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Abstract Although each Mendelian Disorder of the Epigenetic Machinery (MDEM) has a different 
causative gene, there are shared disease manifestations. We hypothesize that this phenotypic 
convergence is a consequence of shared epigenetic alterations. To identify such shared alterations, 
we interrogate chromatin (ATAC- seq) and expression (RNA- seq) states in B cells from three MDEM 
mouse models (Kabuki [KS] type 1 and 2 and Rubinstein- Taybi type 1 [RT1] syndromes). We develop 
a new approach for the overlap analysis and find extensive overlap primarily localized in gene 
promoters. We show that disruption of chromatin accessibility at promoters often disrupts down-
stream gene expression, and identify 587 loci and 264 genes with shared disruption across all three 
MDEMs. Subtle expression alterations of multiple, IgA- relevant genes, collectively contribute to IgA 
deficiency in KS1 and RT1, but not in KS2. We propose that the joint study of MDEMs offers a princi-
pled approach for systematically mapping functional epigenetic variation in mammals.

Introduction
Mapping causal disease-associated epigenetic variation
A long- standing and fundamental problem in epigenetics is the identification of specific epigenetic 
changes that causally mediate phenotypes through the alteration of transcriptional states. While 
statistical associations between many diseases/traits and epigenetic changes have been detected, it 
is typically extremely challenging to rule out the influence of confounders such as the environment, 
and to determine whether these associations are primary causes vs. secondary consequences (Rakyan 
et al., 2011; Lappalainen and Greally, 2017). As a result, to date there are surprisingly few examples 
of causal relationships between epigenetic alterations and specific phenotypes; notable exceptions 
include disorders of genomic imprinting (Barlow and Bartolomei, 2014), disorders caused by repeat- 
expansion- induced aberrant promoter hypermethylation (Sutcliffe et al., 1992; LaCroix et al., 2019), 
predisposition to some tumor types (Sakatani et al., 2005; Rainier et al., 1993; Ogawa et al., 1993; 
Gazzoli et  al., 2002), and – in mice – phenotypes caused by metastable epialleles (Bertozzi and 
Ferguson- Smith, 2020; Rakyan et al., 2002).

The recent advent and widespread clinical use of exome sequencing has led to the emergence of 
a novel class of Mendelian disorders, termed the Mendelian Disorders of the Epigenetic Machinery 
(MDEMs) (Fahrner and Bjornsson, 2019). MDEMs are caused by coding variants disrupting genes 
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encoding for epigenetic regulators, which are generally very intolerant to loss- of- function variation 
(Boukas et  al., 2019). This implies the following causal chain underlying MDEM pathogenesis: a 
coding variant disrupts an epigenetic regulator, leading to downstream epigenomic abnormalities, 
which in turn give rise to the phenotype, likely by perturbing the transcriptome (Figure 1A). As a result, 
MDEMs may provide a unique lens into the causal relationship between epigenetic/transcriptomic 
variation and disease. Indeed, studies of Kabuki syndrome type 1 (KS1) – one of the most extensively 
studied MDEMs to date – have begun unraveling the underpinnings of the neural (Carosso et al., 
2019), growth (Fahrner et al., 2019), cardiac (Ang et al., 2016), and immune defects (Pilarowski 
et al., 2020; Zhang et al., 2015; Ortega- Molina et al., 2015) seen in this disorder.

Here, we leverage MDEMs to design an approach for discovering functionally relevant epigenetic 
variation, which overcomes limitations such as confounding effects from the environment and reverse 
causality from the disease process. Our approach is based on a cardinal and thus far unexploited 
feature of MDEMs, namely their overlapping phenotypic features, despite the causative genetic vari-
ants disrupting distinct genes. Such common MDEM features include intellectual disability, growth 
defects, and immune dysfunction (Fahrner and Bjornsson, 2019). We hypothesize that these shared 

Figure 1. The conceptual framework of the present study. (A) The causal chain of Mendelian Disorder of the Epigenetic Machinery (MDEM) 
pathogenesis: the genetic disruption of an epigenetic regulator leads to epigenetic and transcriptomic alterations, which ultimately determine the 
phenotype. (B) We hypothesize that the shared phenotypic features between MDEMs occur because of shared epigenetic and transcriptomic alterations 
downstream of the genetic disruption of distinct genes. The Venn diagram depicts two MDEMs for convenience, but our approach can be applied to 
an arbitrary number of MDEMs with shared phenotypes. (C) Our approach is designed to derive a list of abnormalities with high probability of causal 
relevance, by jointly comparing multiple MDEMs. Shown for two MDEMs for convenience. (D) Experimental design and workflow for sample generation 
in our present study. Created with BioRender.com. (E) The sample size of our study (number of mice). The ATAC- and RNA- seq samples were generated 
in parallel (see Materials and methods for details).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Simulation study comparing the ability of the standard approach to detect significant hits shared between experiments to that of 
our new approach.

https://doi.org/10.7554/eLife.65884
https://biorender.com/
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phenotypes arise because the different primary genetic defects lead to shared downstream epig-
enomic alterations, which in turn create shared transcriptomic alterations (Figure 1B). This hypothesis 
of a convergent pathogenesis motivates a joint analysis of more than one MDEM, and suggests a 
simple filter to identify the causal variation at the epigenetic/transcriptomic level: true, disease- driving 
signals should be detectable in multiple disorders (Figure 1C).

Proof-of-principle: Kabuki syndrome types 1 & 2 and Rubinstein-Taybi 
syndrome type 1
As proof- of- principle, we implement our proposed approach using mouse models of three MDEMs: two 
that were clinically indistinguishable prior to the discovery of the underlying genes (Kabuki syndrome 
types 1 and 2 [KS1 and KS2], caused by haploinsufficiency in histone methyltransferases KMT2D and 
KDM6A, respectively), and one that shares phenotypes but is clinically distinct (Rubinstein- Taybi type 
1 [RT1], caused by haploinsufficiency in histone acetyltransferase CREBBP). Importantly, using mice 
allows us to: (a) eliminate multiple confounders such as the environment, genetic background, age, 
and sex, and (b) maintain a consistent sampling of disease- relevant cell types between individuals.

The shared phenotypes of these three syndromes include intellectual disability, growth retarda-
tion, and immune dysfunction; the latter is our focus here. In KS1, the immune dysfunction includes 
hypogammaglobulinemia with low IgA as a consistent feature, as well as abnormal cell maturation 
which has mostly been characterized in B cells (Margot et al., 2020; Lindsley et al., 2016). RT1 can 
also manifest with hypogammaglobulinemia and reduction of mature B cells (Saettini et al., 2020.) 
These defects in KS1 and RT1 are thought to (at least partly) explain the increased susceptibility to 
infections. In KS2, the immune phenotype has been less extensively studied, in part due to the rarity 
of the disorder, but there is some evidence of increased infection susceptibility and hypogamma-
globulinemia (Margot et al., 2020; Frans et al., 2016). In mice, the immune phenotypes have been 
studied in depth only in KS1, where the IgA deficiency closely resembles what is seen in patients with 
Kabuki syndrome.

Given this potential overlap, we chose to profile positively selected B cells (CD19+) from the 
peripheral blood of mutant mice, and that of age- and sex- matched wild- type littermates (Figure 1D). 
In order to facilitate a direct comparison of the three MDEMs, we only used female mice, as Kdm6a is 
on the X chromosome (KS2 mouse model), and its complete loss (full knockout) is lethal in male mice.

Results
Joint analysis of multiple MDEMs to identify causally relevant 
epigenetic and transcriptomic variation
The key element of our approach is the joint analysis of the different MDEMs, in order to detect 
shared molecular (epigenomic/transcriptomic) alterations between them. The simplest statistical 
methodology for this task would be to perform differential accessibility and expression analyses sepa-
rately for each disorder, and then obtain a list of the overlapping differential hits. However, this suffers 
from the major shortcoming that in order to be labeled as differential, a given locus must exceed an 
arbitrary significance threshold (or rank). When multiple MDEMs are studied, this requirement can 
lead to severe loss of power and erroneous underestimation of the size of the overlap among the 
differential hits (Figure 1—figure supplement 1; Materials and methods). To avoid this, we recast 
the problem as testing whether evidence that a set of loci/genes are differential in a given MDEM is 
informative about the state (null or differential) of the same loci/genes in another MDEM. We show 
(Materials and methods) that with this formulation, we can use conditional p- value distributions to: 
(a) estimate the size of the set of overlapping abnormalities and test if it is greater than expected by 
chance, (b) identify a set of genes that belong to this overlap, and (c) decouple (a) from (b), so that 
only the identification of specific genes is affected by the multiple testing burden.

Genome-wide chromatin accessibility profiling reveals extensive 
overlap between the epigenetic alterations of the three MDEMs
Given that reductions in enzyme activity of KMT2D, KDM6A, and CREBBP are known to alter normal 
histone modification patterns, we first set out to profile genome- wide chromatin accessibility using 
ATAC- seq, employing a modified FastATAC protocol (Materials and methods) (Corces et al., 2016; 

https://doi.org/10.7554/eLife.65884
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Buenrostro et al., 2013). We chose to limit the age range to 2.5–3.5 months as this is the age range 
we know most about this KS1 model, and this is when the IgA deficiency first manifests in KS1 mice 
(Pilarowski et al., 2020). Starting with a differential accessibility analysis of 7 KS1 vs. 12 wild- type 
mice (Materials and methods), we discovered 3938 ATAC peaks differentially accessible at the 10 % 
FDR level. Of these, 1062 (27%) overlapped promoters (defined as ±2 kb from the TSS), and 2876 
(73%) were in distal regulatory elements (defined as ATAC peaks outside of promoters).

We then compared KS1 to KS2, focusing on promoters first. We used our new approach in order 
to detect peaks with shared accessibility disruption. Briefly, we first obtained the 1062 differential 
promoter peaks from the KS1 vs. WT analysis. Then, we used the distribution of the p- values for these 
peaks from the KS2 vs. WT analysis to estimate the percentage of shared differential peaks, and indi-
vidually label each peak as shared or not at the 10 % FDR threshold (see Materials and methods for 
details). We found that 68.5 % of promoter peaks differentially accessible in KS1 are also differential 
in KS2 (Figure 2A; p < 2.2e- 16, 5 KS2 vs. 12 wild- type mice); at the 10 % FDR level, we identified 
733 such peaks. For 724 of the 733 (98.8%), accessibility is altered in the same direction in the two 
syndromes (Figure 2B; Figure 2—source data 1). Out of these 724 promoter peaks disrupted in both 
KS1 and KS2, we discovered that approximately 67 % are differential in RT1 as well (Figure 2C; p < 
2.2e- 16, 5 RT1 vs. 7 wild- type mice), again with highly concordant effect sizes (Figure 2D).

In total, we identified 420 promoter peaks that show disruption in all three disorders at the 10 % 
FDR level with concordant effect sizes (Figure 2—source data 2). This is >4 times more shared peaks 
than we find if we perform separate differential analyses and compute the intersection of the resulting 
differential hits (100 peaks), highlighting that our new approach provides substantial gain in empirical 
power, as suggested by our simulations. A principal component analysis (PCA) shows that the acces-
sibility signal of these shared disrupted promoter peaks separates each of the three mutant geno-
types from their wild- type littermates (Figure 2e; Figure 2—figure supplement 1). The KS1 mice 
cluster close to RT1, while KS1 and KS2 cluster separately from each other, with KS2 being closer than 
KS1 to wild- type, indicating smaller effect sizes of the accessibility alterations. This KS1/2 separation 
is surprising, since patients have such strong phenotypic overlap that the two syndromes were not 
considered distinct prior to discovery of the causative genes. However, it should be noted here that, 
since Kdm6a is on the X chromosome, the KS2 female mice are expected to be mosaic with respect to 
Kdm6a knockout, and this may explain the smaller magnitude of their accessibility defects.

Next, we applied the same approach to peaks corresponding to distal regulatory elements. We 
saw a similar picture, albeit with weaker shared signal (Figure  2—figure supplement 2). Specifi-
cally, 50.8 % of elements differential in KS1 were estimated as differential in KS2 (p < 2.2e- 16), with 
815 confidently labeled such elements (10 % FDR). As with promoters, we observed agreement in 
directionality for the vast majority of peaks (806 out of the 815; Figure 2—source data 3). Of the 
KS1/2 shared elements with concordant directionality, 35.6 % are differential in RT1 (p = 0.0025), 
yielding a total of 167 shared disrupted distal regulatory elements across the three MDEMs (10 % 
FDR; Figure 2—source data 4). We note that, collectively, the shared hits show a 7.1- fold enrichment 
at promoters compared to distal elements (Fisher’s test, p < 2.2e- 16).

Finally, comparing the three MDEMs in a pairwise fashion, we observed that KS1 and KS2 share 
a greater proportion of their abnormalities than either KS1 or KS2 compared to RT1 (Figure  2—
figure supplement 2), and verified that this is not driven by the fact that the KS1 and KS2 mice were 
compared against the same wild- type group (Materials and methods).

Shared disrupted promoters, but not distal regulatory elements, show 
bias toward increased accessibility in KS1 and KS2
We explored the direction in which the accessibility of the disrupted peaks changes in mutants 
compared to wild- type. We found that, at promoters, both the KS1 and KS2 mutants exhibit a substan-
tial shift toward increased accessibility (83.5% and 91.2%, respectively, of significantly disrupted 
promoter peaks; Figure 2F). The same shift is observed at the promoter peaks with shared disruption 
across the MDEMs (Figure 2F), even though in the RT1 mutants the majority (62.2%) of differentially 
accessible promoter peaks show the opposite pattern, with a shift toward decreased accessibility 
(Figure 2F). In contrast to promoters, disrupted distal regulatory elements in all cases are more evenly 
split: the percentage with increased accessibility is 41.6 % in KS1, 39.3 % in KS2, and 60 % in RT1 
(Figure 2—figure supplement 2).

https://doi.org/10.7554/eLife.65884
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Figure 2. Evaluating the overlap between the differentially accessible promoter peaks in Kabuki type 1 (KS1), Kabuki type 2 (KS2), and Rubinstein- 
Taybi type 1 (RT1) syndromes. (A) The distribution of p- values from the KS2 vs. wild- type differential accessibility analysis for promoter peaks, stratified 
according to whether the same promoter peaks are significantly differentially accessible in the KS1 vs. wild- type analysis (FDR < 0.1; red curve), or not 
(FDR ≥ 0.1; blue curve). (B) Scatterplot of log2(fold changes) from the KS1 vs. wild- type (x- axis) promoter peak differential accessibility analysis against 
the corresponding log2(fold changes) from the KS2 vs. wild- type analysis (y- axis). Each point corresponds to a peak. Shown are only peaks that are 
differentially accessible in KS1 (FDR < 0.1). (C) The distribution of p- values from the RT1 vs. wild- type differential accessibility analysis for promoter 
peaks, stratified according to whether the same promoter peaks are shared differentially accessible between KS1 and KS2 (FDR < 0.1, see Materials 
and methods; red curve), or not (blue curve). (D) Scatterplot of log2(fold changes) from the RT1 vs. WT (x- axis) differential accessibility analysis, against 
the mean log2(fold change) from the KS1 vs. wild- type and KS2 vs. wild- type analyses. Each point corresponds to a peak. Shown are only shared 
differentially accessible promoter peaks between KS1 and KS2 (FDR < 0.1). (E) Principal component analysis plot using only the 420 promoter peaks 
identified as shared differentially accessible between the three Mendelian Disorders of the Epigenetic Machinery (MDEMs). Each point corresponds to a 
mouse. (F) The proportion of differentially accessible promoter peaks that show increased accessibility in the mutant vs. the wild- type mice.

The online version of this article includes the following figure supplement(s) for figure 2:

Source data 1. Coordinates of shared differentially accessible promoter peaks in Kabuki type 1 (KS1) and Kabuki type 2 (KS2) syndromes, along with the 
corresponding logFC changes.

Source data 2. Coordinates of shared differentially accessible promoter peaks in Kabuki type 1 (KS1), Kabuki type 2 (KS2), and Rubinstein- Taybi type 1 
(RT1) syndromes, along with the corresponding logFC changes.

Source data 3. Coordinates of shared differentially accessible distal regulatory element peaks in Kabuki type 1 (KS1) and Kabuki type 2 (KS2) 
syndromes, along with the corresponding logFC changes.

Source data 4. Coordinates of shared differentially accessible distal regulatory element peaks in Kabuki type 1 (KS1), Kabuki type 2 (KS2), and 
Rubinstein- Taybi type 1 (RT1) syndromes, along with the corresponding logFC changes.

Source data 5. Estimated surrogate variables for the differential accessibility and differential expression analyses.

Figure supplement 1. Principal component analysis plots using only the 420 promoter peaks identified as shared differentially accessible between the 
three Mendelian Disorders of the Epigenetic Machinery (MDEMs).

Figure supplement 2. Evaluating the overlap between the differentially accessible distal regulatory elements in Kabuki type 1 (KS1), Kabuki type 2 
(KS2), and Rubinstein- Taybi type 1 (RT1) syndromes.

https://doi.org/10.7554/eLife.65884
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Transcriptome profiling reveals many expression alterations at genes 
downstream of promoters with disrupted accessibility
We next interrogated the transcriptome using RNA- seq (Materials and methods) to: (a) test whether 
the identified epigenetic aberrations in each disorder have direct transcriptional consequences and 
characterize the latter, and (b) identify the shared expression aberrations across the three disorders, 
and assess the extent to which these result from shared accessibility aberrations at the associated 
promoters. To capture both chromatin and transcriptional status at a single time point, we generated 
the RNA- seq samples in parallel with the samples used for ATAC- seq, from a subset of the same indi-
vidual mice (Materials and methods). Specifically, we performed RNA- seq on five KS1 mice, five KS2 
mice, five RT1 mice, and five and seven wild- type mice from the Kabuki and Rubinstein- Taybi cohorts, 
respectively.

First, for each disorder, we determined the top differential promoter peaks as ranked by p- value, 
and estimated the percentage of genes downstream of these promoters that show differential expres-
sion; we repeated this by sliding the rank threshold for determining the top peaks from 1000 to 
5000. When considering the top 1000 promoter peaks, the percentage of differentially expressed 
downstream genes is 45.4 % in KS1, 42 % in KS2, and 40 % in RT1 (Materials and methods; Figure 3—
source data 1 contains such genes detected at the 10  % FDR level). In all three syndromes, this 
percentage gradually drops substantially as the cutoff for labeling a promoter as differentially acces-
sible becomes less stringent (Figure 3A), indicating a clear relationship between abnormal promoter 
accessibility and downstream gene expression dysregulation (with the relationship being noisier in 
RT1). Emphasizing this relationship, we discovered strong concordance between the direction of 
abnormal changes at the disrupted promoter- gene pairs: increased or decreased promoter acces-
sibility correlates with increased or decreased gene expression, respectively (Figure 3B, C and D; 
Pearson correlation between promoter accessibility logFC and gene expression logFC = 0.78 for KS1, 
0.84 for KS2, and 0.82 for RT1).

Finally, we compared the proportion of differentially expressed genes downstream of the shared 
disrupted promoter peaks, to the same proportion of genes downstream of the top disrupted 
promoter peaks unique for each disorder (Materials and methods). We invariably found the genes 
downstream of the shared disrupted peaks to have a higher chance of dysregulated expression 
(Figure 3E; Figure 3—figure supplement 1), supporting our hypothesis that the chromatin alter-
ations at these peaks are more likely to have functional impact.

A substantial proportion of the shared expression alterations among 
the three MDEMs arise without concomitant disruption of promoter 
accessibility
To further dissect the relationship between the shared expression and chromatin abnormalities in the 
three MDEMs, we sought to define a set of genes with shared expression alterations, without utilizing 
prior information about the accessibility of their promoter peaks.

Utilizing our method, we discovered high overlap between KS1 and KS2, mirroring the findings at 
the chromatin level (Figure 4A, B). Specifically, we found 397 differentially expressed genes shared 
between them with concordant direction of effect (10 % FDR; Figure 4—source data 1). We then 
estimated 78.8 % of these to be differential in RT1 (Figure 4), resulting in 264 genes shared across the 
three disorders (10 % FDR), with a preponderance of downregulated genes (Figure 4E,F; Figure 4—
figure supplement 1; Figure 4—source data 2; 175 downregulated vs. 89 upregulated genes).

While these 264 genes are significantly enriched in the set of genes with shared disruption of 
promoter accessibility (p = 0.0001), the magnitude of this enrichment is modest (29 genes in the 
intersection; odds ratio = 2.37, Table 1). The number of genes in the intersection increases to 99 
when we also include those harboring shared disrupted regulatory elements nearby (±1 Mb from 
their promoter peaks). Taken together, these results indicate that there is convergent dysregulation of 
gene expression in these three MDEMs, which is not always a direct downstream consequence of the 
shared epigenetic alterations. Nevertheless, in KS1 and KS2 – but not in RT1 – the top differentially 
expressed genes are more likely to have disrupted promoters than genes further down the differential 
list (Figure 4G).

https://doi.org/10.7554/eLife.65884
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Integration of transcription factor motifs with chromatin and 
expression alterations highlights some potentially disrupted regulatory 
connections
It is well appreciated that chromatin accessibility is intimately linked to transcription factor binding. 
Accessibility patterns are often established subsequently to recruitment of epigenetic regulators by 

Figure 3. The relationship between differential accessibility of promoter peaks and differential expression of downstream genes in the three Mendelian 
Disorders of the Epigenetic Machinery (MDEMs). (A) The proportion of promoters with differentially expressed downstream genes in Kabuki type 1 
(KS1), Kabuki type 2 (KS2), and Rubinstein- Taybi type 1 (RT1) syndromes, estimated for the top ranked differentially accessible promoter peaks. The 
estimation was repeated for different thresholds for determining the top ranked list. For each MDEM, each point corresponds to a different threshold. 
Thresholds were slid from 1000 to 5000, in steps of 250. (B) Scatterplot of the accessibility log2(fold changes) of differentially accessible promoter 
peaks, against the expression log2(fold changes) of differentially expressed downstream genes, for each of the three MDEMs. Shown are only pairs 
where the promoter peak was within the top 1000 differentially accessible promoter peaks (ranked based on p- value), and the downstream gene was 
differentially expressed (10 % FDR; Materials and methods). Each point corresponds to a gene- promoter pair. In cases where more than one peak in 
the same promoter was within the top 1000 differentially accessible peaks, the median(log2(fold change)) across all such peaks was calculated. (C) and 
(D) An example locus (Pard3b) with concordant changes in promoter peak accessibility and downstream gene expression in all three MDEMs. (E) The 
proportion of promoters with differentially expressed downstream genes in KS1, KS2, and RT1, estimated separately for the top uniquely differentially 
accessible promoters in each MDEM (see Materials and methods), vs. the same proportion estimated for the genes downstream of the 420 shared 
differentially accessible promoter peaks.

The online version of this article includes the following figure supplement(s) for figure 3:

Source data 1. Differentially expressed genes downstream of differentially accessible promoter peaks, along with the corresponding p- values and 
logFC changes.

Figure supplement 1. The distributions of p- values (from the differential expression analyses) for genes downstream of promoters with differentially 
accessible peaks shared across the disorders, or unique to the particular disorder.

https://doi.org/10.7554/eLife.65884
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Figure 4. Evaluating the overlap between the differentially expressed genes in Kabuki type 1 (KS1), Kabuki type 2 (KS2), and Rubinstein- Taybi type 1 
(RT1) syndromes. (A) The distribution of p- values from the KS2 vs. wild- type differential expression analysis, stratified according to whether the same 
genes are significantly differentially expressed in KS1 (FDR < 0.1; red curve), or not (FDR ≥ 0.1; blue curve). (B) Scatterplot of log2(fold changes) from the 
KS1 vs. wild- type differential expression analysis (x- axis), against the corresponding log2(fold changes) from the KS2 vs. wild- type analysis (y- axis). Each 
point corresponds to a gene. Shown are only genes that are differentially expressed in KS1 (FDR < 0.1). (C) The distribution of p- values from the RT1 vs. 
wild- type differential expression analysis, stratified according to whether the same genes are shared differentially expressed between KS1 and KS2 (FDR 
< 0.1, see Materials and methods; red curve), or not (blue curve). (D) Scatterplot of log2(fold changes) from the RT1 vs. WT (x- axis) differential expression 
analysis, against the mean log2(fold change) from the KS1 vs. wild- type and KS2 vs. wild- type analyses. Each point corresponds to a gene. Shown are 
only genes that are shared differentially expressed between KS1 and KS2 (FDR < 0.1). (E) Principal component analysis plots using only the 264 genes 
identified as shared differentially expressed between the three Mendelian Disorders of the Epigenetic Machinery (MDEMs). Each point corresponds to 
a mouse. (F) The proportion of differentially expressed genes that show increased expression in the mutant vs. the wild- type mice. (G) The proportion 
of genes with differentially accessible promoter peaks in KS1, KS2, and RT1, estimated for the top ranked differentially expressed genes. The estimation 
was repeated for different thresholds for inclusion into the top ranked list. For each MDEM, each point corresponds to a different threshold. Thresholds 
were varied from 1000 to 5000, in steps of 250.

The online version of this article includes the following figure supplement(s) for figure 4:

Source data 1. Shared differentially expressed genes in Kabuki type 1 (KS1) and Kabuki types 2 (KS2) syndromes, along with the corresponding logFC 
changes.

Source data 2. Shared differentially expressed genes in Kabuki type 1 (KS1), Kabuki type 2 (KS2), and Rubinstein- Taybi type 1 (RT1), along with the 
corresponding logFC changes.

Figure 4 continued on next page

https://doi.org/10.7554/eLife.65884
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transcription factors at specific genomic locations (Voss and Hager, 2014), while other transcription 
factors can only bind their cognate motifs if these reside within pre- accessible sites (John et al., 2011; 
Guertin and Lis, 2010). We therefore investigated the transcription factor motifs encoded within 
the differentially accessible peaks in the three disorders, using a set of 233 non- redundant motifs 
(Materials and methods). We focused on differentially accessible peaks within promoters of differen-
tially expressed genes, reasoning that these are more likely to reveal potentially disrupted regulatory 
connections with functional relevance. In all three syndromes, we observed only modest enrichments 
(Figure 4—source data 3).

Regulatory wiring disruption can occur not only because of altered motif accessibility, but also 
theoretically because of abnormal expression of the cognate transcription factors themselves. We 
thus also performed a search for motif enrichment in promoter peaks corresponding to differen-
tially expressed genes, regardless of whether these peaks are differentially accessible or not. Notable 
among the significant hits (Figure 4—source data 3) are motifs recognized by transcription factors of 
the NF- kB pathway, which appears affected at the expression level in the three disorders. However, 
the enrichment effect sizes are again small. Overall, this analysis indicates that the regulatory network 
disruption in the three MDEMs does not converge to a few dominant transcription factors.

The collective effect of individually subtle alterations in multiple genes 
is likely responsible for perturbed IgA production and abnormal B-cell 
maturation
Our results establish the existence of widespread epigenetic and transcriptional aberrations that are 
largely shared across the three disorders, suggesting functional relevance. We therefore asked whether 
these aberrations can explain some specific aspects of the immune dysfunction. We first performed 
a pathway analysis of the shared disrupted genes (either at the expression or promoter accessibility 
level; Materials and methods). This yielded several potentially affected pathways (Figure 5—source 
data 1 and Figure 5—source data 2). However, most of these were of general relevance and did not 
pinpoint very specific pathologies.

We then reasoned that we might gain more insight by focusing on two of the specific phenotypes 
seen in KS1: abnormal B- cell maturation and IgA deficiency (Pilarowski et al., 2020; Lindsley et al., 
2016). We set out to test if these are attributable to the collective dysregulation of multiple genes, or 
to the abnormal expression of a select few. To define relevant gene sets, we first obtained the set of 
all transcription factors encoded in the mouse genome that are expressed in CD19+ B cells (Materials 
and methods); this choice was motivated by the fact that transcription factors are critical regulators of 
cellular differentiation and maturation. We then examined the ranks of these transcription factors in 
the KS1 p- value distribution and observed a strong shift indicative of global dysregulation (Figure 5A; 
p = 0.001). For IgA deficiency, we assembled a list of 75 genes known to lead to IgA deficiency when 
individually knocked out in mouse (Materials and methods). Examination of the KS1 p- value ranks of 
these genes also highlighted a collective shift toward lower p- values (Figure 5B; p = 0.03). Together, 
these results suggest the collective (but often subtle) dysregulation of many genes.

Turning our attention to KS2 and RT1, we observed similar results for transcription factors, 
with substantial contribution from a set of transcription factors dysregulated in all three MDEMs 
(Figure 5A, C). However, when assessing the IgA deficiency genes, we only observed the signal in 
RT1, and not in KS2 (Figure 5B,D). This was surprising, given the high phenotypic similarity between 
KS1 and KS2, and prompted us to measure serum IgA in the KS1/2 and wild- type mice (Materials and 
methods). In agreement with the collective behavior of IgA- related genes, we found no difference in 
IgA levels between the KS2 and wild- type, while we recapitulated our previous result of IgA deficiency 
in KS1 mice (Pilarowski et al., 2020; Figure 5E; p = 0.8 for KS2 vs. WT, p = 0.0008 for KS1 vs. WT, 
Figure 5—source data 3).

Source data 3. Transcription factor motifs enriched in peaks found in promoters of differentially expressed genes.

Figure supplement 1. Principal component analysis plots using only the 264 genes identified as shared differentially expressed between the three 
Mendelian Disorders of the Epigenetic Machinery (MDEMs).

Figure 4 continued

https://doi.org/10.7554/eLife.65884
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Finally, we found no evidence that these collective defects in the expression of transcription factors 
and IgA deficiency associated genes are driven by similar shifts toward abnormal promoter accessi-
bility, with the exception of transcription factor promoters in RT1 (p = 0.04).

Table 1. Shared differentially expressed genes with shared differentially accessible promoters in 
Kabuki type 1, Kabuki type 2, and Rubinstein- Taybi syndromes. 

‘Up’ (‘down’) indicate increased (decreased) expression or increased (decreased) promoter 
accessibility in the mutant vs. the wild- type mice. Gene functions were obtained via manual curation.

Gene name Gene expression Promoter accessibility Gene function

Pard3b Up Up Cell division and cell polarization processes

Pbx1 Up Up Transcription factor

Epm2a Up Up Serine/threonine/tyrosine phosphatase

Zfp365 Up Up Transcription factor

Ccdc88a Up Up Actin binding protein

Tanc2 Up Up Synaptic scaffolding protein

Dip2c Up Up Protein interacting with transcription factors

Kif13a Up Up Microtubule- based motor protein

Spry2 Up Up Inhibitory activity on receptor tyrosine 
kinase signaling proteins

Ndrg1 Up Up N- myc downregulated gene family member

Ebi3 Down Down Interleukin subunit

Ppdpf Down Down Regulator of exocrine pancreas 
development

Golim4 Up Up Golgi protein

Reln Up Up Secreted extracellular matrix protein

Amz1 Down Down Zinc metalloproteinase

Slc29a4 Up Up Monoamine transporter

Bicd1 Up Up Role in intracellular cargo transport

Slc25a4 Up Up Member of the mitochondrial carrier 
subfamily

Nr3c2 Up Up Mineralocorticoid receptor

Zfp827 Up Up Transcription factor

Slc36a4 Up Up Amino acid transporter

Arhgef12 Up Up Guanine exchange factor

Tbc1d2b Up Up GTP- ase activating protein

Cask Up Up Calcium- calmodulin- dependent serine 
protein kinase

Dmd Up Up Connects cytoskeleton and the extracellular 
matrix

Maged1 Up Up p75 neurotrophin receptor mediated 
program

Chic1 Up Up Cysteine- rich hydrophobic (CHIC) domain 
containing protein

Gprasp1 Up Up G protein- coupled receptor interacting 
protein

Col4a5 Up Up Major collagen of basement membrane

https://doi.org/10.7554/eLife.65884
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Discussion
Our study is motivated by the hypothesis that the shared phenotypic manifestations seen in MDEMs 
are attributable to shared underlying epigenomic and transcriptomic abnormalities. We have taken a 
first step toward validating this hypothesis, by showing that three MDEMs caused by loss- of- function 
variants in three distinct epigenetic regulators have shared alterations at the chromatin and gene 
expression level in B cells. However, we have not established that these shared abnormalities are causal 
for pathogenesis; this will require targeted manipulation of chromatin state and gene expression at 

Figure 5. Evaluating genes known to encode transcription factors (TFs), or individually contribute to IgA deficiency, for collective expression 
dysregulation. (A) The Wilcoxon rank- sum test statistic (red vertical line) computed after assembling a list of genes encoding TFs expressed in B cells 
(Materials and methods), and comparing the distribution of their differential expression p- values to the p- value distribution of the rest of the genes 
included in the differential expression analysis. The blue distribution corresponds to the same statistic computed after randomly sampling gene sets of 
the same size as TFs, and comparing their p- value distribution to the p- values for the rest of the genes. The resampling was performed 10,000 times. 
(B) Same as (A), but for genes known to individually contribute to IgA deficiency (Materials and methods). (C) The percentage of TF genes that belong 
to the top 25 % differentially expressed TFs in Kabuki type 1 syndrome (KS1) (orange dots), and Kabuki type 2 syndrome (KS2) (green dots), stratified 
according to their p- value quartile in Rubinstein- Taybi type 1 syndrome (RT1). (D) Same as (C), but for IgA deficiency genes compared in KS1 and RT1. 
(E) Serum IgA levels in KS1, KS2, and wild- type mice.

The online version of this article includes the following figure supplement(s) for figure 5:

Source data 1. Top 20 Reactome enriched pathways, using shared differentially expressed genes in Kabuki type 1 (KS1), Kabuki type 2 (KS2), and 
Rubinstein- Taybi type 1 (RT1) syndromes.

Source data 2. Top 20 Reactome enriched pathways, using genes with shared differentially accessible promoters in Kabuki type 1 (KS1), Kabuki type 2 
(KS2), and Rubinstein- Taybi type 1 (RT1) syndromes.

Source data 3. Serum IgA levels measured in the two types of Kabuki syndrome and wild- type littermates.

https://doi.org/10.7554/eLife.65884
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the appropriate cell types and developmental stages. Nonetheless, our results provide some evidence 
of functionality, as illustrated by the fact that: (a) many chromatin changes at promoters are linked to 
downstream gene expression changes and (b) systematic expression changes affect genes known to 
contribute to specific, well- characterized phenotypic features (IgA deficiency, abnormal B- cell matu-
ration) of these MDEMs.

One limitation in our study is the use of only female mice. While it is known that sex differences 
can influence immune responses and deficiencies (Klein and Flanagan, 2016), IgA deficiency has 
been observed in both male and female KS1 patients, and characterized in both male and female KS1 
mice (Pilarowski et al., 2020). This supports the notion that our results are relevant to both sexes, 
although future work is needed to test this for KS2 and RT1. It should also be mentioned that, given 
the differences in immune system function between mice and humans (Seok et  al., 2013), some 
aspects of our results (e.g. some of the disrupted loci/genes) may differ in patients. However, the 
immune dysfunction in KS1 mice has previously been shown to mimic many aspects of what is seen 
in patients (Pilarowski et al., 2020), and we therefore anticipate that a substantial proportion of the 
specific changes will be recapitulated. We also expect that the pattern of extensive sharing of abnor-
malities between MDEMs will hold true.

In terms of understanding the pathogenesis of MDEMs, our findings clearly point toward a gener-
alized, systems- level dysregulation, with a multitude of cellular processes/pathways affected. This is 
supported both by the extensive sharing of chromatin and expression alterations between the three 
disorders, and by the several Reactome pathways that appear affected. From our present study it is 
unclear how exactly these combine to ultimately give rise to the phenotypic manifestations; eluci-
dating this will be an important challenge going forward. It is also worth noting that the emergent 
picture bears similarities to the molecular basis of complex diseases. This is perhaps not unexpected, 
given that epigenetic regulators are typically trans- acting proteins that act at many locations. It also 
suggests that, even though MDEMs are single- gene Mendelian disorders with respect to their inheri-
tance pattern, when it comes to their underlying molecular pathogenesis they might best be concep-
tualized as effectively complex disorders, with many widely distributed, small- effect perturbations, 
ultimately generating the phenotype (Boyle et al., 2017). This may also explain the broadness of 
the phenotype in MDEMs (Bjornsson, 2015), and the decreased penetrance of many phenotypes in 
patients that are fully penetrant in mouse models.

It is notable that we find greater molecular overlap between KS1 and KS2 than between either of 
them and RT1, in agreement with the greater similarity between the two KS types at the phenotypic 
level. It should be mentioned, however, that specific sub- phenotypes provide exceptions to this rule, 
as evidenced by the abnormalities in IgA deficiency genes, which are present in KS1 and RT1 but 
are absent in KS2. Together, these results suggest that deep phenotyping of MDEMs combined with 
molecular characterization in disease- relevant cell types can yield new insights into the pattern of their 
shared features. We also note that, for a complete understanding of each MDEM individually, our 
cross- MDEM comparison approach should ultimately be complemented by disorder- specific analyses, 
as some disrupted loci/genes/pathways may show disorder- specific abnormalities.

One unexpected finding was that, at promoters, almost all of the shared disrupted peaks exhibit a 
shift toward a more open chromatin state, even though the causative mutations of all three disorders 
would theoretically be expected to push toward a more closed chromatin state, based on the specific 
histone marks they are thought to affect (Fahrner and Bjornsson, 2014). One possible explanation is 
that these shared hits represent indirect effects, arising downstream of the initial effects of the muta-
tions. Alternatively, the hypothesis that loss of the epigenetic regulators disrupted in our three disor-
ders would lead to closed chromatin may not hold. Finally, there is the possibility that the causative 
mutations lead to a non- specific cellular compensatory response, which causes increased chromatin 
openness at several genomic locations such as the adaptive stress response (Brose et al., 2012). The 
latter is supported by the fact that many of the shared genes uncovered in this study are not known 
to be directly targeted by the KMT2D, KDM6A, or CREBBP proteins. Regardless of the exact reason, 
this observation warrants future exploration.

We note that our study differs from recent studies of DNA methylation in the peripheral blood 
of MDEM patients (Aref- Eshghi et al., 2020; Sobreira et al., 2017; Butcher et al., 2017). In these 
studies, the goal is to derive ‘episignatures’ with the capacity for robust phenotypic prediction. As a 
result, these episignatures include a set of CpGs that jointly maximize the ability to separately classify 

https://doi.org/10.7554/eLife.65884
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individuals with a given MDEM from controls, without regard to the causal role (if any) of these CpGs 
in disease pathogenesis. While this does not limit their potential usefulness, and does not exclude the 
possibility that changes in the methylation state of some of these CpGs may be functionally related 
to disease pathogenesis, our strategy is specifically designed to yield a catalog of abnormalities with 
primary functional role in shared MDEM pathogenesis.

In summary, we propose the study of the MDEMs as a principled approach for systematically 
mapping causally relevant epigenetic variation in mammals. The shared hits among the three MDEMs 
studied here almost exclusively demonstrate an increase in open chromatin at promoters, which is 
counterintuitive to the function of the individual causative genes and may either suggest a previously 
unexpected role for them or an undescribed systemic compensatory response. Finally, we suggest 
that MDEMs are effectively complex disorders with respect to their molecular pathogenesis, arising 
from widely distributed epigenetic perturbations across the genome.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (Mus 
musculus, both 
sexes)

Kmt2d+/βGeo mice 
(fully backcrossed to 
C57BL/6J)

Originally from Bay 
Genomics and described in 
PMID:2527309625273096.

Kmt2d+/βGeo,
Mll2Gt(RRt024)Byg

RRID:MGI:5829565 A previously characterized mouse model of Kabuki 
syndrome (type 1).

Strain, strain 
background (Mus 
musculus, females 
only)

Kdm6a± mice (fully 
backcrossed to 
C57BL/6J, observed 
male lethality)

Ordered from EMMA 
(European Mouse Mutant 
Archive)

Kdm6a+/, 
Kdm6atm1d(EUCOMM)Wtsi

MGI:4434460

A previously characterized mouse model of Kabuki 
syndrome (type 2). Transition from Kdm6atm1a(EUCOMM)

Wtsi to Kdm6atm1d(EUCOMM)Wtsi performed in Bjornsson 
laboratory.

Strain, strain 
background (Mus 
musculus, both 
sexes)

Crebbp±mice (fully 
backcrossed to 
C57BL/6J)

Ordered from Jackson 
laboratory and described 
in PMID:10673499

Crebbp+/-

Crebbptm1Dli, 
RRID:MGI:2175793

A previously characterized mouse model of 
Rubinstein- Taybi syndrome (type 1).

Sequence- based 
reagent βGeo F This paper PCR primers  CAAATGGCGATTACCGTTGA

Sequence- based 
reagent βGeo R This paper PCR primers  TGCCCAGTCATAGCCGAATA

Sequence- based 
reagent Tcrd (control) F This paper PCR primers  CAAATGTTGCTTGTCTGGTG

Sequence- based 
reagent Tcrd (control) R This paper PCR primers  GTCAGTCGAGTGCACAGTTT

Sequence- based 
reagent Kdm6aTm1c F This paper PCR primers  AAGGCGCATAACGATACCAC

Sequence- based 
reagent

Kdm6aTm1c, Floxed 
LR This paper PCR primers  ACTGATGGCGAGCTCAGACC

Sequence- based 
reagent Tcrd (control) F- This paper PCR primers  CAAATGTTGCTTGTCTGGTG

Sequence- based 
reagent Tcrd (control) R This paper PCR primers  GTCAGTCGAGTGCACAGTTT

Sequence- based 
reagent

Crebbp
R- T F This paper PCR primers  TAAGCAGCAGCATCCTTTGG

Sequence- based 
reagent

Crebbp
R- T_WT This paper PCR primers  CCTG ACAA TGTG TCAT GTGAT

Sequence- based 
reagent

Crebbp
R_T_MUT R: This paper PCR primers  ATGC TCCA GACT GCCT TGGGA

Commercial assay 
or kit IgA ELISA kit Thermo Catalog # EMIGA

 

https://doi.org/10.7554/eLife.65884
https://pubmed.ncbi.nlm.nih.gov/25273096/
https://pubmed.ncbi.nlm.nih.gov/25273096/
https://scicrunch.org/resolver/RRID:MGI:5829565
https://scicrunch.org/resolver/RRID:MGI:4434460
https://pubmed.ncbi.nlm.nih.gov/10673499/
https://identifiers.org/RRID/RRID:MGI:2175793
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Commercial assay 
or kit

CD19 positive 
selection Miltenyi 130- 052- 201

 

Commercial assay 
or kit Tagmentation

Illumina
Nextera FC- 121–1030

 

Commercial assay 
or kit Digitonin Promega G9441

 

Commercial assay 
or kit

DNA clean and 
concentration kit Zymo D4013

 

Commercial assay 
or kit

Select A size 
purification Zymo D4080

 

Commercial assay 
or kit DNA high sensitivity Agilent 5067–4626

 

Commercial assay 
or kit Qubit dsDNA HS Thermo Q32851

 

Commercial assay 
or kit

Direct- zol RNA 
microprep Zymo R2060

 

Commercial assay 
or kit Quant- iT RiboGreen Thermo R11490

 

Commercial assay 
or kit RNA HS Assay kit Thermo Q32852

 

Commercial assay 
or kit RNA 6000 Pico Agilent 5067–1513

 

Commercial assay 
or kit

NEBNext Poly(A) 
mRNA isolation 
module New England Biolabs E7490

 

Commercial assay 
or kit

NEBNext Ultra II 
Directional RNA 
Library Prep kit New England Biolabs E7760/E7765

 

Commercial assay 
or kit

KAPA library 
Quantification kit KAPA KK4824

 

Software, algorithm BowTie2
PMID:
22388286 RRID:SCR_016368 Default parameters

Software, algorithm Samtools PMID:19505943 RRID:SCR_002105
 

Software, algorithm MACS2
PMID:
18798982 RRID:SCR_013291 Keep- dup = all

Software, algorithm DESeq2
PMID:
25516281 RRID:SCR_015687

 

Software, algorithm
Surrogate Variable 
Analysis

PMID:
17907809 RRID:SCR_012836

 

Software, algorithm Salmon
PMID:
28263959

V0.10
RRID:SCR_017036

 

Other
GEO submission of 
all data Accession GSE162181 RRID:SCR_005012

 

 Continued

Mice
We performed all mouse experiments in accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals and all were approved by the Animal Care and Use 
Committee of the Johns Hopkins University (protocol number: MO18M112). For all comparisons, we 
used wild- type littermates as controls for each batch, although we did pool wild- type animals in some 
analyses. Numbers, outcome measures, and statistical testing are described throughout the text as 
well as in the transparent reporting form.

https://doi.org/10.7554/eLife.65884
https://pubmed.ncbi.nlm.nih.gov/22388286/
https://identifiers.org/RRID/RRID:SCR_016368
https://pubmed.ncbi.nlm.nih.gov/19505943/
https://identifiers.org/RRID/RRID:SCR_002105
https://pubmed.ncbi.nlm.nih.gov/18798982/
https://identifiers.org/RRID/RRID:SCR_013291
https://pubmed.ncbi.nlm.nih.gov/25516281/
https://identifiers.org/RRID/RRID:SCR_015687
https://pubmed.ncbi.nlm.nih.gov/17907809/
https://identifiers.org/RRID/RRID:SCR_012836
https://pubmed.ncbi.nlm.nih.gov/28263959/
https://identifiers.org/RRID/RRID:SCR_017036
https://identifiers.org/RRID/RRID:SCR_005012
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We genotyped mice using standard genotyping and PCR methods. For all comparisons, we used 
wild- type littermates.

KS1. Kmt2d+/βGeo mice are fully backcrossed to C57BL/6 J and this backcrossing is verified by SNP 
genotyping (Bjornsson et al., 2014). These mice are also known as Mll2Gt(RRt024)Byg. They were originally 
obtained from BayGenomics and were fully backcrossed in the Bjornsson laboratory.

Primers:

βGeo F-  CAAATGGCGATTACCGTTGA, R-  TGCCCAGTCATAGCCGAATA;
Tcrd (control) F-  CAAATGTTGCTTGTCTGGTG, R-  GTCAGTCGAGTGCACAGTTT

KS2. Kdm6a± mice were acquired from European Mouse Mutant Archive (EMMA) but this model 
has also been called: Kdm6atm1a(EUCOMM)Wtsi. Mice were crossed with flippase expressing mice (B6.Cg- T-
g(ACTFLPe)9205Dym/J) (Jackson Laboratories) to remove the third exon of Kdm6a, and then progeny 
were crossed with Cre expressing mice driven by CMV (B6.C- Tg(CMV- cre)1Cgn/J) (Jackson Labora-
tories), to generate the Kdm6atm1d(EUCOMM)Wtsi allele. Mice were backcrossed on C57BL/6 J to maintain 
the Kdm6atm1d(EUCOMM)Wtsi allele.

Primers:

Kdm6aTm1c F-  AAGGCGCATAACGATACCAC, Floxed LR-  ACTGATGGCGAGCTCAGACC;
Tcrd (control) F-  CAAATGTTGCTTGTCTGGTG, R-  GTCAGTCGAGTGCACAGTTT

RT1. Crebbp± mice, also known as Crebbptm1Dli, were acquired from Jackson laboratories but estab-
lished by Kung et al., 2000. These mice were maintained on a C57BL/6 J background in the Bjornsson 
laboratory.

Primers:

R- T F:  TAAGCAGCAGCATCCTTTGG, R- T_WT R:  CCTG ACAA TGTG TCAT GTGAT, R_T_MUT R:  
ATGC TCCA GACT GCCT TGGGA

For this study, multiple mating pairs of wild- type mice crossed with heterozygous mutants were 
used. The resulting litters from these mate pairs were a mix of mutant and wild- type offspring, all 
sharing the same genetic background. The wild- type controls that we use in our differential analyses 
are therefore either siblings to the mutants or cousins (because we have many litters of mice) within 
each disease model cohort. This ensures our study is not confounded by systematic differences in 
genetic background between wild- type and mutants.

Sex disaggregation
We performed all experiments in female mice to enable a comparison between all three disease 
models, as Kdm6a (KS2 model) is present on the X chromosome, and its full knockout is in our expe-
rience uniformly lethal in male mice. Therefore, we are unable to present sex- disaggregated data.

Testing for statistically significant overlap between two lists of 
differential features and identifying the common hits
Our problem is cast in the following setting. Assume we have performed two experiments, each of 
which involves measuring multiple features (e.g. genes or peaks) in two conditions and performing a 
differential analysis. The two experiments measure the same set of features. Because the two experi-
ments investigate different biological systems, we do not expect the set of (true) differential features 
to be identical. But we are interested in the extent of the overlap between the two sets of features, 
specifically: (a) Is there statistically significant overlap between the two sets of differential features and 
how big is it? (b) Which features are differential in both lists?

Our approach to these questions is a conditional approach: we ask, does information about the 
result in experiment 1 affect our interpretation of experiment 2?

We first (arbitrarily) designate one of the two experiments as experiment 1. We test  m  features, and 
for each feature   , we let  Xi  be a factor with values in {0,1} expressing whether the feature was signifi-
cantly differential in experiment 1 ( Xi = 1 ), or not ( Xi = 0 ). We are interested in whether the variable 

 X =
(
X1, . . . , Xm

)
  is an informative covariate for experiment 2, using terminology from recent work in 

covariate- powered multiple hypothesis testing (Ignatiadis et al., 2016; Chen et al., 2021).
We now consider experiment 2. We split the features into two groups, conditional on the results 

in experiment 1. Group 1 consists of the features which were found to be differential in experiment 1 

https://doi.org/10.7554/eLife.65884
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(the size of group 1 is  n ) and group 0 consists of the features which were not differential in experiment 
1 (of which we have  m − n ). We let each group have its own proportion of differential features, that is, 
we introduce parameters  π1|0  and  π1|1  . Let  Yi  be the indicator whether the   th feature is differential in 
experiment 2 or not. Then

 P
(
Yi = 1

)
= P

(
Yi = 1|Xi = 0

)
P
(
Xi = 0

)
+ P

(
Yi = 1|Xi = 1

)
P
(
Xi = 1

)
  

 π1|0P
(
Xi = 0

)
+ π1|1P

(
Xi = 1

)
  

Our null hypothesis is that experiment 1 is not informative about experiment 2, or in other words

 H0 : π1|0 = π1|1  

Under this null hypothesis  P
(
Yi = 1

)
= π1|1  . Furthermore, an estimate of  π1|1  should have the same 

distribution as the proportion of significant features in a random sample of  n  features from experiment 

2, which we term  ̂π
(

n
)

1   .
This gives us the following method for testing  H0  :

1. Analyze experiment 1 and decide which features are significantly differential or not.
2. Analyze experiment 2, but only the features which were called differential in experiment 1 to 

estimate  π̂1|1  .

3. Repeatedly, draw  n  features and estimate  ̂π
(

n
)

1   to get a null distribution.

In practice, we can estimate  π̂1|1  and  ̂π
(

n
)

1   using a number of different methods that produce esti-
mates of the proportion of true null hypotheses (and thus, of the proportion of false null hypotheses, 
our statistic of interest here) among a set of hypotheses tested. We here used Storey’s method as 
implemented in the qvalue package in R (Storey, 2003a; Storey and Tibshirani, 2003b), with the ‘ 
pi0. method’ parameter set to ‘bootstrap’. This tells us the size of the overlap and the extent to which 
it is significantly greater than what expected by chance. To estimate which features are in the overlap, 
we use the qvalue() function on the features which are significant in the analysis of experiment 1, with 
the FDR level set to 10 %.

Simulation study
We performed a simple simulation study, to test if our method leads to increased ability to detect 
overlap between lists of differential features, in a setup with known ground truth. We simulated three 
experiments as follows. Each experiment consisted of testing 10,000 features between two groups. 
Of these 10,000 features, there were 2000 true differential features and 8000 true null features. There 
were 1400 true shared differential features between the first two experiments, and 1000 shared true 
differential features between all three experiments. For each experiment, the null features were simu-
lated from a normal distribution with mean = 0 and variance = 1, for both groups. The differential 
features were simulated from a normal distribution with mean = 0 and variance = 1 in one group, and 
mean = 0.5 and variance = 1 in the other. The sample size was always fixed at 75. For each feature, 
we performed a two- sample t- test, using the col_t_welch() function from the matrixTests R package.

We then estimated the overlap between the experiments using either our method (as described in 
the previous section) or the standard approach, which consisted of separately identifying significant 
features at the 10 % FDR level in each experiment, and then counting the number of features in the 
intersection across experiments. We repeated the simulation 1000 times. Our results confirmed that 
our method provides substantially greater ability to estimate the size of the overlap (Figure 1—figure 
supplement 1). In addition, our method had an average proportion of false discoveries (i.e. features 
labeled as belonging to the overlap that were not truly differential across the experiments) equal to 
10.9%, very close to the nominal FDR of 10 %.

Blood cell isolation
We obtained peripheral blood from 2.5- to 3.5 - month- old female mice by facial vein bleed. 150–250 µL 
blood was collected in K2EDTA blood collection tubes (BD Microtainer 365974) and red blood cells 
were lysed for 7–15 min at room temperature in 2 mL red blood cell lysis solution (15.5 mM NH4Cl, 

https://doi.org/10.7554/eLife.65884


 Research article      Computational and Systems Biology | Genetics and Genomics

Luperchio, Boukas, et al. eLife 2021;0:e65884. DOI: https:// doi. org/ 10. 7554/ eLife. 65884  17 of 24

1 mM KHCO3, 0.01 mM EDTA). We diluted lysed blood with excess balanced salt solution (Gey’s 
or 1× PBS), manually removed large clots using pipet tip, and spun at 500 g for 10 min 4’. Second 
lysis at room temperature was performed for samples with large amounts of remaining red blood 
cells then spun. We isolated CD19+ B cells by positive selection using CD19+ microbeads for mouse 
(Miltenyi 130- 052- 201) following manufacturer’s protocols, then counted and aliquoted samples on 
ice to further process for ATAC- seq and RNA- seq. We note that each RNA- seq sample was an aliquot 
of the same cell harvest as the ATAC- seq sample from the same mouse (though for some mice we only 
performed ATAC- seq and not RNA- seq).

ATAC-seq
We performed ATAC- seq using a modified FastATAC protocol (Corces et al., 2016; Buenrostro et al., 
2013). Specifically, we resuspended 5  k cells per reaction in 1× PBS and quickly spun to remove 
residual EDTA from isolation steps, and then resuspended in tagmentation reaction mix for 30 min 
(2.5 µL TD1, 1 × TD Buffer, Illumina Nextera DNA, FC- 121–1030; 0.25 µL 1 % digitonin, Promega 
G9441; 1× PBS;) gently shaking (300 rpm on Eppendorf thermomixer) at 37’. We purified reactions 
using Zymo DNA Clean and Concentrator- 5 kit (Zymo D4013) following manufacturer’s protocols and 
eluted with 10.5 µL water to recover 10 µL. Each reaction was then amplified and indexed as described 
(Corces et al., 2016); total sample amplification cycles range from 6 to 10 cycles. After indexing and 
amplification, we purified samples using Select- A- Size purification columns (Zymo D4080) with a cutoff 
of 150 bp to remove adapter dimers to allow for efficient sequencing on patterned flow cells, checked 
library size on BioAnalyzer using DNA High Sensitivity reagents (Agilent 5067–4626) and determined 
concentration using Qubit dsDNA HS Assay Kit (ThermoFisher Q32851). We pooled and sequenced 
on Illumina HiSeq4000 using PE flow cells with 100- 8- 8- 100 read length using standard manufacturer’s 
protocols. Samples were clustered to aim for 60 M reads per sample Samples were demultiplexed 
using Illumina pipeline bcl2fastq2 v2.20 with all defaults except --use- bases- mask Y100n, I8, I8, 
Y100n.

ATAC-seq mapping and peak calling
We mapped the ATAC- seq reads to the mm10 mouse assembly using bowtie2 (Langmead and 
Salzberg, 2012), with default parameters. We removed duplicate reads with the ‘MarkDuplicates’ 
function from Picard (RRID:SCR_006525; version 2.23.8;http:// broadinstitute. github. io/ picard/), and 
subsequently also removed mitochondrial reads using samtools (Li et al., 2009). We then created 
genotype- specific meta- samples, by merging all the individual bam files corresponding to samples 
from mice of a given genotype. This yielded one meta- sample for KS1, one for KS2, and one for RT1. 
For wild- type mice, we created two such meta- samples, one from the wild- type littermates of the KS1 
and KS2 cohorts (to which the KS1 and KS2 mutant mice were compared to), and one for the wild- type 
littermates of the RT1 cohort (to which the RT1 mutant mice were compared to). For each of the five 
resulting meta- samples, we then called peaks using MACS2 (Zhang et al., 2008), with the ‘keep- dup’ 
parameter equal to ‘all’.

ATAC-seq differential analysis
We first defined the set of features to be tested as differential, by unionizing the peaks from all 
meta- samples. After excluding intervals overlapping ENCODE blacklisted regions (Amemiya et al., 
2019), we obtained 78,193 genomic intervals (median size = 690 bp, 95th percentile = 1774, range 
= 151–11,363). To verify that these intervals are not likely to be false positives, we compared them to 
publicly available DNase Hypersensitivity Sites in B cells (CD19+) from the ENCODE project (https://
www. encodeproject. org/ experiments/ ENCSR000CMM/). We converted the DHS coordinates from 
mm9 to mm10 using liftOver. We then unionized the intervals from the two DHS replicates to create 
a common set of 112,728 DHSs. We found that 78,101 of our 78,193 regions (99.88%) overlapped 
DHSs, providing strong orthogonal evidence that they represent true B- cell regulatory regions.

We then counted the number of reads from each sample that map to each of the 78,193 features, 
using the featureCounts() function from the Rsubread R package (Liao et al., 2019), with the following 
parameters: requireBothEndsMapped = TRUE, countChimericFragments = FALSE, countMultiMap-
pingReads = FALSE, minOverlap = 3. This resulted in a count matrix with rows corresponding to 
features (the aforementioned genomic intervals), and columns to samples. This count matrix served 
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as input for the differential analysis, which we performed using DESeq2 (Love et al., 2014). We only 
retained features with a median (across samples) count greater than 10; this filter resulted in 71,651 
features for the KS1 vs. wild- type analysis, 73,189 features for the KS2 vs. wild- type analysis, and 
62,386 features for the RT1 vs. wild- type analysis. We used Surrogate Variable Analysis (Leek and 
Storey, 2007) to estimate unobserved confounding variables, and adjusted for those in the differ-
ential analysis (without explicitly including other covariates in the model; Figure 2—source data 5).

To derive the list of features overlapping promoters, we first obtained promoter coordinates with 
the promoters() function from the EnsDb.Mmusculus.v79 R package, with the parameters ‘upstream’ 
and ‘downstream’ both equal to 2000. We subsequently restricted to protein- coding transcripts, using 
the ‘tx_biotype’ filter. The overlapping features were then obtained using the findOverlaps() function 
from the GenomicRanges R package.

RNA-seq
We spun approximately 100 –500k cells at 300–500 g for 5 min at 4’, homogenized in Trizol (Invitrogen 
15596018) and stored at –80°C until extraction. We extracted and isolated RNA by phase separation 
using standard protocols followed by purification using the Direct- zol RNA microprep kit (Zymo R2060) 
with an on- column DNAse step per manufacturer’s directions. Once purified, we quantified RNA using 
Quant- iT RiboGreen RNA Assay Kit (ThermoFisher R11490) or Qubit RNA HS Assay Kit (ThermoFisher 
Q32852), and checked quality by Bioanalyzer with RNA 6000 Pico Kit (Agilent 5067–1513). All samples 
show high- quality RNA with RIN >9. We used 20 ng RNA per KS1 and KS2 and matched wild- type 
sample and 100 ng per RT and matched wild- type sample as input to capture mRNA (NEBNext Poly(A) 
mRNA Magnetic Isolation Module; NEB #E7490) followed by library generation using NEBNext Ultra 
II Directional RNA Library Prep Kit for Illumina (NEB E7760/E7765) per manufacturer’s protocols. We 
determined library size and quality using BioAnalyzer with DNA High Sensitivity reagents (Agilent 
5067–4626), and determined concentration using Qubit dsDNA HS Assay Kit (ThermoFisher Q32851) 
and KAPA Library Quantification Kit for qPCR (KAPA KK4824). We pooled samples and sequenced on 
Illumina HiSeq4000 using PE flow cells with 100- 8- 8- 100 read length using standard manufacturer’s 
protocols. Samples were clustered to aim for 60 M reads per sample. Samples were demultiplexed 
using Illumina pipeline bcl2fastq2 v2.20.

RNA-seq mapping and differential analysis
We first obtained a FASTA file ( Mus_ musculus. GRCm38. cdna. all. fa. gz) containing all mouse cDNA 
sequences from Ensembl (http:// uswest. ensembl. org/ Mus_ musculus/ Info/ Index, version 91, down-
loaded January 2018). We used this file to build an index and pseudo- map the RNA- seq reads with 
Salmon (v0.10) (Patro et al., 2017). We subsequently imported the resulting transcript quantifications 
into R to get gene- level counts, using the tximport R package (Soneson et al., 2016). The differential 
analysis was then performed with DESeq2, following the same steps as with ATAC- seq. The exclusion 
of genes with median count across samples ≤10 resulted in 12,566 genes tested in the KS1 vs. wild- 
type analysis, 12,529 genes tested in the KS2 vs. wild- type analysis, and 12,537 genes tested in the 
RT1 vs. wild- type analysis.

Principal component analysis
All PCA plots were generated as follows. We first applied a variance stabilizing transformation to the 
count matrices (either genes- by- samples or genomic- intervals- by- samples), as implemented in the 
vst() function from DESeq2. We then used the resulting matrix to perform the PCA with the plotPCA() 
function.

Pairwise comparisons between the disorders
We identified greater overlap between the differentially accessible regions identified in KS1 and KS2, 
than between the differentially accessible regions identified in either of KS1 or KS2 and RT1. To verify 
that this is not driven by the fact that KS1 and KS2 were compared against the same wild- type group, 
we re- estimated the overlap, after first conducting differential analyses where KS1 and KS2 mice were 
compared to separate wild- type cohorts (eight wild- type mice for the KS1 cohort and  four mice for 
the KS2 cohort, respectively). This again revealed the same picture: 73.8 % of differentially accessible 
regions (promoters or distal regulatory elements) in KS1 are estimated to be differential in KS2 as well, 
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whereas only 23.1 % of differentially accessible regions (promoters or distal regulatory elements) in 
RT1 are estimated as differential in KS2.

Identification of differentially expressed genes with differentially 
accessible promoter peaks
For Figure  3B, we first selected the genes downstream of the top 1000 differentially accessible 
promoter peaks, the latter being ranked based on their p- values in each disorder. Out of these genes, 
we retained those differentially expressed using the qvalue() function from the qvalue R package, 
with the gene p- values as input and the ‘ fdr. level’ parameter set to 0.1. In cases where there were 
more than one peak in the same promoter, we calculated the median logFC across these peaks. For 
Figure 3A, we slid the rank threshold for determining the top differentially accessible promoter peaks 
in each disorder from 1000 to 5000, and estimated that the proportion of differentially expressed 
downstream genes used the pi0est() function from the qvalue R package with the ‘ pi0. method’ param-
eter set to ‘bootstrap’.

For Figure 3E, the uniquely differentially accessible promoter peaks for each disorder were defined 
as peaks that are ranked within the top 1000 for that disorder (based on p- value), but that are not 
shared across all three disorders, and are not ranked within the top 5000 peaks for any of the other 
two disorders. This subsetting, as well as the subsetting for shared peaks, results in a relatively small 
number of p- values (between 174 and 572). Since it is known that the estimation of the proportion 
of truly differential features can be unreliable in such cases, we also visually inspected the corre-
sponding p- value distributions (Figure 3—figure supplement 1). The main issue is the choice of the 
λ tuning parameter, which defines a cutoff above which p- values are assumed to come from truly 
non- differential features. The qvalue() function provides two options for automatically choosing λ, 
the ‘bootstrap’ (which we use throughout this study) and the ‘smoother’, both of which are based on 
heuristic procedures.

In the case of KS1, we observed that the proportion of differentially expressed genes estimated 
by either the bootstrap or the smoother procedure does not agree with the behavior of the p- value 
distributions. Specifically, the p- value distribution exhibits somewhat greater concentration close to 
0 for the genes downstream of the shared differentially accessible promoter peaks (Figure 1—figure 
supplement 1a; 10th percentile = 0.0003 vs. 0.001). In contrast, the estimate with the bootstrap 
procedure is 68.4 % for genes downstream of the uniquely differentially accessible promoter peaks 
and 42.5 % for genes downstream of the shared differentially accessible promoter peaks. The corre-
sponding estimates with the smoother procedure are even more extreme: 75% and 18.2%, respec-
tively. We reasoned that this discordance between the estimates and the behavior of the distributions 
is likely because the p- value distribution for genes downstream of the uniquely differentially acces-
sible promoter peaks exhibits a bump in the middle (Figure 3—figure supplement 1A). Reasoning 
that this bump is unlikely to be caused by p- values corresponding to truly non- null genes, we manually 
set λ equal to 0.5, that is, we assumed that p- values greater than 0.5 come from truly non- differential 
genes. This yielded an estimate of the proportion of truly differential genes equal to 34.5 %. Similar 
estimates are yielded for λ values in the range 0.3–0.5 (min estimate = 29.5%, max estimate = 34.5%). 
For the genes downstream of the shared differentially accessible peaks, this range of λ values produces 
estimates that agree with the bootstrap procedure (min estimate = 40%, max estimate = 44%).

In the case of KS2 and RT1, the estimates from both the bootstrap and smoother procedure were 
in qualitative agreement with the p- value distributions (Figure 3—figure supplement 1). Specifically, 
a higher proportion of genes downstream of the shared differentially accessible promoter peaks were 
estimated to be truly differential, and their p- value distributions showed greater concentration close 
to 0.

Finally, for Figure 4G, we employed the analogous procedure to Figure 3A in order to estimate 
the proportion of differentially accessible peaks in promoters of differentially expressed genes for 
different thresholds.

Reactome pathway analysis
We used the goseq R package (Young et  al., 2010) to perform pathway analyses for the shared 
disrupted genes, based on Reactome pathways (Jassal et al., 2020). As our assayed gene set, we 
used the set of all genes included in all three differential expression analyses, or the set of all genes 
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that had at least one promoter peak included in all three differential accessibility analysis. As our 
differential gene set, we used the set of genes differentially expressed in all of the three MDEMs, or 
the set of genes with at least one differentially accessible promoter peak in all of the three MDEMs. 
The top 20 enriched pathways are provided in Figure 5 — source data 1 and 2 respectively.

Transcription factor motifs
We obtained a bed file ( mm10. archetype_ motifs. v1. 0. bed) containing the genomic positions of 233 
non- redundant transcription factor motifs, from https://www. vierstra. org/ resources/ motif_ clustering 
(Vierstra et al., 2020). We then restricted to motifs that had at least one base overlapping our set 
of unionized B- cell peaks (see sections ATAC- seq mapping and peak calling and ATAC- seq differen-
tial analysis). Subsequently, we tested each motif for enrichment using the  fisher. test() function in R. 
The differentially accessible peaks at promoters of differentially expressed genes were identified as 
described in the Identification of differentially expressed genes with differentially accessible promoter 
peaks section.

Gene catalogs
Transcription factors
We obtained a list of 1254 genes encoding for human transcription factors from Barrera et al., 2016. 
We then used the biomaRt R package to obtain the mouse orthologs of these transcription factor 
genes, with the ENSEMBL IDs as our filter. We only retained high- confidence orthologs (‘mmusculus_
homolog_orthology_confidence’ equal to 1). Finally, we restricted to transcription factors included in 
all three differential analyses (KS1 vs. WT, KS2 vs. WT, and RT1 vs. WT).

IgA deficiency genes
We used the Mammalian Phenotype Browser on the Mouse Genome Informatics database (Leek 
and Storey, 2007) to obtain a catalog of genes known to lead to IgA deficiency when individually 
knocked out. Specifically, we used ‘decreased IgA level’ as the phenotype term and then obtained all 
the resulting genes, regardless of the genetic background. In cases of double knockouts, we included 
both genes.

ELISA for serum IgA levels
We performed ELISAs on serum IgA from peripheral blood samples as previously described (Pilarowski 
et al., 2020).

Code availability
All code for the analyses in this manuscript is available at https:// github. com/ hansenlab/ mdem_ overlap 
(copy archived at swh:1:rev:eec9ad39114cf70fd1d313bd99588520a11e7b04, Leandros, 2021).
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The following dataset was generated:
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