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Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused substan-

tially more infections, deaths, and economic disruptions than the 2002-2003 SARS-

CoV. The key to understanding SARS-CoV-2's higher infectivity lies partly in its host

receptor recognition mechanism. Experiments show that the human angiotensin con-

verting enzyme 2 (ACE2) protein, which serves as the primary receptor for both

CoVs, binds to the receptor binding domain (RBD) of CoV-2's spike protein stronger

than SARS-CoV's spike RBD. The molecular basis for this difference in binding affin-

ity, however, remains unexplained from X-ray structures. To go beyond insights

gained from X-ray structures and investigate the role of thermal fluctuations in struc-

ture, we employ all-atom molecular dynamics simulations. Microseconds-long simula-

tions reveal that while CoV and CoV-2 spike-ACE2 interfaces have similar

conformational binding modes, CoV-2 spike interacts with ACE2 via a larger combi-

natorics of polar contacts, and on average, makes 45% more polar contacts. Correla-

tion analysis and thermodynamic calculations indicate that these differences in the

density and dynamics of polar contacts arise from differences in spatial arrangements

of interfacial residues, and dynamical coupling between interfacial and non-interfacial

residues. These results recommend that ongoing efforts to design spike-ACE2 pep-

tide blockers will benefit from incorporating dynamical information as well as alloste-

ric coupling effects.
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1 | INTRODUCTION

Within 10 months of its emergence, the severe acute respiratory syn-

drome coronavirus-2 (SARS-CoV-2) has caused more than 23 million

confirmed infections and over 800 000 deaths globally, and these

infections continue to grow rapidly.1 In contrast, its genetic variant,

SARS-CoV, which caused the 2002 to 2003 outbreak, led to far fewer

infections and was relatively easier to contain.2

Several studies on coronaviruses show that their overall rates of

replication, transmissibility and disease severity (in several species)
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correlate with the binding affinities of their spike proteins to the host

receptor angiotensin converting enzyme 2 (ACE2).3-6 Accordingly,

calorimetric experiments, including surface plasmon resonance (SPR)

and bilayer interferometry (BI), show that ACE2 does bind to the

receptor binding domain (RBD) of CoV-2 spike 5 to 20-fold stronger

compared to CoV spike RBD (Table S1 of supporting information).7-10

Qualitative results from pull-down binding assays are also consistent

with this finding.11 Note, however, that these findings do not neces-

sarily imply that CoV-2's full-length spike will also have a higher affin-

ity for ACE2. Experiments remain somewhat unclear about this issue.

On the one hand, results from pull-down assays indicate that ACE2

binds to full-length spikes of CoV and CoV-2 with comparable affini-

ties.11 This difference in relative binding affinities of spike RBD and

full-length spike to ACE2 is suggested to be due to differences in

exposure rates of RBD in CoV and CoV-2 spike.11 Although the RBD

of CoV binds ACE2 with lower affinity, it is suggested that its

RBD has a higher exposure rate compared to the RBD of CoV-2 spike,

which compensates for its RBD's lower affinity.11 These conforma-

tional states have also been suggested to be modulated by spike gly-

cans.12 On the other hand, SPR experiments indicate that inclusion of

CoV-2's spike ectodomain, which is expected to control RBD expo-

sure, does not decrease its ACE2 affinity8 (see also Table S1 of

supporting information). Nevertheless, what is clear from all experi-

ments is that ACE2 does have a much higher affinity for CoV-2 spike

RBD compared to CoV spike RBD.

Here we examine the molecular basis underlying the different

binding affinities of CoV and CoV-2 spike RBDs to ACE2. X-ray struc-

tures are indispensable starting points to investigate this issue, how-

ever, as we discuss below, there is a clear disconnect between X-ray

structural data and experimental binding affinity data. The RBDs of

the CoV and CoV-2 spike have almost similar structures, and they

interact with almost identical regions of the proteolytic domain

(PD) of ACE2.7,9,13 Out of the 43 amino acids that are different in the

spike RBDs of CoV and CoV-2 strains used for structure determina-

tion, 10 are at the ACE2 binding region.7 These 10 amino acid differ-

ences do not alter the numbers of hydrogen bonds and salt bridges at

the spike-ACE2 interface.7 They only make CoV-2's spike-ACE2 inter-

face less hydrophobic compared to CoV's spike-ACE2 interface. A

smaller hydrophobicity implies a higher desolvation cost associated

with protein-protein binding and, therefore a lower binding affin-

ity.14,15 This, in principle, should have made ACE2 bind less strongly

to CoV-2's spike RBD, rather than the opposite.

Since the emergence of X-ray structures, several research groups

have performed molecular simulations on spike-ACE2 complexes.16-22

Some of these studies also address the issue of why ACE2 binds with

different affinities to CoV and CoV-2 spike RBDs.16,19-22 In particular,

MD simulations21 reveal that CoV-2's spike-ACE2 interface consists

of several high-frequency polar contacts, which suggests that polar

contacts may be important to CoV-2's higher affinity. Alanine-

scanning free energy calculations by Zou et al22 indicate that interfa-

cial residues in both CoV and CoV-2 RBDs contribute to their respec-

tive binding affinities with ACE2. Free energy calculations by Wang

et al.16 and Ghorbani et al.20 indicate that individual substitutions of

many of CoV's interfacial residues into CoV-2 spike have a positive

impact on spike-ACE2 affinity, suggesting that the overall higher affin-

ity of CoV-2 spike perhaps results from a combination of multiple dif-

ferences in sequences. However, these early simulation studies do not

explain why CoV-2's spike RBD binds more strongly to ACE2 despite

making a smaller hydrophobic contact with ACE2 and despite making

the same numbers of polar contacts compared to CoV spike.

A potentially important aspect of spike-ACE2 interactions that is

missing from literature is the characterization of thermal fluctuations

in structure, and their role in relative binding. Our studies on para-

myxoviruses, in fact, show that protein dynamics play a vital role in

virus-host protein-protein interactions and also in regulation of viral

entry,23,24 and perhaps they may also explain why ACE2 binds more

tightly to CoV-2's spike RBD. To examine this and go beyond insights

obtained from X-ray structures and recent simulation studies, here we

carry out a comparative analysis of spike-ACE2 complexes using all-

atom MD simulations at physiological temperature and in explicit sol-

vent. We use a protocol similar to that we have employed recently,23

whose forward predictions on virus-host protein-protein interactions

were also validated by targeted biophysical experiments.25 Addition-

ally, we carry out free energy calculations to examine the effect of

mutating selected spike residues on spike-ACE2 binding affinity.

Results from these studies provide a physical basis for why ACE2

binds to CoV-2 spike RBD more strongly compared to CoV spike

RBD. This mechanistic, structural and energetic data is expected to

directly benefit ongoing efforts to design small molecules, polymers,

and antibodies targeting the spike-ACE2 interaction.

2 | RESULTS AND DISCUSSION

We first carry out 3 μs long MD trajectories of ACE2 PD complexed

with spike RBDs of CoV and CoV-2, and examine differences in bind-

ing modes, polar contacts, hydrophobic contacts and interfacial

waters. Next, using conformations selected from MD simulations, we

examine the effect of mutating selected CoV spike RBD residues on

spike-ACE2 binding free energy. Note first that here we do not simu-

late the entire spike protein—our goal here is understand why ACE2

binds more strongly to the RBD of CoV-2's spike protein compared to

the RBD of CoV's spike protein. This does not affect comparison

to experimental structural and calorimetric binding data, as experi-

ments were also conducted using the same truncated forms of spike

proteins (Table S1 of Supporting Information). Note also that we do

not model RBD and ACE2 glycans. This is because of the following

reasons. Experiments on CoV have demonstrated that its spike gly-

cans play no role in its spike binding to ACE2.26 In the case of CoV-2,

there are two glycosylation sites on its spike RBD (residues 331 and

343),27 both of which are far from the spike-ACE2 interface. Impor-

tantly, both sites undergo complex glycosylations by the ER and

Golgi-resident processing enzymes, exhibiting substantial variability,27

which suggests that whatever role they may have in directly affecting

spike-ACE2 interfaces is unlikely to be conserved. Finally, ACE2 gly-

cosylation is also expected to exhibit large variations across tissues,28
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suggesting that its role in spike binding is also unlikely to be con-

served. In fact, recent experiments show no effects of several types of

glycosylations on spike binding, and only minor effects of a few types

of glycosylations on spike binding.29 Regardless, results from our work

will provide the necessary baseline to isolate the specific effects that

glycans may have on CoV-2's spike-ACE2 interface.

2.1 | Comparison of MD ensembles

2.1.1 | Binding modes

To characterize spike-ACE2 interfacial binding modes, we extract

from each simulation spike-ACE2 conformations at one-nanosecond

intervals. This yields 3001 conformations for each complex. We calcu-

late root mean square deviations (RMSDs) between each of the

(3001 � 3000)/2 conformation pairs. For calculating RMSDs, we con-

sider the backbone atoms of only those amino acids in ACE2 and

spike that are part of the spike-ACE2 interface. The interface is

defined geometrically, and an amino acid is considered to part of the

interface if any of its heavy atoms is within 5 Å from the complemen-

tary protein in any of the 3001 conformations. These pairwise RMSDs

are shown in Figure 1. These RMSDs are then taken as a measure of

similarity in the affinity propagation algorithm,30,31 which clusters

these conformations into five and six groups, respectively, in the CoV

and CoV-2 spike-ACE2 systems. The advantage of the affinity propa-

gation algorithm over traditional clustering approaches is that it does

not assume a priori the number of clusters or a cutoff value for delin-

eating clusters. We adopted this unsupervised machine learning algo-

rithm previously to cluster correlations in structural fluctuations.32

The lowest energy conformation of each of the five and six clus-

ters of CoV and CoV-2 spike-ACE2 complexes are shown in Figure 1.

We note that the overall topologies of these cluster representatives,

or binding modes, closely resemble their respective X-ray struc-

tures.7,13 The main variation between the different binding modes is

in the structures of the spike RBD loops at the binding interface.

Additionally, we find that the five binding mode representatives of

the CoV spike-ACE2 complex are similar to the six binding mode rep-

resentatives of the CoV-2 spike-ACE2 complex, with RMSDs ranging

between 2.2 and 3.4 Å (Figure S1 of Supporting Information).

F IGURE 1 Binding modes of spike-angiotensin converting enzyme 2 (ACE2) complexes in MD simulations. A and B show, respectively, the
distinct binding mode conformations of the complexes containing spike proteins of CoV and CoV-2. These conformations are superimposed over
the X-ray structures of spike-ACE2 complexes (gray)—ACE2 bound with CoV spike is compared against 2AJF,13 and ACE2 bound to CoV-2 spike
is compared against 6M0J.7 They are the lowest energy conformations of the five and six binding modes identified, respectively, for the
complexes involving CoV and CoV-2 spike proteins. Binding modes are identified by clustering conformations extracted every nanosecond from
MD. Conformational clustering is performed using affinity propagation30,32 in which we take RMSD as an index of similarity between
conformations. C and D show these pairwise RMSDs
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2.1.2 | Local spike-ACE2 contacts

To examine differences in local interactions, we first determine hydro-

gen bonds and salt bridges between spike RBD and ACE2

PD. Hydrogen bonds are computed using the geometric definition

proposed by Luzar and Chandler.33 Salt bridges are defined using a

4 Å cutoff between carboxyl carbon and amine/guanidine nitrogen.

The choice of this cutoff distance is discussed in Figure S2 of the

supporting information. Figure 2A compares time evolutions of inter-

protein hydrogen bonds and salt bridges. The key observation we

make is that, on average, ACE2 engages in discernibly greater num-

bers of hydrogen bonds and salt bridges with CoV-2's spike RBD

F IGURE 2 Polar contacts of angiotensin converting enzyme 2 (ACE2) with spike proteins of CoV and CoV-2. A, Time evolution of hydrogen
bonds and salt bridges between ACE2 and spike RBDs. Dashed lines indicate time-averages, and statistical errors are obtained from block

averaging (Figure S4 of Supporting Information). B, Structural map of hydrogen bonds and salt bridges between ACE2 and spike. ACE2 associates
with spike at four regions that are non-contiguous in its primary sequence. These four interfacial regions are shown separately. The colors of the
lines connecting the residues in the central panel indicate their occurrence probabilities. Note that for the sake of clarity, only those hydrogen
bonds and salt bridges are shown that are observed for at least 15% of the total simulated time. The amino acid of spike labeled in red are the
ones that are conserved in the two spike RBDs. C, Numbers of unique hydrogen bonds as functions of their occurrence probabilities. The inset
zooms in on the 15% to 100% probability region. D, Time evolution of waters that bridge interactions between ACE2 and spike by hydrogen
bonding simultaneously with both proteins. The images below show the bridging waters in the 3 μs snapshots of the MD trajectories
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compared to CoV's spike RBD. On average, ACE2 engages in

9.9 ± 0.3 hydrogen bonds and 0.7 ± 0.1 salt bridges with CoV-2's

spike RBD, and 7.2 ± 0.8 hydrogen bonds and 0.07 ± 0.06 salt bridges

with CoV's spike RBD. In relative terms, ACE2 makes 45% more polar

contacts with CoV-2 spike RBD, compared to CoV spike RBD. A

breakdown of hydrogen bonds as a function of the interfacial binding

modes observed in Figure 1 shows that all binding modes of CoV-2

make greater numbers of hydrogen bonds than those of CoV (Table S2

of Supporting Information). We also note in Figure 2A that the hydro-

gen bond density in CoV's spike-ACE2 interface shows long-timescale

fluctuations. This is also evident from the somewhat higher standard

deviations in hydrogen bond numbers reported above. To examine

the potential effect of these fluctuations on our conclusions, we ana-

lyze 10 μs long MD trajectories of spike-ACE2 complexes made avail-

able by the DE Shaw research group.34 We note similar long-

timescale fluctuations even in their trajectories (Figure S3 of

Supporting Information), and importantly, the averages and standard

deviations we find from our trajectories are quantitatively similar to

those we obtain from their longer MD trajectories. Note that there is

one key difference between our simulations and those conducted by

the DE Shaw research group - the spike RBDs in Shaw group's con-

structs include glycans, and ours do not, which tells us that spike gly-

cans, if at all, play only a minor role in modulating polar contacts at

the spike-ACE2 interface.

To gain further insight into differences between CoV and CoV-2

spike-ACE2 interfacial polar contacts, Figure 2B compares the struc-

tural maps of the spike-ACE2 hydrogen bonds and salt bridges. We

note that the higher numbers of polar interactions in CoV-2's spike-

ACE2 interface do not emanate from one specific region of the inter-

face. In fact, almost all residues of CoV-2 spike, including those that

are conserved in CoV spike, have a higher probabilities of engaging in

hydrogen bonds (and salt bridges) with ACE2. The probabilities here

refer to the fractions of frames in which amino acids are found to be

hydrogen bonded (or salt-bridged).

To examine these hydrogen bond probabilities collectively, we

plot in Figure 2C the numbers of unique hydrogen bonds as functions

of their occurrence probabilities. We note that CoV-2's spike-ACE2

interface has 22% more possible combinations of hydrogen bonds

compared to CoV's spike-ACE2 interface. We also note that the more

frequently observed hydrogen bonds (> 20% probability) are in greater

numbers in CoV-2's spike-ACE2 interface, compared to CoV's spike-

ACE2 interface.

Polar interactions between spike and ACE2 can also be bridged

by interstitial water molecules, that is, water molecules can hydrogen

bond simultaneously with both proteins. These bridging waters are

considered to stabilize protein-protein interactions.35 We note from

Figure 2D that the spike-ACE2 interfaces of CoV and CoV-2 have

similar numbers of bridging waters, which supports the possibility that

bridging waters have comparable effects on the stabilities of both

spike-ACE2 complexes.

Finally, consistent with X-ray structures of the spike-ACE2 com-

plexes, we note that ACE2 makes a more extensive hydrophobic con-

tact with the spike RBD of CoV. Figure S6 of the Supporting

Information shows that interfacial contacts break and form intermit-

tently during the simulation, but at the same time there are about

twice as many residue-residue hydrophobic contact pairs in CoV's

spike-ACE2 interface compared to CoV-2's spike-ACE2 interface. A

higher hydrophobic contact typically implies a higher binding affin-

ity.14,15 Therefore, this interaction should drive binding of ACE2 in

favor of CoV, and not CoV-2 spike RBD. Note, however, that this

does not mean that CoV's spike interaction with ACE2 results in a

larger burial of hydrophobic residues. In fact, CoV and CoV-2 spike-

ACE2 interactions result in a very similar burial of hydrophobic resi-

dues (Table S3 of Supporting Information).

Overall, the analysis above shows that the density and dynamics

of interfacial polar contacts are the primary differentiating factors that

explains ACE2's relative affinity for CoV-2/CoV spike RBDs. These

differences, however, cannot be due to differences in interfacial char-

ges or hydrophobic/polar ratios, as they are identical in the CoV and

CoV-2 spike-ACE2 interfaces. Out of the 43 amino acid differences

between CoV and CoV-2 spike RBDs, 10 are at the ACE2 binding

interface.7 In CoV spike RBD, these interfacial residues are V404,

R426, T433, Y442, L443, P462, L472, N479, Y484 and T487, and in

CoV-2 spike RBD the corresponding interfacial residues are K417,

N439, G446, L455, F456, A475, F486, Q493, Q498 and N501.

The differences in the density and dynamics of interfacial polar

contacts must, therefore, be due to (a) differences in the spatial

arrangements of interfacial hydrophobic and polar groups, and/or

(b) long-ranged effects from amino acid differences in allosteric sites.

We examine these below.

2.1.3 | Long-ranged coupling in conformational
dynamics

Structural and thermodynamic experiments on model systems demon-

strate that protein-protein binding affinities can be modulated sub-

stantially by allosteric coupling in dynamics of interfacial and non-

interfacial residues.36 Since dynamics is a key differentiating factor

between CoV and CoV-2 spike-ACE2 interfaces, it raises the question

of whether the dynamics of interfacial and non-interfacial residues are

coupled. To evaluate this quantitatively, we determine pairwise corre-

lations in structural thermal fluctuations of amino acids, Cij ¼ 1
σiσj

j
⟨ ri tð Þ��rið Þ: rj tð Þ��rj

� �
⟩t j . In this expression, i and j refer to two amino

acids. r(t) is the time-dependent position of a residue's center-of-mass,

�r is its time-averaged position, and σ denotes its fluctuation. Cij is

bounded between 0 and 1 and a value closer to 1 indicates a higher

correlation.

Figure 3 shows that Cij decreases with distance between residues

i and j, as also observed in model proteins.32 However, even at dis-

tances greater than 20 Å the dynamics of interfacial and non-

interfacial residues are moderately correlated. There are also striking

differences in the long-distance correlations of spike RBDs of CoV

and CoV-2. (The pairwise correlation maps are provided in Figure S7

of the supporting information.) This means that the dynamics of polar

interfacial residues are affected by non-interfacial residues, and so
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non-interfacial residues in spike RBD can also allosterically modulate

ACE2 binding affinity. Note that allosteric signals can, in principle,

transduce across protein domains. A comprehensive assessment of

allosteric signals will, therefore, require modeling the full length spike.

Nevertheless, what we find here is that there is dynamical allosteric

coupling within RBDs of CoV and CoV-2, and that there are discern-

ible differences between them.

2.2 | Effect of interfacial spike mutations on
binding free energy

As discussed above, the differences in the density and dynamics of

interfacial polar contacts could be due to differences in the spatial

arrangements of interfacial residues. Additionally, we observe from

Figure 3 that non-interfacial residues can also allosterically impact

spike-ACE2 affinity by altering the dynamics of interfacial residues.

To examine these issues, we substitute CoV-2's interfacial residues

into CoV, and determine the effect of this substitution on spike-ACE2

binding free energy. This substitution will only alter the spatial

arrangement of hydrophobic and polar residues at the interface, but

would not affect the net interfacial charge and the polar/hydrophobic

ratio. Note that even after this substitution, there will be 30 + non-

interfacial residues in CoV RBD that will differ from CoV-2 RBD, and

since they could allosterically modulate spike-ACE2 affinity, this sub-

stitution will not necessarily produce CoV-2's experimental spike-

ACE2 affinity. Nonetheless, deviations from experiment could provide

insight into the role of allosteric coupling.

Specifically, we engineer eight mutations in CoV spike RBD:

V404K, R426N, T433G, Y442L, L472F, N479Q, Y484Q and T487N (-

Figure S8 of supporting information). We do not engineer the

L443 ! F456 mutation because neither L443 in CoV nor its

corresponding residue F456 in CoV-2 is found to make hydrophobic

contact with ACE2 (Figure S6 of Supporting Information). The muta-

tion P462 ! A475 is also not engineered due to the current

unavailability of established transition pathways.37

Free energy calculations show that this substitution increases the

binding affinity of CoV spike RBD, with a ΔG = �5.4 ± 0.4 kcal/mol

F IGURE 3 Distance dependence of structural fluctuation correlations in spike proteins. Cij are pairwise correlations in thermal structural
fluctuations between the positions of the centers-of-masses (CoMs) of residues i and j, and dij are the distances between the time-averaged
CoMs of these residues. The cartoons on the right show the highest correlation that each residue (in spike) has with an interfacial residue. The
specific values of these highest correlations Cmax

i as well as the identities of the interfacial residues with which they have highest correlations are
provided in Table S4 of the Supporting Information. The cartoon represented in gray is angiotensin converting enzyme 2 (ACE2)
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(Figure S8 of supporting information). A recent study on force field

accuracy in predicting mutational free energies37 suggests that our

prediction could contain an error of about 1 kcal/mol. Note, however,

that this is an average error estimate, and there are cases for which

free energy predictions have been off by several kcal/mol.37 A general

issue associated with all force fields is that they do not perform well

at predicting non-covalent interactions at high electric fields,38-40 and

we suspect that this may also be true for charged amino acids. Never-

theless, going by the average error in that study,37 we note that our

ΔG estimate for interfacial spike substitutions is overestimated with

respect to experiments by 2 to 3 kcal/mol.7-10 This difference

between predicted and experimental estimates could be due to three

reasons other than that related to force fields. First, due to technical

reasons, we did not engineer the P462 ! A475 substitution at the

interface. This substitution can be expected to increase the flexibility

at the interface, which, based on experiments conducted on other

systems,41 can potentially negatively impact spike-ACE2 affinity by

about a kcal/mol. Second, while all biophysical experiments concur

that ACE2 binds to spike RBD of CoV-2 more strongly than the spike

RBD of CoV, we note that the experimental dissociation constants

(kd) for the same truncated spike systems and employing the same

methodology (SPR) do differ by an order in magnitude (Table S1 of

Supporting Information). Consequently, some of the mismatch could

be due to experimental uncertainties. Finally, the enhanced effect of

this substitution could be due to the fact that we did not modify any

of the 30+ non-interfacial residues in CoV that differ in CoV-2. Ther-

modynamic experiments on other systems have shown that altering

non-interfacial residues can affect protein-protein binding affinities by

several kcal/mol through dynamical allosteric coupling with interfacial

residues.36

3 | CONCLUSIONS

Analysis of MD simulations reveals three main differences between

CoV and CoV-2 spike-ACE2 interfaces. Firstly, consistent with obser-

vations from X-ray structures,7,9 ACE2 makes a more extensive hydro-

phobic contact with CoV's spike. Secondly, there are 45% greater

numbers of hydrogen bonds and salt bridges in CoV-2's spike-ACE2

interface. Thirdly, CoV-2's spike-ACE2 interface has 22% more possi-

ble combinations of hydrogen bonds compared to CoV's spike-ACE2

interface. While the first difference will drive ACE2 binding in favor of

CoV, the latter two will drive ACE2 binding in favor of CoV-2. These

observations lead to the conclusion that the higher affinity of ACE2

for CoV-2's spike is due to the higher density and combinatorics of

polar contacts, which also compensate for the smaller hydrophobic

contacts in CoV-2's spike-ACE2 interface.

These observations bear important correspondence to those

made from X-ray structures. First, all of the polar contacts observed in

X-ray structures7,9,13 are also observed in MD (Figure S5 of

supporting information), but MD yields an additional set of possible

combinations of polar contacts between spike and ACE2 that were

not observed in X-ray structures. Second, conformational sampling in

MD assigns a probability to each polar contact, which cannot be

obtained from X-ray structures. Third, while X-ray structures indicate

that CoV and CoV-2 spike-ACE2 interfaces consist of equal numbers

of polar contacts,7 we find in MD that there are substantially more

polar contacts in CoV-2's spike-ACE2 interface. These differences

between MD and X-ray structures could be due to structural thermal

fluctuations present in MD, and due to the dynamics of interfacial

water molecules,42 which is present in MD, but absent in X-ray struc-

tures. Taken together, it appears that differences in polar contacts

between CoV and CoV-2 spike-ACE2 interfaces emerge when polar

contacts are determined after accounting for their thermal fluctua-

tions, combinatorics and probabilities.

The differences in density and dynamics of interfacial polar con-

tacts between CoV and CoV-2 spike-ACE2 interfaces cannot be due

to differences in interfacial charges or hydrophobic/polar ratios, as

they are identical in the two interfaces. The spatial arrangement of

interfacial residues, however, matters. Free energy calculations show

that substitution of CoV-2's interfacial residues into CoV spike posi-

tively impacts spike-ACE2 affinity. The predicted effect is, however,

greater than ACE2's relative CoV-2/CoV spike affinity measured in

experiments. This could be due to several reasons, as discussed

in detail in an earlier section. These include potential errors from force

fields, a missing P462 ! A475 substitution at the interface, potential

errors in experiments, and allosteric coupling from 30+ non-interfacial

residues in CoV that were not mutated in the chimera to their

corresponding chemical types in CoV-2. The potential role of allosteric

coupling is also supported by the observation in equilibrium MD simu-

lations that the dynamics of interfacial residues are distinctly

influenced by non-interfacial residues. In fact, results from Wang

et al.'s free energy calculations on the spike-ACE2 interface16 also

support the presence of allosteric coupling effects in binding. In their

study, eight interfacial residues in CoV spike were individually/pair

substituted into corresponding residues present in CoV-2 spike. The

net effect of the these individual/pair substitutions (� 6.8 ± 1.4 kcal/

mol) is actually also greater than ACE2's relative CoV-2/CoV spike

affinity. Further insights into allostery can be obtained by engineering

and studying the effects of allosteric mutations using several different

computational and experimental techniques (reviewed recently in ref-

erences32,43). A reasonable starting set of target mutations could be

the non-interfacial residues that are found to be coupled strongly to

interfacial residues (Figure 3 and Table S4 of Supporting Information).

Mutational targets can also be obtained using structure-based

methods,44 where our clustered binding modes in Figure 1 can be

used as starting points for network analysis and hot-spot prediction.

Given existing evidence on the general reliability of employed

MD methods,32,37,45,46 and our recent work23 that yielded validated

predictions on virus-host protein-protein interactions,25 we consider

our conclusions to be robust. In fact, MD simulations21 performed

using a potential energy function different from ours reveals a set of

high-frequency polar contacts in CoV-2's spike-ACE2 interface that is

very similar to those found in our simulation (Figure 2). Nevertheless,

from the perspective of intermolecular interaction theory, the under-

lying potential energy functions that we employ do rely on describing
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interactions using point charges, no polarization, and only pairwise

vdW interactions. These approximations should be properly scruti-

nized in future studies of complex protein-protein interactions.

Higher-level electronic structure calculations47 are in progress to

assess the role of multipole electrostatics, induced polarization, and

many-body dispersion interactions on spike-ACE2 binding.

Overall, the molecular understanding that our work provides on

the relative binding affinities of CoV and CoV-2 spike to ACE2 is

important for understanding their different infectivity rates. The pro-

posed model and our quantitative findings can be validated by NMR

and binding kinetics experiments on wild type CoV/CoV-2 and its

mutational variants. Our mechanistic model is, in fact, timely as it lays

the foundation to understand the molecular bases for the new set of

highly infectious strains that are beginning to emerge and spread rap-

idly across the globe.48 Based on high-throughput calorimetric

experiments,49 their higher infectivity is suspected to be due to

increased affinities of their spike proteins from mutations at and near

their ACE2 binding sites,48 however, that still remains to be

demonstrated.

These results are also expected to lend direct insight into design-

ing spike-ACE2 blockers, which, like in the cases of HIV and Influenza,

can serve as antivirals.50 As such, recent experiments51 show that

ACE2-derived peptides can serve as spike-ACE2 blockers, although

their binding affinities to spike are three-orders in magnitude weaker

compared to ACE2. We anticipate that results from these studies will

directly serve to rationally improve their binding affinities from the

micromolar to the nanomolar range for them to serve as effective

competitive inhibitors of spike-ACE2 interactions. Specifically, our

results suggest that the efficacy of candidate peptides can be

improved by considering not only structural, but also dynamical infor-

mation. MD based free energy calculations, just as we conduct here,

can be carried out to examine the specific roles of ACE2 interfacial

residues and their targeted mutations on spike binding. Virtual screen-

ing has been employed to accelerate search for potential compounds

for experimental testing,52 and our results suggest incorporation of an

additional filtration step that examines the role of protein dynamics to

avoid discarding candidates solely based on structural information.

Our results also strongly recommend considering allosteric affects in

design of longer peptides. In fact, a recent study shows that mini-

proteins designed by computational modeling can serve as high-

affinity spike-ACE2 blockers,53 and allosteric effects from non-

interfacial residues can be explored in these mini-proteins to reduce

their sizes for effective delivery, while maintaining their high affinities

and stabilities.

4 | METHODS

4.1 | Molecular dynamics

All MD simulations are performed using Gromacs 2020.54 Protein and

water bonds are restrained,55,56 and consequently an integration time

step of 2 fs is employed. Simulations are conducted under isobaric-

isothermal boundary conditions. Pressure is regulated at 1 bar using a

coupling constant of 1 ps and a compressibility of 4.5 � 10�5 bar�1.

Temperature is maintained at 310 K. Extended ensemble approaches

are used for maintaining both temperature and pressure.57-59 Electro-

static interactions beyond 10 Å are computed using the particle mesh

Ewald Scheme60 with a Fourier grid spacing of 1.5 Å, a fourth-order

interpolation. Van der Waals interactions are computed explicitly for

interatomic distances smaller than 10 Å. We use Amber99sb-ILDN

parameters to describe protein and ions,45 and SPC/E parameters to

describe water molecules.61 This force field has been demonstrated

to perform well in reproducing structural data from X-ray diffraction

and NMR spectroscopy,45,46 and also dynamics data from NMR spec-

troscopy.32 The ACE2 protein contains a Zn2+ ion in its catalytic core,

which is about 20 Å away from the spike-ACE2 interface. In line with

earlier work on modeling Zn2+ ions in proteins,62 the coordination of

the Zn2+ ion in ACE2 is maintained through application of distance

restraints. Specifically, flat-bottomed quadratic potentials are assigned

to distances between the ion and three atoms of ACE2, H374/NE2,

H378/NE2 and E402/OE1, that are observed to coordinate it in X-ray

structures. In MD simulations, the average restraining energies for the

CoV and the CoV-2 complexes are found to be small, that is,

0.14 ± 0.08 and 0.11 ± 0.06 kcal/mol, respectively.

Starting coordinates of CoV's spike-ACE2 complex are taken from

its X-ray structure (PDB ID: 2AJF),13 and those of CoV-2's spike-

ACE2 complex are taken from its cryo-EM structure (PDB ID:

6 M17).63 Note that a higher resolution X-ray structure of CoV-2's

spike-ACE2 complex is now also available,7 and is used in our analysis,

but was unavailable at the start of this project. Nevertheless, there is

only little difference between the X-ray and cryo-EM structures - the

RMSD between all heavy atoms is <1 Å, which is less than the RMSDs

between the different interfacial binding modes observed in MD sim-

ulations. The carbohydrate groups in spike are removed. The missing

loops in the ACE2 protein in 2AJF are built using MODELER.64 To

make ACE2 PD sequences identical in CoV and CoV-2 constructs, the

N-terminal residues 19 and 20 in ACE2 of 6 M17 are built, and the C-

terminal of ACE2 in 6 M17 is truncated at the last C-terminal residue

resolved in 2AJF. The N- and C-termini of both spike RBD and ACE2

PD are capped with ACE and NME, respectively. Hydrogen atom posi-

tions and histidine types are determined using the PDB2PQR algo-

rithm.65 Each of the two complexes is initially placed in a cubic unit

cell of length 160 Å, and then energy minimized using the steepest

descent algorithm implemented in Gromacs. The vacant space in the

box is then filled with water, and the system is again subjected to

energy minimization. The unit cells containing CoV and CoV-2 spike-

ACE2 complexes contain, respectively, 131 995 and 131 897 waters.

Note that the crystallographically resolved waters are retained. Na+

and Cl� ions are added by randomly substituting non-crystallographic

waters. NaCl concentration is set at 50 mM with extra Na+ ions to

compensate for the charge of the complex. Specifically, the CoV

spike-ACE2 unit cell contains 144 Na+ and 120 Cl� ions, the CoV-2

spike-ACE2 unit cell contains 143 Na+ and 120 Cl� ions. After adding

salt, the system is energy minimized a final time. Each of these two

complexes is then subjected to 3 μs long MD simulations.
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In addition to carrying out MD simulations of spike-ACE2 com-

plexes, we also carry out 0.5 μs long MD simulations of isolated spike

RBDs of CoV and CoV-2 in solution. These simulations are used for

getting starting conformations for free energy calculations. For these

simulations, the starting coordinates of spike RBDs are taken from

final snapshots of the MD simulations of the spike-ACE2 complexes.

Each of the two spike RBDs is initially placed in a cubic unit cell of

length 90 Å, and the protocol described above is followed for adding

waters and salt. The unit cell containing CoV's spike RBD contains

23 247 waters, 21 Na+ and 22 Cl� ions, and the unit cell containing

CoV-2's spike RBD contains 23 240 waters, 21 Na+ and 23 Cl� ions.

4.2 | Free energy calculations

The effect of mutating spike residues on its binding free energy with

ACE2 is determined as

ΔG¼ΔGspike�ACE2 � ΔGspike: ð1Þ

Here, ΔGspike�ACE2 is the effect of mutations on the free energy

of the spike-ACE2 complex in solution, and ΔGspike is the effect of

mutations on the free energy of isolated spike in solution. ΔGspike and

ΔGspike�ACE2 are computed using thermodynamic integration, and

using the 5-point Gauss-Quadrature rule, that is,

ð1
0
⟨∂H=∂λ⟩λdλ¼1=2

X5
i

wi⟨∂H=∂λ⟩λi , ð2Þ

where the weights wi = {0.237, 0.479, 0.559, 0.479, 0.237} and

λi = {0.047, 0.231, 0.5, 0.769, 0.953}.

The starting conformations for engineering mutations are taken

from MD simulations. Hybrid topology files, which contain coordi-

nates and force field parameters for both states of the amino acids

(natural and mutated) are constructed using the PMX module.37 To

avoid singularities and numerical instabilities that may arise due

to particle appearance and annihilation, we use a modified form of the

“soft core” potentials suggested by Beutler et al.66 implemented in

Gromacs. In these soft core potentials, the distances between parti-

cles 'i' and “j” in state A (λ = 0) are modified as rA ¼ ασ6Aλ
pþ r6ij

� �1=6

and those between particles in state B (λ = 1) are modified as rB ¼
ασ6B 1� λpð Þþ r6ij

� �1=6
. In these expressions, σ = (C12/C6)

1/6 is the ratio

of the LJ parameters, and if either C12 or C6 is zero, then we take

σ = 3 Å. We set the soft core parameters to be α = 1 and P = 1. Sam-

pling is conducted using stochastic dynamics and under NVT condi-

tions. For each λi, ∂H/∂λ is averaged for 250ns (Figure S8 of

Supporting Information), and statistical errors are determined from

the final 50 ns using block averaging.
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