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Complex Learning in Bio-plausible 
Memristive Networks
Lei Deng1,2,*, Guoqi Li1,2,*, Ning Deng1,3, Dong Wang1,2, Ziyang Zhang1,2, Wei He4, 
Huanglong Li1,2, Jing Pei1,2 & Luping Shi1,2

The emerging memristor-based neuromorphic engineering promises an efficient computing paradigm. 
However, the lack of both internal dynamics in the previous feedforward memristive networks 
and efficient learning algorithms in recurrent networks, fundamentally limits the learning ability 
of existing systems. In this work, we propose a framework to support complex learning functions 
by introducing dedicated learning algorithms to a bio-plausible recurrent memristive network 
with internal dynamics. We fabricate iron oxide memristor-based synapses, with well controllable 
plasticity and a wide dynamic range of excitatory/inhibitory connection weights, to build the 
network. To adaptively modify the synaptic weights, the comprehensive recursive least-squares (RLS) 
learning algorithm is introduced. Based on the proposed framework, the learning of various timing 
patterns and a complex spatiotemporal pattern of human motor is demonstrated. This work paves a 
new way to explore the brain-inspired complex learning in neuromorphic systems.

The emulation of complex spatiotemporal activities of the human brain cortex is central for understand-
ing the learning behaviors, motor processing and cognition1. A variety of implementations based on both 
software and hardware are constantly developed for this purpose. Software-based artificial neural net-
works (ANNs) on von Neumann computer are widely applied to pattern classification, speech recognition, 
computer vision, and so on2,3. Whereas, software-based simulations occupy large area and consume high 
power4. In this context, various CMOS hardware-based neuromorphic systems have been developed5–9. 
However, the realization of complex learning in such systems is hindered by the lack of suitable device 
to model the synaptic plasticity10,11, until the recent invention of memristor12–16. Memristor, characterized 
by a pinched hysteresis loop of the I-V curve17, is a two-terminal nanodevice whose conductance can 
be gradually modulated under applied voltage or current18. This property is reminiscent of the synaptic 
plasticity19,20. In view of its attributes of low power, high speed and easiness to be crossbar integrated21–25, 
memristor has become one of the best candidates for artificial synapse in neuromorphic systems19,26–35.

Most of the previous memristive works are focused on feedforward architectures20,36–39, and a few cases 
with feedback connections40–43. Nevertheless, the feedforward networks lack internal network dynam-
ics1 and the existing recurrent networks lack efficient learning algorithms44, which makes it difficult to 
support complex dynamics and emulate the learning functions of the brain. Inspired by the biological 
evidence that the complex learning ability arises from the efficient self-tuning of recurrent connections 
among neurons45, we propose a framework to support complex learning in memristive systems. The 
requirements of this framework are three-fold: (1) suitable device to model the synaptic plasticity; (2) 
bio-plausible recurrent neural network with ongoing internal dynamics; (3) efficient learning algorithm 
to adaptively modulate the synaptic weights.

To this end, we emulate the behaviors of excitatory and inhibitory synapses by combining two iron 
oxide-based memristors with one amplifier, and further build a bio-plausible recurrent memristive 
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network46. The synaptic weights can be monotonously, consecutively and precisely modulated within a 
wide dynamic range. RLS algorithm, which is an efficient learning algorithm for training bio-plausible 
recurrent networks1,46, is applied to adaptively modify the synaptic weights. This makes it possible to real-
ize complex learning functions in memristive networks. Various timing patterns are successfully learned, 
which demonstrates a powerful learning ability. In addition, the learning of a very complex spatiotem-
poral pattern of human motor is demonstrated in a large scale network, which is difficult to be realized 
in the previously reported memristive systems. This work suggests the possibility to explore the complex 
spatiotemporal learning behaviors in future large-scale neuromorphic computing systems.

Results
Complex learning framework in memristvie systems.  To support complex learning in memris-
tive systems, three critical requirements must be fulfilled as shown in the framework in Fig. 1(a): (1) a 
suitable synaptic device (with well controllable plasticity, both excitatory and inhibitory synaptic weights, 
as well as a wide dynamic range of weight tuning); (2) ongoing internal dynamics (usually arises from 
recurrent neural networks); (3) an efficient learning algorithm for weight adaptation and spatiotemporal 
pattern learning. There do exist various memristive systems in the area of neuromorphic engineering. 
However, these systems fail to fulfil the three requirements simultaneously, and consequently have not 
shown the ability to support complex learning functions. For example, most of the systems are built on 
feedforward networks, which lack internal network dynamics37–39. Even if there exist memristive net-
works which are organized in a recurrent manner, the local learning rules such as the Hebbian rule and 
the spike timing dependent plasticity (STDP) rule40,42, or the typical delta rules43, are inadequate to train 
the recurrent neuromorphic networks44.

To address these issues, we propose an implementation of complex learning function to meet the 
above requirements. In the neural network model shown in Fig.  1(b), the internal yellow balls repre-
sent a group of neurons, which are recurrently connected by large amount of synapses denoted as red 
arrows. The readout unit ‘Z’ is connected to the internal neurons in a forward manner. In literature46, 
it is stated that the network structure in Fig. 1(b) is more biologically plausible, as it replaces the strong 
feedback input from an external pathway by adaptively modifying the internal synaptic weights. In 
order to achieve well controllable synaptic plasticity, we fabricate iron oxide memristors to construct the 
memristive network. The comprehensive RLS algorithm, as an efficient learning algorithm dedicated for 
the recurrent structure, is applied to adaptively modify the synaptic weights. This proposed memristive 
system is used to learn various complex spatiotemporal patterns. Considering the biological evidence 
that efficient modulation of recurrent synapses leads to complex neuronal activities45, the demonstrated 
results indicate the bio-plausibility of our implementation including the proposed synaptic device, net-
work structure, internal dynamics, and learning algorithm.

Tuning scheme for iron oxide memristor-based synapse.  The learning of complex spatiotempo-
ral patterns in brain arises from adaptively modifying the synaptic weights46. Therefore, seeking a suitable 
device to simulate synaptic plasticity is the key to construct the bio-plausible network. Memristor is 
one of the most promising candidates16. In order to emulate the plastic behaviors of synapses, the con-
ductance of memristor should be gradually tuned and well controlled. For this reason, we choose iron 
oxide30 as the resistance switching layer of memristor. As shown in Fig. 2(a), a 0.25 μ m2-size memristor, 
consisting of a sandwich-like structure of TiW/Pt/FeOx/Pt/TiW, is fabricated. Figure  2(b) depicts the 
I-V characteristic curve in triangle-wave-shape DC voltage sweeping cycles, which is the iconic pinched 

Figure 1.  Framework for complex learning in memristive systems. (a) Framework for complex learning 
in memristive systems: (1) suitable synaptic device; (2) ongoing network dynamics; (3) efficient learning 
algorithm. (b) The proposed implementation including iron oxide memristor-based synapse, bio-plausible 
neural network and dedicated learning algorithm. The recurrent memristive network, constructed by iron 
oxide memristors with well controllable plasticity, is bio-plausible by eliminating the conventional strong 
feedback input. The RLS learning algorithm is particularly efficient in this recurrent network, which enables 
ongoing internal dynamics and efficient weight adaptation.
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Figure 2.  The iron oxide memristor based synapse and weight tuning scheme. (a) A schematic 
illustration of the iron oxide (FeOx)-based memristor device. (b) I-V curves of memristor under multiple 
triangle-shapes DC sweeps. A monotonous and consecutive distribution of resistance states during different 
sweeping cycles is observed. (c) The device conductance, related to the synaptic weight value, incrementally 
increases or decreases under consecutive positive pulse train or negative pulse train, respectively (+ 1.6 V 
for LTP and −1.6 V for LTD, each pulse train consists 15 pulses with identical duration of 10 us). (d) Two 
parallel memristors and one amplifier are combined to model a synapse. By introducing a reverse input 
voltage to invert the current, the two memristors make opposite contributions to the synaptic weight. Thus, 
the synapse can be modulated in four cases with different compositions of potentiating or depressing one 
of the two memristors. Only one memristor in each synapse is allowed to change its conductance during 
the modulation stage. An isolating switch connected to the dendrite wire of each neuron is used to isolate 
the memristive crossbar from the neuronal circuits when weight updating. The feedback resistance Rf of the 
inverter amplifier is used to adjust the dynamic range of synaptic weight.
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hysteresis loops of memristor17. The hysteresis loops between each two adjacent sweeping cycles are 
almost ‘shoulder-to-shoulder’ but not overlapped. This indicates that the conductance of the memristor 
can be modulated consecutively and monotonically, which is suitable for synapse emulation.

We further investigate how to tune its conductance state under applied voltage pulse train. As shown 
in Fig. 2(c), the conductance of memristor either gradually increases or decreases by sequentially apply-
ing identical positive or negative pulses, respectively, which are considered as the long-term potentiation 
(LTP) and long-term depression (LTD) of synaptic plasticity10. In fact, the above conductance change 
only occurs when the amplitude of modulation pulses is above a threshold voltage and no significant 
conductance change is observed under applied voltages below the threshold27. This strongly nonlinear 
switching dynamics of iron oxide-based memristor makes it possible to work in two stages: (a) write 
stage when applying a relatively higher programming voltage, i.e., synaptic modulation stage; (b) non-
disturbing read stage when applying a small voltage, i.e., neuronal processing stage14.

To build memristive networks, one of the key issues is how to realize both excitatory and inhibi-
tory synapses. One solution is to leverage the joint conductance of two parallel memristors to model a 
synapse39,47. As illustrated in Fig. 2(d), the two memristors make opposite contributions when transfer-
ring Vin to Vout. The left memristor (conductance G1) makes a positive contribution, while the right one 
(conductance G2) makes a negative contribution by reversing the input voltage to invert the current. 
Thus, we can increase the synaptic weight by potentiating the left memristor or depressing the right one; 
while decreasing the synaptic weight in the other way round. Therefore, the programming scheme is 
assigned into four modulating cases, as shown in Fig. 2(d). The entire system operates in two stages: the 
neuronal processing stage and the synaptic modulation stage. During the modulation stage, the isolating 
switch connected to the dendrite wire of each neuron is open and the memristive crossbar is isolated 
from the neuronal circuits; while after the weight updating, the switch is closed and the signal trans-
duction from the synapses to the neuron is activated. It is worth mentioning that only one memristor in 
each synapse is allowed to change its conductance during the modulation stage. This constraint ensures 
a unique modulation path to drive the synaptic weight from any initial value to the desired one. In 
addition, when modifying one memristor within a synapse, we use the half-selected technique to avoid 
unintentional operation39.

The dynamic range of previous conductance-based synaptic weight39,47 is limited by the maximum 
resistance ratio of the memristive device. To address the issue, we design a structure to achieve a wide 
dynamic range of synaptic weight by combining two memristors with one amplifier. As shown in the top 
right of Fig. 2(d), the relationship between the input and output voltage is Vout =  − Rf ×  (G1 −  G2) ×  Vin, 
where Rf is the feedback resistance of the inverting amplifier. Consequently, the effective synaptic weight 
is w =  − Rf ×  (G1 −  G2), which can achieve a relatively wide tuning range by increasing the resistance of 
Rf. For example, as shown in Fig. 2(c), the minimum conductance value Gmin and maximum conductance 
value Gmax approximately equals to 1.5 mS and 4.5 mS, respectively. As expected, the joint conductance of 
two parallel memristors could be modulated gradually within the interval [–3 mS, 3 mS]. The modulation 
curve of each synapse is illustrated in the bottom right of Fig. 2(d). The simulation results are derived from 
the measurement data of single memristive device. Even though the resistance ratio is small (about 3),  
the weight value could be almost continuously modulated within a wide range [− 1, 1], by fixing the Rf 
at 330 Ω .

Complex learning under the proposed framework.  According to the requirements shown in 
Fig.  1(a), we construct a recurrent neural network based on the above synaptic device and introduce 
an efficient learning algorithm. The memristive network is shown in Fig.  3, where the activities of 
the internal neurons, e.g., membrane potential48 and the corresponding firing rate, are denoted as an 
N-dimensional vector of x and r, respectively. The dynamics of recurrent network is governed by the 
following classical equations in neuroscience field1,46,49–51

τ
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= − ( ) + ( ) ( ) + ( ) ( ) ( )

d
dt
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x W r W I
t

t g t t t t 1
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where WNN denotes the N ×  N internal synaptic weight matrix, WZN denotes the weight vector from 
internal neurons to the readout unit, and z(t) denotes the output of readout unit which is a scalar 
value. The parameter g controls the dynamic regimes of the network by scaling the synaptic weight. 
The membrane time constant τ  is usually of the order of several milliseconds to hundreds of millisec-
onds11,52. The external input vector and its connections to internal neurons, if available, are denoted as 
I(t) and WNI, respectively. The weight matrix WNN could be either full or sparse. In particular, the sparse 
fashion is important for reducing hardware overhead in a large scale system and has been analyzed in 
Supplementary Fig. S6.
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Based on the equations (1)–(3), we propose a hardware implementation of the recurrent memristive 
network. As shown in Fig. 3, the entire system is a mixed-analog-digital system, where the ADC block 
at the dendritic inputs and DAC block before the input voltage of the memristive crossbar are used to 
convert the signals. In the memristive crossbar, each group of two parallel memristors in a small dotted 
box represents a synapse. As a part of the synaptic device, the amplifier also has the ability to sum input 
currents from all parallel memristive branches. All the synapses connected to the same neuron share only 
one amplifier which serves as the integration function of dendrites. Thus, the synapse array is simplified 
to a memristive crossbar circuit and an amplifier column. In the ‘Neuron’ block, the differential equation 
is solved numerically by transferring it to difference equation. An accumulator53 is used to add up the 
previous membrane potential and current dendritic inputs in order to generate the current membrane 
potential. The previous activity states are cached in registers and fed back into the neural network at the 
next time step. The hyperbolic tangent function block could be implemented using CMOS technology54.

To implement complex learning under the proposed framework, an efficient learning algorithm at each 
time step is essential. Dedicated for the recurrent architecture, we introduce the recursive least-squares 
(RLS) algorithm1,46,55 into the system to adaptively modify the synaptic weights. One main capability 
of the brain is to learn complex spatiotemporal sequences, especially motor patterns in the prefrontal 
cortex51. Here, we demonstrate the learning and reproducing of a target pattern f(t) by minimizing the 
error between z(t) and f(t) through training the synaptic weights from random states. In fact, the learning 
process is to depress the chaotic dynamics and generate the regular target pattern by self-adapting the 
synapses, as shown in Supplementary Fig. S4.

According to the RLS algorithm, the error signal is defined as e(t) =  z(t)− f(t), as shown in Fig. 3. At 
each time step, the synaptic weights on the dendritic tree of neuron i and the weight vector from internal 
neurons to readout unit are modified by

( ) = ( − ) − ( ) ( ) ( ) ( )∆W W P rt t t e t t t 4i i
NN NN

( ) = ( − ) − ( ) ( ) ( ) ( )∆W W P rt t t e t t t 5ZN ZN

where P(t) is an N ×  N inverse correlation matrix, which is updated by

Figure 3.  Circuit schematic of the memristive system for complex learning. The entire system is a mixed-
analog-digital system, where the ADC block and DAC block are used to convert the signals. Each group of 
two parallel memristors in a small dotted box represents a synapse. The weight matrix WNN is constructed 
by the memristive crossbar circuit and one dendritic amplifier on each neuron. The internal dynamics of 
neuron is implemented in the ‘Neuron’ block, which consists an accumulator and a hyperbolic tangent 
function blocks. The differential equation is solved numerically by transferring it to difference equation. The 
previous firing rate values are cached in registers and fed back into the network at next time step. Because of 
the fast switching of memristor, the RLS learning block and pulse modulator are adequate for the sequential 
operations of calculating the change of synaptic weight and modulating the corresponding synapse, 
respectively.
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The P(t) matrix is initialized to P(0) =  I/α, where I is the identity matrix. α is the learning rate 
parameter, which is reconfigurable according to specific target pattern. Usually, small α leads to fast 
learning but may result in divergence; while large α may lead to slow convergence.

In order to modify the weight value at each time step, we build a RLS learning block and a pulse 
modulator, which are responsible for sequentially calculating the weight increments according to 
Δ W =  − e(t)P(t)r(t), and generating the pulse trains required to modulate the conductance according to 
the principle in Fig. 2(d), respectively. Ideally, the synapse should be gradually modulated to any weight 
from − 1 to + 1 by fitting appropriate Rf. However, the conductance states of memristor are actually dis-
crete. We propose a new method which leverages a differential pulse pair to modulate the conductance of 
memristor, so as to improve the modulation precision, as shown in Supplementary Fig. S2. By choosing 
suitable composition of potentiation and depression pulses, the relative accuracy could reach 0.3% that 
is adequate for the proposed system. Furthermore, considering the very slow firing rate of neuron (an 
average of 1− 10 Hz)56, in contrast to the fast memristive switching (~ns −  ~μ s)27,28, we have enough 
time to precisely modulate the synaptic conductance to reach the desired value at each time step. We 
can further tune the weight value to achieve a higher precision by introducing the feedback modulating 
algorithm39,57 at the cost of longer modulation time. Therefore, in the sense of synaptic modulation 
precision, it is reasonable to use the continuous fitting curve to modulate the synaptic weights (Fig. 2 & 
Supplementary Fig. S1b) to support the simulation in this work38,58.

Application for spatiotemporal pattern learning.  Spatiotemporal activities learning are prevailing 
in human brain and is tempting for the applications of dynamical information processing. We employ 
the proposed memristive system to learn various spatiotemporal patterns, as illustrated in Fig. 4. In these 
examples, the target pattern f(t) plotted in green is learned and reproduced by the output z(t) in red. 
Figure 4(a) shows a periodic sinusoid wave pattern and a composite pattern composed of four sinusoid 
waves, where the actual output and the target pattern almost coincide, indicating that the error between 
the learned pattern and the target pattern is very small. A variety of more complex patterns are also 
successfully learned by this network, as presented in Supplementary Fig. S3.

Both the online training and offline training scheme are adopted to train the memristive network. As 
the online training is more technologically relevant, e.g., for the application of autonomous devices, we 
mainly show the online training scheme. Figure 4(b) presents the conductance evolution of ten synapses 
in the online training process of a single sinusoid wave pattern, randomly chosen from WNN and WZN. 
The initial synaptic states are randomly set. As shown, each synapse always tunes itself to force the output 
to approach the target pattern under applied modulation pulse train at each time step. After hundreds 
of learning iterations, the weights gradually converge to the stable states. All the joint conductance val-
ues shown in Fig.  4(b) are within the range [− 3 mS, 3 mS], which is consistent with the modulation 
range mentioned earlier. For the sake of comparison, the offline training process is also illustrated in 
Supplementary Fig. S5.

Not limited to single target pattern, the recurrent network is also able to learn and reproduce multiple 
patterns at the same time. For example, Fig. 4(c) shows the result of learning two target patterns simul-
taneously, which are composed of two different compositions of sinusoid waves with distinct amplitude 
ratios. In fact, this ability results from the multiple stable fixed points of the recurrent network with 
strongly nonlinear dynamics. Driven by two different static control inputs, the network output is able to 
approach the corresponding fixed points via modulating the internal synaptic weights. As a hardware sys-
tem, it is necessary to consider the variation of memristor switching characteristics (including variation 
from device to device and from cycle to cycle in the same device), which is one of the main obstacles 
to integrate a large-scale memristor array39,40,59,60. In order to investigate the system immunity to device 
variation, the network is simulated using the fuzzy finally trained weights with a dispersion of ± 16% at 
most. As shown in Fig. 4(d), the system reproduces the two different patterns well at a weight dispersion 
of ± 6% despite of the phase error between the actual output and the target pattern. One of the two target 
patterns can still be reasonably reproduced even at a weight deviation of ± 12%, but both fail at ± 16%. 
In general, the network can tolerate the device variation of memristor to a great extent.

Application for human motor generation.  To implement complex learning in real world appli-
cation, we demonstrate a relatively complex example of human motor pattern generation, similar to 
the learning function in brain motor cortex. We use the captured data of human jump motion from 
the MOCAP library61 to train the recurrent network. The data set contains more than one thousand 
frames and each frame is comprised of 62 joint angles measured by real human actions62. The jump 
motion as a whole forms an extremely complex spatiotemporal pattern with 62 trajectories. Therefore, 
62 readout units are assigned to the network, standing for the spatial coordination of 62 human joints, 
respectively. The synapses, connecting each subset of the internal neurons, are modulated using the 
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error between each actual output angle and its corresponding target angle. Figure 5 shows the learning 
results, where only eight frames of the output pattern after training are displayed. It is shown that the 
proposed bio-plausible recurrent memristive network is able to produce complex motor pattern by the 
self-adaptation of synapses. This example suggests good potential of the applications of robotics63 and 
motor control in mobile devices.

Figure 4.  Examples of complex pattern learning and an analysis of the system immunity to device 
variance. (a) A variety of single target patterns are successfully generated, illustrated by a single sinusoid 
wave and a composite wave composed of four sinusoid functions. (b) Illustration of the joint conductance 
changing process of ten randomly chosen synapses when learning the single sinusoid wave. (c) Two target 
patterns of different compositions of sinusoid waves are generated in the meantime. The network has only 
one readout unit but two stable fixed points that could be switched by corresponding control inputs. (d) 
Analysis of the system immunity to device variance. The system reproduces the two target patterns well at a 
weight dispersion of ± 6%, and reproduces one of the two target patterns even at ± 12%. The system finally 
fails to track either of the two target patterns at ± 16%.

Figure 5.  The application of human motor generation. An example of human motor pattern is generated 
by this system. The trajectory of 62 joint angle datasets from human capture library is learned by assigning 
62 readout units. The connected synapses in each subset of the internal neurons are modulated using 
the error between each actual output and its corresponding ideal joint angle. After training, the network 
generates the jump motion pattern by itself. For illustration, only eight frames of the whole pattern are 
chosen to be presented.
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Discussion
In summary, the proposed framework successfully bridges the complex learning behaviors of the brain 
and efficient neuromorphic engineering. This framework, implemented by iron oxide memristor-based 
synapse, bio-plausible recurrent network and dedicated RLS learning algorithm, is able to produce var-
ious complex spatiotemporal patterns after online training. This memristive system also shows a good 
tolerance to the memristor variation. Such results provide a methodology to explore the complex learn-
ing functions of the brain cortex in neuromorphic systems.

The demonstration of complex learning in this paper is very promising in opening up new applica-
tion space for future intelligent devices. However, to translate this possibility into actuality, it is highly 
required to extend this work to large-scale memristive systems. One challenging issue is how to build 
large-scale memristive crossbar and tightly integrate memristors with conventional CMOS circuits. Thus 
it seems necessary to develop 2-D or 3-D memrsitor integration technology25,64 and improve the compat-
ibility with CMOS process65. It is also desirable that the organization of the hardware system is flexible 
and scalable. Another challenge is how to map a large-scale functional model into the modular hardware 
system in an efficient fashion. It is necessary to develop an elaborate mapping compiler, an optimized 
routing strategy among large amount of neurons, as well as a robust information coding scheme. In 
addition to recurrent dynamics, the super-complex learning behaviors of the brain also arise from hier-
archical network structure and information flow66. This can be seen from the success of deep neural 
networks3 in machine learning, which is inspired from the hierarchy of brain computation. As a result, 
how to efficiently train a hierarchical neural network, especially with recurrent connections, is challeng-
ing and worthwhile investigating. In general, the proposed framework and implementation of complex 
learning in memristive networks lay a foundation for large-scale neuromorphic systems with powerful 
spatiotemporal learning ability.

Methods
Device structure and fabrication.  The memristor consists of the iron oxide switching layer sand-
wiched by two metal electrodes, as shown in Fig.  1(a). The bottom electrode (100 nm TiW and 45 nm 
Pt) is first deposited in sputter systems on a silicon substrate SiO2/Si (1000 nm/525 μ m). It is patterned 
using lift off process with conventional optical lithography. On top of the bottom electrode, the active 
layer (50 nm iron oxide) is sputtered from an iron oxide compound target at room temperature in Ar 
ambient. The active layer is then patterned to a 10 μ m × 10 μ m square using dry etching process. Then a 
45 nm-thick SiO2 is deposited and a nano hole of 0.25 μ m2 size is dry-etched under the assist of E-beam 
lithography to expose the active layer. By using the lift-off processes, the top electrode (45 nm Pt and 
100 nm TiW) is patterned finally. Based on X-ray photoelectron spectroscopy (XPS) analysis, the major-
ity compound of active layer is FeO.

Experimental measurement.  The iron oxide memristor is first tested under DC mode on Keithley 
instrument. A triangle-wave shape DC voltage is applied to the memristor. The voltage is linearly 
increased from 0 V to 0.65 V, then linearly decreased back to 0 V. The current curve in each sweeping 
cycle appears a banana-shape like hysteresis loop during both positive sweeping (in the first quadrant) 
and negative sweeping (in the third quadrant), as shown in Fig. 1(b). As the number of cycles increases, 
the conductance increases or decreases monotonically and consecutively. During the voltage sweeping, 
there is no fluctuation or abrupt change in current curves, implying a continuous distribution of resist-
ance states. The iron oxide memristor is also tested under pulse mode on Keithley instrument too. The 
arbitrary positive pulse and negative positive pulse train are constructed with the amplitude of 1.6 V 
and − 1.6 V, respectively. The pulse width of both pulses is set to 10 μ s. During the test, a number of 15 
positive pulses are first applied to memristor consecutively, followed by another 15 negative pulses. At 
the interval of the pulses, the instrument switches to DC mode to read the resistance at 100 mV automat-
ically. In order to achieve a higher precision when modulating the weight, a new method of differential 
pulse pair modulation has been proposed and experimentally measured, as shown in Supplementary Fig. 
S2. In this measurement, the write and read manner is similar to above unidirectional pulse modulation. 
The pulse pair is comprised of a 2 V pulse and a − 2 V pulse, with the pulse width of 100 μ s. By applying 
the pulse pair, the minimum step of resistance change can be as small as 0.6 Ω , which indicates that the 
precision could reach 0.3% at the level of low resistance state.
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