins correctly predicted by LSED-XC methods are greatly higher than those of the correspond-
ing XC methods in the top 1%–25% of ranked proteins. The IAcc of LSED-XC methods is
shown in Table 2. In Table 2, the positive value of IAcc gained by LSED-XC method indicates
that the Acc of the corresponding XC method can be improved by LSED method. LSED-DC,

Fig 3. Percentage of top c% ranked proteins, identified by LSED-XCmethods and XCmethods, to be essential proteins of Saccharomyces
cerevisiae. Eight centrality methods (DC, BC, CC, SC, EC, IC, NC, and ION) were adopted to calculate centrality scores from the global PIN, respectively.
LSED was combined with these centrality methods to calculate Localization-specific Centrality Scores from PSLINs separately. In (a)-(f), all the centrality
methods are denoted as XC in the legend, and LSED with different XC methods are denoted as LSED-XC in the legend. The proteins are ranked in the
descending order based on their Localization-specific Centrality Scores (LCSs) and centrality scores computed by LSED-XCmethods and XCmethods,
respectively. Then, top 1%, 5%, 10%, 15%, 20% and 25% of the ranked proteins are selected as candidates for essential proteins. According to the list of
known essential proteins, the percentages of true essential proteins were calculated. The figure shows the percentage of true essential proteins identified by
each method in each top percentage of ranked proteins. The digits in brackets stand for the number of proteins ranked in each top percentage. For example,
since the total number of ranked proteins of Saccharomyces cerevisiae is 6,304, the number of proteins ranked in top 1% is about 63 (= 6,304*1%).

doi:10.1371/journal.pone.0130743.g003
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LSED-IC, LSED-EC, LSED-SC, LSED-BC, LSED-CC, and LSED-NC always gain positive val-
ues of IAcc in the top 1%–25% of ranked proteins of Saccharomyces cerevisiae.

By integrating with orthology information, the percentages of true essential proteins cor-
rectly identified by ION are much greater than those of other XC methods in the top 1%–25%
of ranked proteins. However, the Acc of XC methods can be greatly improved when consider-
ing protein subcellular localization. In the top 1% of ranked proteins, LSED-DC, LSED-IC,
LSED-SC, LSED-NC, and LSED-ION outperform ION; In the top 5% of ranked proteins, the
Accs of LSED-NC and LSED-ION are greater than that of ION; In the top 10%-20% of ranked
proteins, more true essential proteins are identified by LSED-DC and LSED-IC methods. It
demonstrates that both protein sublocalization information and orthology information are
helpful for identifying essential proteins in Saccharomyces cerevisiae. For more information
about the true essential proteins in the top percentages of proteins ranked by LSED-XC meth-
ods and XC methods in Saccharomyces cerevisiae, see S2 Table in the Supporting Information
files of this paper.

Homo sapiens
In Fig 4, the percentage of true essential proteins correctly predicted by LSED-XC methods is
compared to that by XC methods in each top percentage of ranked proteins of Homo sapiens.
In the top 1%–25% of ranked proteins, the percentages of top c% ranked proteins, identified by
DC and BC, to be essential proteins are higher than those of other XC methods, while
LSED-DC and LSED-BC outperform DC and BC, respectively.

From Table 3, we can observe that LSED-DC, LSED-BC, and LSED-ION always gain posi-
tive values of IAcc in the top 1%–25% of ranked proteins ofHomo sapiens. Compared with SC,
the positive values of IAcc gained by LSED-SC are mainly in the top 1–15% of ranked proteins.
For EC, CC and NC, the positive values of IAcc gained by the corresponding LSED-XC meth-
ods are mainly in the top 1% of ranked proteins.

Compared with the XC methods based on topology, the percentages of true essential pro-
teins correctly identified by ION in top 1%–25% of ranked proteins are quite low. Compared
with NC, which is used to initialize the centrality scores in ION, ION predicts less true essential
proteins in top 1%–25% of ranked proteins. It seems that the orthology information ofHomo
sapiens proteins used in ION degrades the performance of NC. However, LSED-ION outper-
forms ION in the top 1%–25% of ranked proteins, which demonstrates the effectiveness of

Table 2. The improved accuracy (IAcc) of LSED-XCmethod compared to the accuracy of the corre-
sponding XCmethod in the top c%of ranked proteins of Saccharomyces cerevisiae.

Method IAcc

Top 1% Top 5% Top 10% Top 15% Top 20% Top 25%

LSED-DC 37.93% 45.59% 31.41% 19.70% 13.63% 6.25%

LSED-IC 25.00% 32.32% 24.03% 15.29% 12.76% 5.75%

LSED-EC 42.31% 8.11% 0.70% -2.00% 3.73% 4.68%

LSED-SC 61.54% 29.05% 15.33% 11.75% 10.79% 9.73%

LSED-BC 50.00% 20.15% 23.55% 16.39% 12.90% 9.06%

LSED-CC 17.39% 36.11% 33.33% 42.01% 30.68% 27.85%

LSED-NC 65.38% 33.33% 17.25% 7.32% 1.25% -1.86%

LSED-ION 38.46% 8.33% 0.00% -8.47% -10.07% -11.18%

doi:10.1371/journal.pone.0130743.t002
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Fig 4. Percentage of top c% ranked proteins, identified by LSED-XCmethods and XCmethods, to be essential proteins of Homo sapiens. Eight
centrality methods (DC, BC, CC, SC, EC, IC, NC, and ION) were adopted to calculate centrality scores from the global PIN, respectively. LSED was
combined with these centrality methods to calculate Localization-specific Centrality Scores from PSLINs separately. In (a)-(f), all the centrality methods are
denoted as XC in the legend, and LSED with different XC methods are denoted as LSED-XC in the legend. The proteins are ranked in the descending order
based on their Localization-specific Centrality Scores (LCSs) and centrality scores computed by LSED-XCmethods and XCmethods, respectively. Then, top
1%, 5%, 10%, 15%, 20% and 25% of the ranked proteins are selected as candidates for essential proteins. According to the list of known essential proteins,
the percentages of true essential proteins were calculated. The figure shows the percentage of true essential proteins identified by each method in each top
percentage of ranked proteins. The digits in brackets stand for the number of proteins ranked in each top percentage. For example, the total number of
ranked proteins of Homo sapiens is 16,275, thus the number of proteins ranked in top 1% is about 162 (= 16,275*1%).

doi:10.1371/journal.pone.0130743.g004

Table 3. The improved accuracy (IAcc) of LSED-XCmethod compared to the accuracy of the corre-
sponding XCmethod in the top c%of ranked proteins ofHomo sapiens.

Method IAcc

Top 1% Top 5% Top 10% Top 15% Top 20% Top 25%

LSED-DC 3.49% 4.08% 4.11% 1.56% 0.32% 1.17%

LSED-IC −4.94% −8.90% −4.50% −10.40% −12.89% −15.05%

LSED-EC 37.74% 0.35% −4.63% −6.28% −8.55% −6.70%

LSED-SC 33.96% 10.76% 4.81% 2.32% −3.62% −5.84%

LSED-BC 8.89% 9.68% 8.67% 5.87% 4.20% 5.93%

LSED-CC 3.61% −5.80% −9.98% −10.46% −9.35% −7.15%

LSED-NC 22.73% 0.00% −0.37% 2.11% 1.84% −1.26%

LSED-ION 69.23% 5.73% 19.75% 33.26% 32.68% 20.83%

doi:10.1371/journal.pone.0130743.t003
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both LSED method and PSLINs. For more information about the true essential proteins in the
top percentages of proteins ranked by LSED-XC methods and XC methods in Homo sapiens,
see S3 Table in the Supporting Information files of this paper.

Mus musculus
The percentages of true essential proteins ofMus musculus which are correctly predicted by
LSED-XC methods are compared to those by XC methods in the top 1%–25% of ranked pro-
teins, as shown in Fig 5. It is evident that the enrichment levels of true essential proteins identi-
fied by LSED-XC methods in each top percentage of ranked proteins are higher than those of
the corresponding XC methods. DC, IC and BC outperform other XC methods for the top 1%–

25% ranked proteins. From Table 4, we can find that, compared with DC, the AIAcc of
LSED-DC in the top 1%–25% of ranked proteins is 10.5%. Compared with IC, the AIAcc of
LSED-IC is 13.7% in the top 1%–25% of ranked proteins, and the AIAcc of LSED-BC is 12.4%
in the top 1%–25% of ranked proteins comparing with BC.

As shown in Table 4, we can find that LSED also achieves improvements on the prediction
accuracy of other centrality methods. Compared with EC, the IAccs of LSED-EC are 175%,
58.3%, 19.3%, 51.4%, 76.8%, and 43% in the top 1%, 5%, 10%, 15%, 20%, and 25% of ranked
proteins, respectively. Compared with SC, the AIAcc of LSED-SC is 77.25% in the top 1%–25%

Fig 5. Percentage of top c% ranked proteins, identified by LSED-XCmethods and XCmethods, to be essential proteins ofMusmusculus. Eight
centrality methods (DC, BC, CC, SC, EC, IC, NC, and ION) were adopted to calculate centrality scores from the global PIN, respectively. LSED was
combined with these centrality methods to calculate Localization-specific Centrality Scores from PSLINs separately. In (a)-(f), all the centrality methods are
denoted as XC in the legend, and LSED with different XC methods are denoted as LSED-XC in the legend. The proteins are ranked in the descending order
based on their Localization-specific Centrality Scores (LCSs) and centrality scores computed by LSED-XCmethods and XCmethods, respectively. Then, top
1%, 5%, 10%, 15%, 20% and 25% of the ranked proteins are selected as candidates for essential proteins. According to the list of known essential proteins,
the percentages of true essential proteins were calculated. The figure shows the percentage of true essential proteins identified by each method in each top
percentage of ranked proteins. The digits in brackets stand for the number of proteins ranked in each top percentage. For example, the total number of
ranked proteins ofMusmusculus is 6,582, thus the number of proteins ranked in top 1% is about 65 (= 6,582 *1%).

doi:10.1371/journal.pone.0130743.g005
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of ranked proteins. Compared with CC, the AIAcc of LSED-CC is 15.2% in the top 1%–25% of
ranked proteins. In the top 1%–25% of ranked proteins, compared with NC, the AIAcc of
LSED-NC is 9.9%. The percentages of true essential proteins correctly identified by ION in top
1%–20% ranked proteins are quite lower than those of topology-based centrality methods,
while LSED-ION always identifies more true essential proteins than ION. For more informa-
tion about the true essential proteins in the top percentages of proteins ranked by LSED-XC
methods and XC methods inMus musculus, see S4 Table in the Supporting Information files of
this paper.

Drosophila melanogaster
Fig 6 shows the percentages of true essential proteins of Drosophila melanogaster correctly pre-
dicted by LSED-XC methods and XC methods in the top 1%–25% of ranked proteins. Com-
pared with XC methods,the improvements on the enrichment level of essential proteins
obtained by LSED-XC methods can be observed in Fig 6 and Table 5. Specifically, LSED-BC
identifies more true essential proteins than others in the top 1% to 10% of ranked proteins,
more true essential proteins are correctly predicted by LSED-EC in the top 15% and 20% of
ranked proteins, and the percentages of true essential proteins correctly predicted by most
LSED-XC methods in the top 25% of ranked proteins are nearly the same, which are higher
than those predicted by XC methods. For more information about the true essential proteins in
the top percentages of proteins ranked by LSED-XC methods and XC methods in Drosophila
melanogaster, see S5 Table in the Supporting Information files of this paper.

Average Accuracy over Species
From the comparison of the top percentages of ranked proteins for four species, it is clearly
observed that some methods can work well for one species, but may fail for the other species.
For example, ION can identify more true essential proteins than other methods for Saccharo-
myces cerevisiae, while the performance of ION is quite poor for other species. The perfor-
mance of BC for Saccharomyces cerevisiae is not very good, but it outperforms other XC
methods for other species, so does the LSED-BC method. A good essential protein prediction
method should be not species-specific. Otherwise, it will be difficult for biologists to make a
choice which method should be applied to a species without knowing the preference of the
methods.

Table 4. The improved accuracy (IAcc) of LSED-XCmethod compared to the accuracy of the corre-
sponding XCmethod in the top c%of ranked proteins ofMusmusculus.

Method IAcc

Top 1% Top 5% Top 10% Top 15% Top 20% Top 25%

LSED-DC 22.86% 8.72% 3.36% 13.39% 11.54% 3.49%

LSED-IC 20.93% 9.38% 8.39% 16.12% 10.95% 4.78%

LSED-EC 175.00% 58.33% 19.38% 51.48% 76.84% 43.04%

LSED-SC 150.00% 51.67% 13.18% 58.58% 103.68% 60.52%

LSED-BC 19.44% 11.03% 9.96% 11.02% 12.91% 10.17%

LSED-CC 14.81% 0.00% −5.08% 19.44% 38.03% 28.49%

LSED-NC −6.25% 4.65% 6.38% 22.60% 17.39% 8.87%

LSED-ION 100.00% 30.95% 41.38% 100.00% 92.39% 64.93%

doi:10.1371/journal.pone.0130743.t004
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Fig 6. Percentage of top c% ranked proteins, identified by LSED-XCmethods and XCmethods, to be essential proteins of Drosophila
melanogaster. Eight centrality methods (DC, BC, CC, SC, EC, IC, NC, and ION) were adopted to calculate centrality scores from the global PIN,
respectively. LSED was combined with these centrality methods to calculate Localization-specific Centrality Scores from PSLINs separately. In (a)-(f), all the
centrality methods are denoted as XC in the legend, and LSED with different XC methods are denoted as LSED-XC in the legend. The proteins are ranked in
the descending order based on their Localization-specific Centrality Scores (LCSs) and centrality scores computed by LSED-XC methods and XCmethods,
respectively. Then, top 1%, 5%, 10%, 15%, 20% and 25% of the ranked proteins are selected as candidates for essential proteins. According to the list of
known essential proteins, the percentages of true essential proteins were calculated. The figure shows the percentage of true essential proteins identified by
each method in each top percentage of ranked proteins. The digits in brackets stand for the number of proteins ranked in each top percentage. For example,
the total number of ranked proteins of Drosophila melanogaster is 8,020, thus the number of proteins ranked in top 1% is about 80 (= 8,020 *1%).

doi:10.1371/journal.pone.0130743.g006

Table 5. The improved accuracy (IAcc) of LSED-XCmethod compared to the accuracy of the corre-
sponding XCmethod in the top c%of ranked proteins ofDrosophila melanogaster.

Method IAcc

Top 1% Top 5% Top 10% Top 15% Top 20% Top 25%

LSED-DC 250.00% 18.92% 33.33% 41.56% 42.16% 28.57%

LSED-IC 61.54% 9.76% 17.33% 22.12% 28.87% 24.18%

LSED-EC 20.00% 13.89% 42.86% 40.51% 47.92% 29.31%

LSED-SC 60.00% 19.44% 45.61% 32.91% 51.04% 33.04%

LSED-BC 77.78% 25.64% 28.79% 28.74% 37.74% 21.43%

LSED-CC 100.00% 26.32% 18.33% 26.14% 34.26% 23.39%

LSED-NC 0.00% 45.45% 84.44% 63.08% 68.60% 42.99%

LSED-ION −33.33% 0.00% 93.02% 98.28% 100.00% 73.86%

doi:10.1371/journal.pone.0130743.t005
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The AKAcc of each method in each top percentage of ranked proteins over four species was
calculated. As shown in Fig 7, the AKAccs of LSED-XC methods in each top percentage of
ranked proteins are higher than those of XC methods consistently. Especially, the AKAccs of
LSED-BC and LSED-DC are always higher, compared with XC methods and other LSED-XC
methods, which indicates their superior performances to identify essential proteins for differ-
ent species. Furthermore, the higher AKAccs of LSED-XC methods suggest that in most situa-
tions the LCSs taking into consideration the cellular compartments seem to be more predictive
than the centrality scores measured in the global PINs and the essential proteins of different
species can be explored better in the PSLINs.

Discussion
Through the comparison, it is observed that LSED-XC can identify more true essential proteins
than the corresponding XC method in the top 1%–25% of ranked proteins in most situations.
Furthermore, LSED-XC methods gained higher AKAccs in each top percentage of ranked pro-
teins over four species, which indicates their better prediction performance for different spe-
cies. In this section, we will look into the different predictions between the global PINs and the
PSLINs, analyze the limitations of centrality methods applied to PSLINs, and discuss the confi-
dence levels calculated in LSED.

Fig 7. The AKAccs of eachmethod in different top percentages of ranked proteins over four species. Four species are Saccharomyces cerevisiae,
Homo sapiens,Mus musculus and Drosophila melanogaster. When top 1%, 5%, 10%, 15%, 20% and 25% of the ranked proteins are selected as candidates
for essential proteins, according to the list of known essential proteins of each species, the Acc of each method in each top percentage of ranked proteins
was calculated. (a)-(f) illustrate the AKAccs of LSED-XCmethods and XCmethods in the top 1%, 5%, 10%, 15%, 20%, and 25% of ranked proteins over four
species, respectively. In (a)-(f), all the centrality methods are denoted as XC in the legend, and LSED with different XC methods are denoted as LSED-XC in
the legend.

doi:10.1371/journal.pone.0130743.g007
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Different Predictions between the Global PINs and the PSLINs
LSED-XC methods measure the centrality of proteins based on the PSLINs, while XC methods
measure the centrality of proteins based on the global PINs. To figure out the difference
between essential proteins identified from the global PINs and the PSLINs, we compare the dif-
ferences in the top 100 proteins ranked by XC methods and LSED-XC methods, respectively.
In Fig 8, from (a) to (d), the X axis represents the number of different proteins between
LSED-XC and XC, and the Y axis represents the percentage of true essential proteins in the dif-
ferent proteins. For example, DC(38) means that there are 38 different proteins in the two top
100 protein sets ranked by LSED-DC and DC, while there are 62 common proteins in the two
top 100 ranked protein sets. In each different protein set, 65.7% ranked by LSED-DC are true
essential proteins, while 26.3% ranked by DC are true essential proteins.

Fig 8. Percentage of different proteins, resulted by LSED-XCmethods and the corresponding XCmethods, to be essential proteins.Different
proteins between two prediction methods are the proteins predicted by one method while neglected by the other method. (a)-(d) illustrate the percentages of
true essential proteins in the different proteins from the top 100 protein sets ranked by LSED-XCmethods and XCmethods for Saccharomyces cerevisiae,
Homo sapiens,Mus musculus and Drosophila melanogaster, respectively. In (a)-(d), the X axis represents the number of different proteins between
LSED-XC and XC, and the Y axis represents the percentage of true essential proteins in the different proteins. In (a)-(d), all the centrality methods are
denoted as XC in the legend, and LSED with different XC methods are denoted as LSED-XC in the legend.

doi:10.1371/journal.pone.0130743.g008
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In Fig 8, in the top 100 proteins ranked by LSED-XC and its corresponding XC method,
half or nearly half proteins are different. It seems that the PSLINs involved in LSED-XC and
the strategy of calculating LCSs are the main reasons accounting for this difference. Compared
with XC, the higher percentages of true essential proteins in the different proteins gained by
LSED-XC demonstrate that the proteins with high LCSs measured from PSLINs are more likely
to be essential. As shown in Fig 8(a), in the top 100 ranked proteins of Saccharomyces cerevi-
siae, LSED-XC methods find more true essential proteins than XC methods in those different
proteins. For example, 40 out of 55 different proteins ranked by LSED-NC in top 100 ranked
proteins are true essential proteins, while there are only 10 true essential proteins in 55 differ-
ent proteins ranked by NC. In the top 100 ranked proteins of Homo sapiens, as illustrated in
Fig 8(b), the average percentage of true essential proteins in the different proteins ranked by
LSED-XC methods is 53.7%, while the average percentage of true essential proteins in the dif-
ferent proteins ranked by XC methods is 36%. In Fig 8(c), in the top 100 ranked proteins of
Mus musculus, more true essential proteins are identified by LSED-XC methods than XCmeth-
ods in those different proteins. About 47% of the different proteins ranked by LSED-XC meth-
ods are true essential proteins on average, while only 25% of the different proteins ranked by
XC methods are true essential proteins. In Fig 8(d), we can observe that the top 100 proteins of
Drosophila melanogaster ranked by LSED-XC methods and XC methods are quite different.
Specifically, the top 100 proteins ranked by LSED-SC and SC are totally different, while the
average number of different proteins ranked by other LSED-XC methods and XC methods is
about 83. LSED-XC methods still find more true essential proteins than XC methods in those
different proteins. Compared with the global PIN, the proteins with high LCSs measured from
PSLINs are more likely to be essential. In another word, the centrality-lethality rule can be
explained better in PSLINs.

The Limitations of Centrality Methods Applied to PSLINs
In Figs 3, 4, and 6, we can observe that the percentages of true essential proteins identified by
LSED with a centrality method, like CC, IC, and EC, are lower than those of the centrality
methods applied to the global PINs in some situations. The reason might be the fact that these
centrality methods are not applicable to networks with disconnected components [42, 43].
Compared with a global PIN, the PSLINs tend to be smaller and of less connectivity, containing
more disconnected components. Closeness Centrality(CC) dysfunctions when the network
contains disconnected components. The centrality scores of many proteins in PSLINs calcu-
lated by CC are 0, which have no power to measure the protein essentiality, while a few pro-
teins will have centrality scores of 0 calculated by CC in the global PIN. Therefore, more
proteins can be effectively ranked based on the global PIN, compared with PSLINs. IC is
another closeness centrality method, similar to CC, facing the same problem [42]. Eigenvector
Centrality(EC) is also not applicable to network with disconnected components [43]. There-
fore, not every centrality method is proper for calculating the centrality scores of proteins in
PSLINs, and more useful centrality methods are expected to be proposed for PSLINs with
some disconnected components in the future.

Different Reliability of Centrality Scores Calculated from Different
PSLINs
The reliability of centrality scores calculated from different PSLINs are different. Take DC for
example. As shown in Table 6, the number of true essential proteins in the top 100 proteins
ranked by DC from each PSLIN of each species is compared. We can find out that the
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accuracies of these rankings from different PSLINs are different, and more essential proteins
are ranked in top 100 proteins from networks with large sizes.

In LSED, the confidence levels of PSLINs are used to measure the reliability of centrality
scores computed from different PSLINs, and the confidence level of a PSLIN is proportional to
its size. The confidence levels of PSLINs are different, because different PSLINs play different
roles and have different degrees of importance in cell activities. According to the incomplete
statistics, as shown in Table 7, the numbers of proteins in PSLINs are not even, neither are the
numbers of essential proteins. It is clearly observed that the number of essential proteins in

Table 6. The number of essential proteins in the top 100 proteins ranked by DC in the different PSLINs for four species.

PSLIN #Essential proteins

Saccharomyces cerevisiae Homo sapiens Mus musculus Drosophila melanogaster

Cytoskeleton 54 35 53 11

Cytosol 33 48 36 6

Endoplasmic 31 26 32 2

Endosome 13 34 33 1

Extracellular 0 50 43 11

Golgi 35 34 26 5

Lysosome(or Vacuole) 8 7 24 0

Mitochondrion 19 44 26 4

Nucleus 63 63 59 16

Peroxisome 1 1 15 0

Plasma 19 61 58 17

Subcellular localizations (Compartments) are used to denote different PSLINs.

#Essential proteins denotes the number of essential proteins in the top 100 proteins ranked by DC in a PSLIN of a species.

doi:10.1371/journal.pone.0130743.t006

Table 7. The distribution of proteins and essential proteins in the different PSLINs of four species.

PSLIN Saccharomyces
cerevisiae

Homo sapiens Mus musculus Drosophila
melanogaster

#P #EP #P #EP #P #EP #P #EP

Cytoskeleton 214 81 1302 318 653 161 283 30

Cytosol 349 94 2289 558 318 123 88 6

Endoplasmic 378 113 623 150 141 39 44 2

Endosome 118 14 453 101 85 34 5 1

Extracellular 13 0 856 206 151 77 106 12

Golgi 202 50 618 135 105 34 27 5

Lysosome(or Vacuole) 170 10 133 31 23 7 4 0

Mitochondrion 853 155 866 163 197 63 143 5

Nucleus 2110 698 5234 1205 2536 738 1028 90

Peroxisome 55 1 86 15 5 1 6 0

Plasma 343 45 2478 610 861 322 159 27

Subcellular localizations (Compartments) are used to denote different PSLINs. #P and #EP denote the numbers of proteins and essential proteins in a

PSLIN of a species, respectively.

doi:10.1371/journal.pone.0130743.t007
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PSLINs is roughly proportional to the number of proteins in the PSLINs. We can find that
essential proteins are mainly distributed in the PSLIN of Nucleus for all four species. Many
important cell activities, like chromosome replication and transcription, are carried in Nucleus,
involving a large number of proteins. Therefore, the number of essential proteins in Nucleus
PSLIN is larger than that of other PSLINs. Besides Nucleus PSLIN, the numbers of proteins in
the PSLINs of Plama, Cytoskeleton, and Cytosol of Homo sapiens,Mus musculus, and Drosoph-
ila melanogaster are quite greater than those of other PSLINs, so are the numbers of essential
proteins in these PSLINs. From the perspective of topology, the confidence levels of PSLINs are
different, because different PSLINs have different destruction strengths in the global PIN.
Highly connected proteins play an important role in maintaining the basic structure of a
PSLIN, and the whole PSLIN will collapse if these proteins are removed. The collapse of a
PSLIN with the larger size will contribute more to the destruction of the global PIN. Thus, in
LSED, the confidence level of a PSLIN is proportional to its size.

In conclusion, the centrality-lethality rule is rechecked in the scope of PSLINs by using
LSED method which can be combined with a centrality method to identify essential proteins
from PSLINs. Through the comparison on the prediction accuracy between LSED-XC with
PSLINs and the corresponding centrality methods with the global PINs, we have found that
proteins with high LCSs measured from PSLINs are more likely to be essential and the perfor-
mance of centrality methods can be improved by LSED. From the biological angle, certain
activities are carried out in each PSLIN, and the removal of proteins with high centrality scores
will disturb these activities. As a result, the organism can not survive or grow. From the per-
spective of topology, proteins with high centrality scores play important roles in maintaining
the basic structure of a PSLIN, and the whole PSLIN will collapse if these proteins are removed.
Moreover, the collapse of PSLINs will lead to the collapse of the global PIN. Thus, the central-
ity-lethality rule can be supported better in the scope of PSLINs, and the essentiality of proteins
can be more accurately predicted by LCSs measured from PSLINs.
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