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Locating ligand binding sites and finding the functionally important residues from protein sequences as well as structures became
one of the challenges in understanding their function. Hence a Naı̈ve Bayes classifier has been trained to predict whether a given
amino acid residue in membrane protein sequence is a ligand binding residue or not using only sequence based information. The
input to the classifier consists of the features of the target residue and two sequence neighbors on each side of the target residue.
The classifier is trained and evaluated on a nonredundant set of 42 sequences (chains with at least one transmembrane domain)
from 31 alpha-helical membrane proteins. The classifier achieves an overall accuracy of 70.7% with 72.5% specificity and 61.1%
sensitivity in identifying ligand binding residues from sequence. The classifier performs better when the sequence is encoded by
psi-blast generated PSSM profiles. Assessment of the predictions in the context of three-dimensional structures of proteins reveals
the effectiveness of thismethod in identifying ligand binding sites from sequence information. In 83.3% (35 out of 42) of the proteins,
the classifier identifies the ligand binding sites by correctly recognizing more than half of the binding residues. This will be useful
to protein engineers in exploiting potential residues for functional assessment.

1. Introduction

Membrane proteins are an important class of molecules
which play key roles in various biologically important func-
tions such as the maintenance of ionic and proton balance,
transport of substrates, ions, energy, and information across
the membrane, light harvesting, photosynthesis, and other
biological processes [1]. Membrane proteins are classified
mainly into two types: (i) formed by bundles of apolar
transmembrane 𝛼-helices (TMH) and (ii) 𝛽-barrels (TMS).
It has been estimated that nearly 45% of the drugs on the
market target membrane protein receptors [2]. Advancement
of high throughput technologies enable the whole genome
sequencing of a number of organisms. It has been estimated
that, in many genomes, TM proteins comprise 20–35% of

all proteins [3, 4] and hence significant progress has been
made in recent years in the determination of the structures of
membrane proteins. Attempts have been made to determine
the complete structures or domains of membrane proteins
by crystallographic and solution or solid-state NMR spec-
troscopy methods [5, 6]. This in turn increases the entries
significantly in various structural databases.

The vast majority of signal transduction events begin
with the interactions of extracellular signaling molecules
(ligands) to their respective membrane-bound receptors.
However, identifying functional residues in proteins is a
complex issue, even when atomic detailed structures are
available [7]. Various approaches are evolved to study the
functional residues [8, 9]. Zhang and Grigorov, 2006, studied
a hierarchically organized structural relationship among
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protein binding sites using similarity networks [10]. Further
the prediction of function from sequence and structural data
has been extensively reviewed by Watson et al. [11]. These
studies showed that almost all the functions of membrane
proteins are mediated by interactions, which have a pivotal
role in biological processes essential to life, and hence under-
standing protein-ligand interactions is of prime importance.
Traditionally protein-ligand interactions are studied through
laboratory experiments, which are often time consuming
and costly [12, 13]. Accordingly computational methods have
evolved and become increasingly dominant in understanding
protein-ligand interactions.

Protein-ligand interactions have been extensively studied
in recent years for various reasons [14–18] such as carbo-
hydrate recognition, drug interaction, and DNA binding.
Moreover, the prediction of ligand binding sites is an essential
part of the drug discovery process. Knowing the location of
binding sites greatly facilitates the search for hits, the lead
optimization process, the design of site-directed mutagenesis
experiments, and the hunt for structural features that influ-
ence the selectivity of binding in order tominimize the drug’s
adverse effects. Several reports throw light on the prediction
as well as design of ligands and ligand binding sites [19–21]
using amino acid residue features and various algorithms of
machine learning [22–28]. Recently Xie and Hwang, 2015,
reviewed the underlying concepts of the methods used by
various tools for predicting protein-ligand binding sites [29].
Prediction of protein functional residues using sequence
conservation and multiple sequence alignments have also
been reported [30–32]. However, our understanding about
the interaction of ligands with membrane proteins is very
limited when compared to the other class of proteins known
as globular proteins.

The recent explosion in the availability of complete
genome sequences has led to the cataloging of tens of
thousands of new proteins and putative proteins. Previous
research focusedmainly on prediction of membrane proteins
and their types [33–36]. Due to the absence of intricacies
of structural information the problem of ligand binding
prediction in membrane proteins is ignored for a long time;
however, the growth of the databases and construction of
well-defined dataset paved ways to this study. Hence, in
this work, we started from analyzing a set of nonredundant
membrane protein-ligand complexes and derived several
important sequence descriptors and trained a Näıve Bayes
classifier. Bayesian classifiers are probabilistic models, based
on Bayesian theorem, robust to real data noise and missing
values [37].TheNäıve Bayes classifier is one of themost effec-
tive and efficient classification algorithms in the literature [38]
showing good performance. With the help of the machine
learning technique we tried to predict the ligand binding
residues in membrane proteins from sequence information
alone.

2. Materials and Methods

2.1. Data Sets. A data set of ligand-binding membrane
proteins was extracted from structures of known membrane

protein-ligand complexes in the Protein Data Bank [39].
The dataset was culled using the list of membrane proteins
obtained from PDBTM [40], TMPDB [41], MPDB [42], and
a large collection of membrane protein structures [43]. The
resulting dataset consists of 31 membrane proteins from
which 42 sequences (nonhomologous chains are taken into
account) were considered in the present study with mutual
sequence identity ≤ 30% using BLASTCLUST program from
NCBI and each protein has at least 50 amino acid residues. All
the structures have resolution better than 3.0 Å and R factor
less than 0.3.

2.2. Ligand Information. Several reports in the literature used
all nonprotein and nonwatermolecules as ligands [44]. In this
study, ligand is considered as a molecule that binds with the
proteins that have structural and/or functional role and will
be present within a cut-off distance of 4.5 Å from any of the
protein atoms.

2.3. Definition of Ligand Binding Residues. Any of the atoms
of the ligand is in contact with the any of the atoms
of a particular residue, which is said to be in binding if
the distance between them is lower than the cut-off value
4.5 Å. This definition has also been used in our previous
studies. The 42 proteins sequences (chains with at least one
transmembrane domain from 31 membrane proteins) in the
dataset consist of 10657 residues in total and 1431 of them
(13.43%) are identified as ligand binding residues.

2.4. Description of Naı̈ve Bayes Classifier. We used the Näıve
Bayes implementation in the Weka package from the Uni-
versity of Waikato, New Zealand [45, 46], for predicting the
ligand binding residues inmembrane proteins. For each input
target residue, the classifier produces a Boolean output (with
1 denoting a binding residue and 0 denoting a nonbinding
residue).The Näıve Bayes classifier assumes independence of
the attributes given the class. For an input𝑋 = 𝑥
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In the case of two-class classification (𝑐 ∈ {0, 1}), this is
equivalent to determining 𝑐 by comparing the ratio likelihood
with a parameter 𝜃 as in
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𝑐 is predicted to be 1 if the ratio likelihood is greater than 𝜃,
and 0 otherwise. 𝜃 takes the value of 1. When a target residue
and its neighbors were encoded using numeric features such
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as binding propensity and hydrophobicity, the numerical val-
ues were normalized using the normalization filter of Weka.
We used leave-one-protein-out cross-validation to validate
the classifier. In each round of experiment, all proteins except
one were used as the training set and the remaining protein
was used to test the classifier.

2.5. Naı̈ve Bayes Classifier Using Sequence Based Parameters
as Input. The input to the Näıve Bayes classifier contains
the identities of 2𝑛 + 1 residues in the form of 𝑋 =
(𝑥
𝑡−𝑛
, 𝑥
𝑡−𝑛+1
, . . . , 𝑥

𝑡−1
, 𝑥
𝑡
, 𝑥
𝑡−1
, . . . , 𝑥

𝑡+𝑛−1
, 𝑥
𝑡+𝑛
), where 𝑥

𝑡
is

the property of target residue and 𝑥
𝑡−𝑛
, 𝑥
𝑡−𝑛+1
, . . . , 𝑥

𝑡−1
and

𝑥
𝑡+1
, 𝑥
𝑡+𝑛−1
, 𝑥
𝑡+𝑛

are the identities of 𝑛 residues on each side
of the target residue. Different values of 𝑛 from 1 to 7 were
tried and the best performance was obtained when 𝑛 = 2
(corresponding to a window size of 5). A training example
is an ordered pair (𝑋, 𝑐), where 𝑐 ∈ {0, 1}. 1 indicates that the
target residue (the residue in the center of the input window)
is a binding residue and 0 indicates that target residue is not
a binding residue. For a test example𝑋, the classifier outputs
1 (i.e., 𝑋 is predicted to be a binding residue) or 0 (i.e., 𝑋 is
predicted to be a nonbinding residue) as the class label of𝑋.

2.6. Naı̈ve Bayes Classifier Using PSSM Profiles as Inputs. In
the present study, a reference database with known nonre-
dundantmembrane protein sequences constructed separately
was used for the purpose of generating PSSM profiles.
We set parameters of PSI-BLAST [47] using BLOSUM62
substitution matrix, three iteration runs, and exception value
0.001. The other parameters are set using default values.
The PSI-BLAST program by querying each protein chain
against the nonredundant database is used to generate PSSM
profiles which are in the form of 20𝑁 matrix, where 𝑁
is the total number of amino acid residues in the queried
protein sequence. Let the residue 𝑖 be represented by 𝑎

𝑖
=
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𝑖,1
, . . . , 𝑎
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) where 1 ≤ 𝑖 ≤ 𝑁. Each query residue is

represented by a vector of 20 attributes. The input pattern
to the Näıve Bayes classifier using the PSSM profile features
for the residue 𝑖 is 𝑥
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the number of neighborhood residues on either side. We
construct a matrix with window size 𝑠 = 2𝑘 + 1 centered
on the target residue 𝑖. The used profile 𝑥

𝑖
is the form of a

20 × 𝑠 matrix. These profiles are normalized into the range
(0, 1) using the normalization option of Weka. Another set of
attributes was also generated in such a way that it utilizes the
values of BLOSUM62 matrix as features.

2.7. Performance Measures. We utilized the following param-
eters to evaluate the performance of our prediction method
because no single performance measure provides a complete
picture of performance of the classifier: accuracy, correlation
coefficient (MCC), specificity, and sensitivity.Thesemeasures
are defined as

Accuracy (%) = TP + TN
𝑁

× 100;

MCC = TP × TN − FP × FN
√(TP + FN) (TP + FP) (TN + FP) (TN + FN)

;

Specificity (%) = TN
TN + FP

× 100;

Sensitivity (%) = TP
TP + FN

× 100,

(3)

where TP is the number of true positives (residues predicted
to be binding residues that are in fact binding residues); FP
is the number of false positives (residues predicted to be
binding residues that are in fact not binding residues); TN
is the number of true negatives (residues predicted to be
nonligand binding residues that are in fact not ligand binding
residues); FN is the number of false negatives (residues
predicted to be nonligand binding residues that are in fact
ligand binding residues); 𝑁 is the total number of residues
(TP + TN + FP + FN).

3. Results and Discussion

In this work, we trained a Näıve Bayes classifier to predict
whether a given amino acid residue in a membrane protein
sequence is ligand binding or not based on its sequence
information. The Naı̈ve Bayes classifier algorithm as imple-
mented in Weka, a machine learning package, is adopted.
The Näıve Bayes classifier is adopted for several reasons. The
prime advantage of the Bayesian classifiers is that they are
probabilistic models, based on Bayesian theorem, robust to
real data noise and missing values [37]. The Näıve Bayes
classifier assumes independence of the attributes used in
classification but it has been tested on several artificial and
real datasets, showing good performance even when strong
attribute dependence is present. It is one of the most effective
and efficient classification algorithms in the literature and is
simple to implement and use [38].

3.1. Prediction Results. Weused a dataset of 42 nonredundant
transmembrane protein sequences (chains with at least one
transmembrane domain from 31 membrane proteins) to
train the Näıve Bayes classifier. Three methods were used to
encode the protein sequence.They are amino acid properties,
BLOSUM62 and PSSM profiles based encodings. In the
sequence based method 48 important amino acid properties
(for more details see [48, 49]) such as hydrophobicity,
polarity, molecular weight, and charge, are used as features
to encode the protein sequence. It will be noted that some of
the parameters are related. In addition it may be advisable to
keep a larger input in order to avoid losing useful parameters.
And hence we used all the parameters. The best prediction
performance measures were obtained for a window size of 5
(𝑘 = 2), keeping the central residue as the target residue. The
overall prediction accuracy obtained by thismethodwas 64%
and the other prediction measures are shown in Table 1.

BLOSUM matrices are based on observed alignments.
Though BLOSUM62 is tailored for comparisons of moder-
ately distant proteins, it has been used in detecting closer
relationships between proteins since they best represent the
physiochemical characteristics of the amino acid substitu-
tions. And hence we used this as a feature set for training
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Table 1: The prediction performance of the Näıve Bayes classifier
using different encodings of sequence.

Number Type of
encoding Accuracy Sensitivity Specificity

(1) Sequence 63.8% 60.5% 64.4%
(2) Blosum62 67.9% 59.0% 69.4%
(3) PSSM 70.7% 61.1% 72.2%

the classifier.The prediction performance of classifier trained
using BLOSUM62 elements as input was relatively better
than that of the sequence based classifier. The performance
measures are shown in Table 1.

Further we have incorporated the evolutionary informa-
tion in the form of PSSM profiles based encoding. Position
specific iterative BLAST (PSI BLAST) is a strong measure
of residue conservation in a given location. When a residue
is important for biological function it is conserved through
cycles of PSI BLAST.The performance measures of the PSSM
profiles based classifier are given in Table 1. Interestingly,
the prediction accuracy (71%) is higher than the other two
classifiers trained with the same dataset. The large predictive
power of the evolutionary information as measured in this
work may be due to the reason that residue conservation
in protein families is directly related to its contribution to
protein stability or function. It has been established by several
researchers that the prediction of structural properties is
significantly enhanced by the use of PSSM profiles compared
to predictions based on unique representations of amino acid
sequence and its environment. In addition the ligand binding
inmembrane proteins is largely influenced by their particular
structural architecture.

We analyzed the predicted binding residues by the highest
performance classifier to understand the reliability of the
method. Interestingly, in 83.3% (35 out of 42) of the proteins,
the classifier identifies the ligand binding sites by correctly
recognizing more than half of the binding residues. In more
than 90% of the proteins, the classifier correctly identifies at
least 20% of the binding residues suggesting the possibility
of using such classifiers to identify potential ligand-binding
membrane proteins. The per protein prediction accuracy
is given in Table 2. Moreover, those nonbinding residues
predicted as binding residues will be in contact if we just
increase the cutoff distance about 6–8 Å. Most of the false
positive residues are either sequence neighbors or structural
neighbors that can influence ligand binding.

3.2. ROC Curve. The receiver operating characteristic curve
(ROC curve) is a plot of the “sensitivity” (TP/(TP + FN))
versus the “1-specificity” (FP/(TN + FP)) [50]. It shows the
tradeoff between true positive rate and false positive rate
when different threshold values are used for the classifier.
Figure 1 shows such a plot for the predictor with sequence,
BLOSUM62, and PSSM profiles based encoding obtained
using Weka. It could be noted from the figure that there is
slight improvement while using PSSM profiles as the input
features for the classifier.

Table 2: Per protein prediction accuracy.

Pdb ID Number of residues Sensitivity Specificity Accuracy
1ar1 b 252 50 83.2 79.44
1be3 e 196 80 89.6 89.06
1ds8 h 246 40 91.6 90.50
1ds8 l 281 54.8 65.2 62.45
1ehk a 544 43.5 71 66.30
1ehk b 166 30 77 74.07
1eys m 318 52.6 75.5 67.20
1f88 a 338 25.5 55.9 50.90
1fx8 a 254 29.5 68 61.2
1iwo a 994 10 82.3 80.81
1j4n a 249 50 68.2 67.34
1j95 a 98 60 62.9 62.77
1kb9 c 385 66.7 79.4 74.80
1kb9 h 93 20 73.8 70.78
1kb9 i 55 100 38.6 47.06
1kf6 c 130 100 19.8 23.02
1kf6 d 119 36.8 62.5 58.26
1kpl a 430 23.8 72.8 70.43
1kqf b 289 47.8 88.4 78.60
1lgh a 56 79.4 16.7 57.69
1lnq a 301 0 79.8 78.45
1m0k a 222 59.5 68.3 65.13
1m56 a 547 50.4 69.1 65.19
1m56 b 260 33.3 79.9 77.73
1nek c 129 92.3 27.9 48
1nek d 113 92.6 3.7 25.69
1okc a 292 27.5 88.5 71.53
1oy9 a 1006 100 84 84.03
1p49 a 549 44.4 73.1 70.11
1p7b a 258 60 76.7 76.38
1ppj g 75 14.3 64.9 54.93
1pv7 a 417 37.5 65.7 65.13
1q16 c 224 57.1 42.9 38.89
1q90 a 292 35.1 89.6 82.64
1q90 b 212 50 78.3 66.35
1qle c 273 35.5 65.5 62.08
1rc2 b 231 40 63.2 61.67
1v54 d 144 84.2 42.1 47.86
1v54 g 84 60 20 40
1v54 j 58 30 81.8 72.22
1vf5 b 138 42.4 83.2 73.13
1vf5 d 168 61.1 82.9 80.49
Average 50.18 66.04 65.25

3.3. Comparison with Other Algorithms. Though several
methods address the issue of protein-ligand interactions [22–
27, 30–32], the method reported here is particularly for
membrane proteins. Since the features derived are from the
dataset of membrane protein sequences, its performance is
very poor for globular proteins. However, for comparison of
performance, few other algorithms implemented in Weka,
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Figure 1: Showing ROC plots of classifiers trained with sequence
(thin), BLOSUM62 (grey), and PSSM (dark) based encoding of the
amino acid sequence of membrane proteins.

Table 3: The prediction performance of different machine learning
algorithms.

Algorithm Accuracy
%

Sensitivity
%

Specificity
%

Net
prediction

%
Näıve Bayes 70.9 59.5 72.2 65.9
SMO 86.5 0 100 50
RBF network 86.5 0 100 50
Multilayer
perceptron 84.6 29.6 93.1 61.4

IBk 83.3 31.3 91.4 61.4
ADTree 86.6 4.5 99.3 51.9
J48 87.4 28.1 93.5 60.8

for example, SMO, RBF network, Multilayer perceptron, IBk,
ADTree, and J48, were also tested with the same data set,
among which the analysis shows that the cross-validation
sensitivity and net prediction accuracy are good for the
current Näıve Bayes classifier (Table 3). Sequence based
methods employing only sequence information presented in
this work are new and will have a much wider application
as no structure information will be required for prediction.
We expect that this will trigger interest in the prediction of
ligand binding sites in membrane proteins using machine
learning methods and the performance will improve with the
availability of more data.

3.4. WEB Based Tool. With the optimized parameters dur-
ing cross-validation the current PSSM profiles based Naı̈ve
Bayes predictor has also been implemented as a web based
tool which will be freely accessed from following url:
http://tmbeta-genome.cbrc.jp/tm-lig/tm-lig.html. The only
input to this predictor is themembrane protein sequence.The
web server will automatically generate PSSMs of the given
sequence against a reference data and use them as the input

to the Näıve Bayes classifier trained for predictions of 42
membrane proteins. It requires less than aminute.The results
presented include the raw probability scores and annotation
of the residues whether ligand binding or not.

3.5. Identification of Binding Residues in Cytochrome BD
Oxidase. We used the trained classifier to identify the bind-
ing residues for an unknown membrane protein sequence
randomly selected from swissprot, a sequence database. The
protein is cytochrome bd oxidase from E. coli, important
for anaerobic oxidation [51]; its structure has not yet been
determined. The predicted results were compared with the
functional information available from the literature [51–54].
Interestingly, 50% of the residues predicted to be ligand
binding are involved in interaction. In addition, few of
the predicted residues belong to the segments which were
experimentally determined to be functionally important [52].
Since the structure of this protein has not been determined, a
homology model has been built (data not shown) and com-
parative analysis of binding sites with the related structures
revealed that nearly 80% of the predicted residues are found
to be along the lining of the proposed binding sites. This
indeed increases the confidence level of using this predictor
prior to planning for any mutagenesis or any functional
assessment related experiment with more confidence rather
than a random start.

4. Conclusion

Using a well constructed dataset, a Näıve Bayes predictor
is trained and tested to predict the ligand binding residues
in membrane proteins from amino acid sequence. Several
encodings were used to test the performance of the predictor
and PSSM profiles based predictor was shown to have better
prediction accuracy (71%). With the level of success achieved
in this study, putative ligand-binding sites predicted by the
classifiers trained using a machine learning approach should
be useful for guiding experimental investigations into the role
of specific residues of a protein in its interaction with ligand,
for example, by localizing candidate residues formutagenesis.
This paves ways for further improvements and predictions
based on sequence methods for membrane protein-ligand
interactions. Currently, we are investigating other machine
learning classification methods to improve the accuracy of
the prediction, which warrants further exploration.
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