
Recruiting the Acutely Injured Lung: How and Why?

The beneficial effects of positive end-expiratory pressure (PEEP) on
oxygenation in acute respiratory distress syndrome (ARDS) were very
soon attributed to the “recruitment of gas exchange airspaces and
prevention of terminal airway closure” (1). In 1975, Suter proposed
“optimal PEEP” as the value at which the best compliance was
obtained, indicating that recruitment outweighed PEEP’s potentially
adverse hemodynamic effects. Indeed, best compliance was
associated with the highest tissue oxygen transport (DO2; i.e., the
product of arterial oxygen content and Q

:
) and with lowest dead

space (2). This physiology-based approach integrated key
considerations of lung mechanics, hemodynamics, and gas exchange.
With passing time, the PaO2

/FIO2
ratio displaced oxygen transport to

assess the benefit of PEEP, and hemodynamic status became
relatively neglected (3). These days, the focus of ventilatory strategy
is primarily concentrated on the recruitment–PEEP pairing, which is
central to the prevention of atelectrauma (4) and to the open-lung
strategy (5). Therefore, recruitment for the last 5 decades has held a
central role in setting PEEP during mechanical ventilation.

Although the word recruitment, as currently used, is perceived
as an unambiguous concept, its meaning and quantification differ
sharply depending on assessment method. Recruitment with the
computed tomography scan–based approach is quantified by the
amount of tissue that regains aeration from the gasless state (6) or
as a reduced radio-density in well-defined anatomical regions (7).
In contrast, the respiratory mechanics approach measures
recruitment not only as the gas entering newly opened units but
also as the gas entering previously opened units that improve their
compliance at higher PEEP (Figure 1). Therefore, the computed
tomography scan– and respiratory mechanics–based methods
measure different entities and, not surprisingly, often provide
discordant results (8).

Several investigators assessed recruitment by assuming that the
change in compliance at different PEEP levels is only a result of the
recruitment of previously collapsed units (9–13). Although this
assumption is not completely correct (8, 14), such gas-based
methods illustrate how PEEP improves the overall inflation by
increasing the lung compliance. This is a result of both the
enrollment of new pulmonary units and the improved compliance
of ones already open.

In this issue of the Journal, Chen and colleagues (pp. 178–187)
(15) suggest that a simplified variant of such gas-based tidal
mechanics methods may help clinicians to extract and separate the
appropriately targeted reopened element by calculating a novel
recruitment:inflation compliance ratio. This index, based on the
passive deflation properties of a single tidal breath delivered from
two levels of PEEP, aims to separate recruiting responses to the
PEEP increment from nonrecruiting responses of simple distention

of units already open at the lower PEEP value. Correlations with
oxygen exchange and hemodynamic tolerance in their cohort of
tested patients with ARDS, as well as with a more laborious
research method for tracking unit opening, suggested the potential
clinical use of this single-breath recruitment-to-inflation index.

A second intriguing observation in this report is the apparently
high incidence (almost one in three) of near-complete end-expiratory
airway closure, as indicated by failure of initially building airway
pressure to initiate any detectable inspiratory flow. Although regional
closure of lung units and regional air trapping have been
demonstrated previously in patients with ARDS of this severity who
are ventilated at very low PEEP levels (16, 17), extension to the entire
lung and into a higher PEEP range is a relatively recent inference
(18) and conceptually seems rather difficult to explain, given the
wide range of transpulmonary forces encountered within the acutely
injured lung. If auto-PEEP and airway closure are prominent
features, the proposed recruitment-to-inflation index must be
adjusted to account for them to prevent serious calculation errors.
Chen and colleagues are right in highlighting the preliminary, rather
than clinically validated, nature of their report. The described
technique, although conceptually innovative and thought-provoking,
depends heavily on the accuracy, timing, and alignment of the
pressure and flow measurements made by the ventilator, as well as
on assumptions regarding tissue properties of lung and chest wall
that are open to question.

However determined, bedside estimates of recruitment do
not account for coexisting hyperinflation and hemodynamic
impairment, which are nearly unavoidable prices to pay when
PEEP is increased into its higher range. The key issue when dealing
with the potential for recruitment, however, is to define its
relationship with PEEP, whose level, in turn, relates both to
oxygenation and to atelectrauma prevention. Let us assume, for
example, that recruitability is correctly determined to be 10%, 20%,
or 40% of the lung mass/volume. How should this guide PEEP
selection?

The oxygenation, in most cases, is a relatively minor problem:
A moderate PEEP level is usually adequate and seldom impairs
hemodynamics. Recruitability and oxygenation, contrary to
common belief, are usually weakly correlated, as also reflected
in data from the present study, in which the R2 of the recruitment
to inflation index and PaO2

was only 0.12. It must be kept in
mind that for a fixed FIO2

, oxygenation depends uniquely on
the ventilation/perfusion ratio (i.e., the perfusion has an equal
role as the ventilation). Indeed, it has been shown that the PaO2

improvement with PEEP may sometimes be primarily a result of
the decreased perfusion, even in absence of recruitment (19–21).

More important, we do not know which is the optimal PEEP
that prevents atelectrauma of some pulmonary units while avoiding
the volotrauma of some others (22). In an unselected ARDS
population, it is consistently established in large clinical trials that
the risks and benefits of preventing atelectrauma (higher PEEP) are
equivalent to the ones of preventing volotrauma (lower PEEP)
(23–25), at least within the PEEP range that has been tested
(z7–15 cm H2O). In contrast, at higher PEEP levels, the risk for
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volotrauma exceeds the benefits of atelectrauma prevention (26).
It is possible, however, that in a selected population of PEEP
responders (i.e., patients with high potential for recruitment),
the higher PEEP may provide advantages, as signaled by
meta-analysis of the lower versus higher PEEP trials (27).
Unfortunately, the definition of recruiters and nonrecruiters is
usually based on the median value of a given population,
which may be widely variable. In unselected patients with
ARDS, we found 9% recruitability of nonaerated tissue (28),
whereas in extracorporeal membrane oxygenation patients,
Camporota, using the same method, found a median value nearly
threefold greater (29). Chen and colleagues report a median
recruitment:inflation ratio of 0.5, ranging from 0 to 2. In face of
such extreme variability, any simple recruitable–nonrecruitable
dichotomy must be considered arbitrary and interpreted
cautiously (30).

In our view, therefore, the authors’ efforts to individualize
the PEEP setting based on highly relevant bedside physiology
is both well taken and welcome. Fifty years of investigation
have demonstrated the dangers of raising airway pressures
unnecessarily and without tracking all parameters (lung
recruitment, hemodynamics, and hyperinflation) that are most
closely aligned to PEEP’s clinical objectives and hazards.
Examining the worth and costs of fixating on the clinical objective
of “optimized” recruitment alone deserves to be just as carefully
scrutinized. n
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Figure 1. Schematic representation of the gas-mass redistribution within the lungs after an increase of positive end-expiratory pressure (PEEP) from 5 cm
H2O (darker blue, left) to 15 cm H2O (lighter blue, right). On the right, we show the histogram related to the quantitative analysis of the computed
tomography (CT) scan in the two conditions. Although we observe a very minor increase in gas volume in the poorly aerated compartments, we observe a
significant amount of gas volume increase in the normally and hyperinflated lung compartments. The gas-based method includes a portion of the gas
present in the already aerated compartment as a recruited volume. In contrast, the CT scan–based method considers recruitment to be the difference in
nonaerated tissue (0/2200 HU, dark blue, dependent) between 5 and 15 cm H2O. The method difference leads to large differences in the recruitment
computation.
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