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Abstract
Early identification of high-risk septic patients in the emergency department (ED) may guide appropriate management and
disposition, thereby improving outcomes. We compared the performance of machine learning models against conventional risk
stratification tools, namely the Quick Sequential Organ Failure Assessment (qSOFA), National Early Warning Score (NEWS), Modified
Early Warning Score (MEWS), and our previously described Singapore ED Sepsis (SEDS) model, in the prediction of 30-day in-
hospital mortality (IHM) among suspected sepsis patients in the ED.
Adult patients who presented to Singapore General Hospital (SGH) ED between September 2014 and April 2016, and whomet≥2

of the 4 Systemic Inflammatory Response Syndrome (SIRS) criteria were included. Patient demographics, vital signs and heart rate
variability (HRV) measures obtained at triage were used as predictors. Baseline models were created using qSOFA, NEWS, MEWS,
and SEDS scores. Candidate models were trained using k-nearest neighbors, random forest, adaptive boosting, gradient boosting
and support vector machine. Models were evaluated on F1 score and area under the precision-recall curve (AUPRC).
A total of 214 patients were included, of whom 40 (18.7%)met the outcome. Gradient boosting was the best model with a F1 score

of 0.50 and AUPRC of 0.35, and performed better than all the baseline comparators (SEDS, F1 0.40, AUPRC 0.22; qSOFA, F1 0.32,
AUPRC 0.21; NEWS, F1 0.38, AUPRC 0.28; MEWS, F1 0.30, AUPRC 0.25).
A machine learningmodel can be used to improve prediction of 30-day IHM among suspected sepsis patients in the ED compared

to traditional risk stratification tools.

Abbreviations: ADA = adaptive boosting, AUPRC = area under the precision-recall curve, BP = blood pressure, CI = confidence
intervals, DFA= detrended fluctuation analysis, ED= emergency department, GB= gradient boosting, GCS=GlasgowComa Scale,
HF = high frequency, HR = heart rate, HRV = heart rate variability, ICU = intensive care unit, IHM = in-hospital mortality, KNN = k-
nearest neighbors, LF = low frequency, MEWS = Modified Early Warning Score, NEWS = National Early Warning Score, NN50 =
number of consecutive RR intervals differing by more than 50 ms, pNN50 = percentage of consecutive RR intervals differing by more
than 50 ms, PRC = precision-recall curve, qSOFA = quick sequential organ failure assessment, RF = random forest, RMSSD = root
mean square of differences between adjacent RR intervals, ROC = receiver operating characteristics, SD = standard deviation,
SEDS = Singapore Emergency Department Sepsis, SGH = Singapore general hospital, SIRS = systemic inflammatory response
syndrome, SVM = support vector machine, TINN = baseline width of a triangle fit into the RR interval histogram using least squares,
VLF = very low frequency.
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1. Introduction

Sepsis is increasing in incidence and has a 10% to 20% in-
hospital mortality (IHM) rate.[1–3] Risk stratification of septic
patients in the Emergency Department (ED) may help to guide
appropriate management and disposition, thereby reducing
morbidity and mortality.[4–6] A number of clinical tools have
been developed to risk stratify septic patients in the ED, where
certain clinical information, such as laboratory investigations, is
not readily available. The Quick Sequential Organ Failure
Assessment (qSOFA) score was externally validated among septic
patients presenting to the ED using the worst level of the 3
components observed during the ED stay and showed good
prognostic accuracy for IHM.[7] A recent study showed that
commonly used early warning scores such as the National Early
Warning Score (NEWS) and the Modified Early Warning Score
(MEWS) were more accurate than qSOFA in predicting mortality
in patients with suspected infection presenting to the ED.[8]

Several studies have also reported the prognostic value of heart
rate variability (HRV) parameters in septic patients presenting to
the ED.[9–11] Septic patients have reduced sympatho-vagal balance
and impaired sympathetic activity,which lead tovaryingdegrees of
cardiac autonomic dysfunction.[12] This can be detected by HRV
analysis, a quick, non-invasive technique of evaluating the beat-to-
beat variation in heart rate. HRV analyses are divided into linear
and non-linear methods.[13] Linear methods include HRV
parameters measured in time or frequency domains. Time domain
HRV parameters are statistical calculations of consecutive R-R
time intervals and how they correlate with each other. Frequency
domain HRV parameters are based on spectral analysis. Studies
have suggested that regulators of the cardiovascular system
interact in a non-linear way[14,15] and HRV analysis using non-
linear methods reflect these mechanisms.[16]

We previously described a 5-variable Singapore ED Sepsis
(SEDS) model to predict the risk of 30-day IHM among septic
Figure 1. Cohort selection flow
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patients in the ED. The SEDS model was the first risk
stratification tool to incorporate HRV parameters with other
traditional prognosticators such as patient demographics and
vital signs. It was developed via stepwise logistic regression and
had improved predictive performance over existing tools that
only utilize vital signs in their scoring criteria.[17]

With the widespread adoption of electronic medical records in
healthcare and availability of high-resolution data particularly in
the intensive care unit (ICU) setting, machine learning algorithms
have become popular for modelling patient health status.
Machine learning models have shown good performance in
early detection of sepsis among ICU patients[18,19] and prediction
of progression to septic shock among patients with sepsis.[20] A
randomised controlled trial also showed that the use of a machine
learning-based severe sepsis surveillance and alert system
improved patient outcomes such as length of stay and IHM.[21]

To date, only 1 study has demonstrated the use of machine
learning for risk prediction of septic patients in the ED. However,
it did not explore modern algorithms such as boosting and
support vector machine, and did not incorporate HRV
measures.[22] In this study, we aimed to compare the performance
of HRV-based machine learning models against the SEDS model
and other conventional risk stratification tools, namely the
qSOFA, NEWS and MEWS, in the prediction of 30-day IHM
among suspected sepsis patients in the ED setting. We are
interested in the use of these models for early risk stratification
based on clinical information that are quickly obtainable during
triage and without chart review.
2. Methods
Ethics approval for the study was obtained from SingHealth’s
Centralised Institutional Review Board (CIRB, Reference
Number 2016/2858), with waiver of patient consent. We
conducted secondary analysis of electronic health data from
with breakdown of outcome.



Table 1

Summary of predictor variables by presence of outcome.

Variable
No 30-day IHM

(n=174)
30-day IHM
(n=40) P value

Patient demographics
Age (years) 66 (56–77) 76 (68–83) <.001
Male gender 88 (51%) 20 (50%) .95
Ethnicity
Chinese 125 (72%) 30 (75%) Ref.
Malay 25 (14%) 4 (10%) .61
Indian 15 (9%) 5 (13%) .56
Others 9 (5%) 1 (3%) .69

Vital signs
Temperature (°C) 38 (37–39) 37 (36–39) .01
Heart rate (beats/min) 118 (105–130) 109 (98–126) .08
Respiratory rate (breaths/min) 19 (18–22) 22 (19–26) <.001
Systolic BP (mmHg) 114 (91–143) 105 (91–127) .10
Diastolic BP (mmHg) 63 (55–74) 62 (51–71) .44
GCS score 15 (13–15) 14 (9–15) .002

HRV measures
Time domain
Mean RR (s) 543 (466–614) 560 (500–655) .17
SD RR (s) 12 (8–30) 29 (10–55) .003
Mean HR (bpm) 111 (98–129) 108 (92–121) .23
SD HR (bpm) 2 (1–6) 5 (2–12) .01
RMSSD (s) 11 (5–38) 34 (10–75) <.001
NN50 (count) 1 (0–20) 20 (2–140) .002
pNN50 (%) 0 (0–3) 4 (0–21) .001
RR triangular index 3 (2–4) 3 (2–6) .21
TINN 78 (40–265) 185 (73–320) .01
Total power (ms2) 60 (20–307) 182 (37–1372) .01

Frequency domain
VLF power (ms2) 30 (10–107) 47 (14–303) .17
LF power (ms2) 7 (2–30) 15 (4–291) .04
HF power (ms2) 8 (2–67) 89 (6–618) .002
LF power norm (n.u.) 38 (22–76) 28 (12–47) .01
HF power norm (n.u.) 61 (23–77) 72 (53–87) .01
LF/HF 1 (0–3) 0 (0–1) .01

Non-linear domain
Poincare plot SD1 (ms) 7 (3–27) 24 (7–53) <.001
Poincare plot SD2 (ms) 15 (9–34) 31 (12–53) .01
Approximate entropy 1 (1–1) 1 (1–1) .51
Sample entropy 1 (1–2) 1 (0–2) .60
DFA, a-1 1 (0–1) 1 (0–1) .54
DFA, a-2 1 (1–1) 1 (0–1) .001

For continuous variables, data is presented in medians and interquartile ranges. Mann-Whitney U test
was used to test for differences.
For categorical variables, data is presented in frequencies and percentages. Chi-squared test or Fisher
exact test was used to test for association as appropriate.
BP=blood pressure, DFA=detrended fluctuation analysis, GCS=Glasgow Coma Scale, HF=high
frequency, HR=heart rate, LF/HF= ratio of LF power to HF power, LF= low frequency, mean RR=
average width of the RR interval, NN50=number of consecutive RR intervals differing by more than 50
ms, norm=normalized, pNN50=percentage of consecutive RR intervals differing by more than 50
ms, RMSSD= root mean square of differences between adjacent RR intervals, SD RR= standard
deviation of all RR intervals, TINN=baseline width of a triangle fit into the RR interval histogram using a
least squares, VLF= very low frequency.

Chiew et al. Medicine (2019) 98:6 www.md-journal.com
patients above 21 years old who presented to the Singapore
General Hospital (SGH) ED between September 2014 and April
2016 with suspected sepsis, and who met at least 2 of the 4
Systemic Inflammatory Response Syndrome (SIRS) criteria.[23]

The SIRS criteria are temperature (<36°C or >38°C), heart rate
(>90beats/min), respiratory rate (>20breaths/min) and total
white count (<4000/mm3 or >12,000/mm3).
All patients presenting to the SGH ED are triaged by a trained

nurse on arrival. The first set of vital signs recorded and routine 5-
minute one-lead electrocardiogram (ECG) tracings performed at
triage were used for analysis. Patient demographics and vital
signs were obtained from the hospital’s electronic medical
records. The ECGs were obtained from X-Series Monitor (ZOLL
Medical Corporation, Chelmsford, MA) and subsequently
loaded into Kubios HRV software version 2.2 (Kuopio, Finland)
for computation of HRV parameters.[24]

The program automatically detected QRS complexes, but each
ECG was also manually screened to ensure QRS detection was
correct, and their positions were adjusted if misplaced. The R-R
interval time series was then screened for rhythm, artifacts and
ectopic beats. If artifacts or ectopic beats were few (<5), they
were removed from the R-R interval time series. Patients with
non-sinus rhythm or >5 artifacts and/or ectopic beats were
excluded.
The outcome of interest was IHM within 30 days of ED

admission. Objective variables quickly obtainable during triage
andwithout chart reviewwere considered as predictors, namely 3
demographic variables (age, gender, ethnicity), 6 vital signs
(temperature, heart rate, respiratory rate, systolic and diastolic
blood pressures, and Glasgow Coma Scale (GCS) score), and 22
HRV parameters in time, frequency and non-linear domains.
These variables were also compared between patients who met
the outcome and patients who did not using the Mann-Whitney
U test for continuous variables, and the chi-square test or Fisher
exact test as appropriate for categorical variables.
One-hot encoding was applied to categorical variables (such as

ethnicity) and all variables were scaled prior to modeling. We
randomly selected 60% of the observations to train the models,
holding the remaining 40% as a test set for subsequent model
evaluation. Baseline models were created using qSOFA, NEWS
and MEWS scores. Their scoring criteria and thresholds for
predicting positive outcome (>=2 for qSOFA, >=7 for NEWS,
>=5 for MEWS) were taken from their original articles.[25–27]

Two sets of qSOFA scores were computed, one using initial vital
signs recorded at triage, and another using worst vital signs
recorded during the entire ED stay as described by Freund et al.[7]

Candidate models were trained using k-nearest neighbors
(KNN), random forest (RF), adaptive boosting (ADA), gradient
boosting (GB) and support vector machine (SVM). Class
imbalance was addressed by applying class weights. Parameter
tuning was performed via grid search 5-fold cross-validation with
the aim of optimizing F1 score.
We used each model to predict on the test set and calculated its

precision (equivalent to positive predictive value) and recall
(equivalent to sensitivity) from its confusion matrix. For each
model, we also generated a precision-recall curve (PRC), and
calculated its F1 score,which is the harmonicmeanofprecision and
recall, as well as area under the PRC (AUPRC). We chose these
performance metrics as they are more informative and less
misleading than specificity and Receiver Operating Characteristics
(ROC) plots for evaluating binary classifiers on imbalanced
datasets.[28]We computed 95%confidence intervals (CI) for the F1
scores by sampling from1000bootstrapped test sets.WeusedF1as
3

our main evaluation metric since it takes both precision and recall
into account and we believe both are important in this context.
To better understand how the GB model worked, we also

visualized feature importance in terms of the total decrease in
node impurity (indicated by Gini index) due to branching over a
given predictor, averaged over all trees.
Univariate statistical analysis was carried out in Stata version

13 (StataCorp 2013, College Station, TX). Machine learning
models were developed in Python 3.6 (Python Software
Foundation, Wilmington, DE) using the scikit-learn library.[29]

http://www.md-journal.com


Table 2

Results of model evaluation.

Model Precision Recall AUPRC F1 score (95% CI)

Baseline Models
qSOFA (initial) 0.33 0.31 0.21 0.32 (0.31–0.32)
qSOFA (worst) 0.28 0.56 0.29 0.38 (0.37–0.38)
NEWS 0.26 0.69 0.28 0.38 (0.37–0.38)
MEWS 0.20 0.63 0.25 0.30 (0.30–0.31)
SEDS 1.00 0.25 0.22 0.40 (0.38–0.40)

Candidate Models
KNN 0.33 0.06 0.10 0.10 (0.09–0.10)
RF 0.26 0.56 0.27 0.35 (0.34–0.36)
ADA 0.43 0.38 0.31 0.40 (0.38–0.40)
GB 0.62 0.50 0.35 0.50 (0.48–0.50)
SVM 0.33 0.63 0.29 0.43 (0.42–0.43)

ADA=adaptive boosting, AUPRC= area under the precision-recall curve, GB=gradient boosting,
KNN= k-nearest neighbors, MEWS=modified early warning score, NEWS=national early warning
score, qSOFA=quick sequential organ failure assessment, RF= random forest, SEDS=Singapore
emergency department sepsis, SVM= support vector machine.
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3. Results

Figure 1 shows the cohort selection process. A total of 214
patients were included in the study, of whom 40 (18.7%) met the
outcome. One hundred eight (50.5%) of them were male, with
median age of 67.5 years (inter-quartile range, IQR 57–79). The
most commonly identified sources of infection were respiratory
(33.2%), urinary tract (17.8%), gastrointestinal (7.0%), muscu-
loskeletal (5.6%), and hepatobiliary (5.6%). There were no
significant differences in the sources of infection between those
who did and did not meet the outcome.
Table 1 compares the patient demographics, vital signs and

HRV parameters of the 2 patient groups. Patients who met the
outcomewere older (median age 76 years; IQR 68–83 years) than
those who did not (median age 66 years; IQR 56–77 years). There
were no significant differences in gender and ethnicity distribu-
tions between the 2 groups. In terms of vital signs, patients who
met the outcome had higher respiratory rates, as well as lower
temperatures and GCS scores, compared to patients who did not
meet the outcome. Most of the HRV parameters across time,
frequency and non-linear domains showed significant differences
between the 2 groups.
Table 2 summarizes the precision, recall, F1 score and AUPRC

of the baseline and candidate models. Gradient boosting (GB)
was the best candidate model with a F1 score of 0.50 and AUPRC
of 0.35, and performed better than all the baseline models.
Figure 2 shows the precision-recall curves of the GB model and
baseline comparators.
Figure 3 shows themost predictive features in theGBmodel and

their relative importance. Top predictors for 30-day IHM included
temperature, detrended fluctuation analysis (DFA) a-2, heart rate,
Glasgow Coma Scale (GCS) score and approximate entropy.

4. Discussion

In this study, we applied machine learning to improve the 30-day
IHM prediction of suspected sepsis patients in the ED. Baseline
Figure 2. Precision-recall curves of gradient b
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comparators were the qSOFA, NEWS,MEWS, and SEDS scoring
systems. Our gradient boosting model outperformed all of them
in terms of F1 score and AUPRC.
Compared to a previous study by Taylor et al which employed

all available clinical variables collected during the entire ED
stay,[22] our study only used predictors that were objective and
quickly attainable in the first 5 minutes of patient presentation,
namely demographics, vital signs and HRV parameters derived
from routine ECGs. This allows risk stratification to be done at
triage, facilitating early recognition of high-risk patients for
allocation of care resources in the ED.
Our outcome of interest was in-hospital mortality within 30

days during the same admission where the vitals and ECG were
taken. Some studies did not specify a time period for mortality[8]

or if it was strictly within the same admission or not.[30] We chose
this endpoint as it is more likely to be sepsis-related compared to
oosting model and baseline comparators.



[25,34]

Figure 3. Relative importance of top 10 predictive features in the gradient boosting model.

Chiew et al. Medicine (2019) 98:6 www.md-journal.com
an out-of-hospital mortality or mortality from a subsequent
admission. It is also more meaningful for physicians in terms of
administering possible interventions such as closer monitoring
and less conservative management of high-risk patients.[7]

Among the top predictors in our machine learning model are
temperature and heart rate, which are also part of the NEWS and
MEWS scoring criteria, as well as GCS score, which is part of
qSOFA, and similar to the AVPU scale used in NEWS and
MEWS. The most important HRV predictor is DFA, which is a
non-linear parameter quantifying the self-similarity of signals
using the fractal property.[16,31,32] In other words, it measures the
long-range correlation patterns of the R-R interval time series,
which includes a short-term and long-term fractal scaling
exponent, a-1 and a-2, respectively. The degree of fractal
correlation has been shown to reflect sympathetic and parasym-
pathetic tone.[33] Nonetheless, more research is needed to
understand the physiological significance and normal range of
values for each of the HRV parameters.
Our study had several limitations. Firstly, this was a single-

institution study with a small sample size. Therefore, the results
might not be generalizable to other settings and larger multi-
centre prospective studies are required to validate our results.
Secondly, we had included patients in our study based on clinical
suspicion of sepsis and meeting at least 2 of the 4 SIRS criteria.
Sepsis largely remains a clinical diagnosis and there is no gold
standard to determine whether a patient is septic. Other studies
have attempted to address this issue by including only patients
with administered intravenous antibiotics, blood culture inves-
tigations or confirmed source of infection.[7,8] We acknowledge
that our cohort definition reflects suspected sepsis rather than
confirmed sepsis. However, given the aim of early risk
stratification during triage where laboratory testing and
confirmed diagnoses are not available, we believe this is suitable
and does not detract from the model’s value. In addition, while
the SIRS criteria has recently been replaced with a new state of
sepsis, defined as a life-threatening organ dysfunction caused by a
dysregulated host response to infection, the usefulness of the SIRS
criteria in diagnosis of sepsis was still emphasized by the same
5

task force. Lastly, even though HRV measures are
predictive of adverse outcomes in suspected sepsis patients as
shown in this study, they cannot be manually calculated from a
patient’s ECG. Currently, we are developing a portable hardware
device which can be used at the bedside to performHRV analysis.
We acknowledge that the use of a machine learning model

requiring computational resources on the ground may be
challenging. However, many modern EDs already employ
electronic data collection systems, on which predictive machine
learning models could be deployed, making them even more
convenient than traditional manual scoring tools. Future studies
should implement the clinical use of such models and evaluate
whether they translate into improved outcomes for septic
patients.
In conclusion, a machine learning model incorporating HRV

analysis can be used to improve prediction of 30-day IHMamong
suspected sepsis patients in the ED compared to traditional risk
stratification tools. This model could be used at triage as a clinical
decision support tool to identify high-risk septic patients for
early, appropriate management.
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