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Abstract 

Duodenoscopy-associated infections occur worldwide despite strict adherence to reprocessing standards. The exact 
scope of the problem remains unknown because a standardized sampling protocol and uniform sampling techniques 
are lacking. The currently available multi-society protocol for microbial culturing by the Centers for Disease Control 
and Prevention, the United States Food and Drug Administration (FDA) and the American Society for Microbiology, 
published in 2018 is too laborious for broad clinical implementation. A more practical sampling protocol would result 
in increased accessibility and widespread implementation. This will aid to reduce the prevalence of duodenoscope 
contamination. To reduce the risk of duodenoscopy-associated pathogen transmission the FDA advised four supple-
mental reprocessing measures. These measures include double high-level disinfection, microbiological culturing and 
quarantine, ethylene oxide gas sterilization and liquid chemical sterilization. When the supplemental measures were 
advised in 2015 data evaluating their efficacy were sparse. Over the past five years data regarding the supplemental 
measures have become available that place the efficacy of the supplemental measures into context. As expected 
the advised supplemental measures have resulted in increased costs and reprocessing time. Unfortunately, it has 
also become clear that the efficacy of the supplemental measures falls short and that duodenoscope contamination 
remains a problem. There is a lot of research into new reprocessing methods and technical applications trying to solve 
the problem of duodenoscope contamination. Several promising developments such as single-use duodenoscopes, 
electrolyzed acidic water, and vaporized hydrogen peroxide plasma are already applied in a clinical setting.
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Introduction
Duodenoscopes are diagnostic and therapeutic instru-
ments used to visualize the interior of the upper gas-
trointestinal tract, collect tissue samples and perform 
therapeutic interventions. Inherent to their use duodeno-
scopes carry the risk of acquiring microbial contamina-
tion [1]. Over the past decade duodenoscopy-associated 
outbreaks often caused by multidrug-resistant (MDR) 

bacteria have been reported worldwide [2–15]. A report 
of the Emergency Care Research Institute in 2020 
included sterile processing errors in medical and den-
tal offices in the top ten of health technology hazards 
reflecting the increasing awareness and recognition of 
the risks of endoscopy-associated pathogen transmission 
in general [16]. Duodenoscopy-associated infections and 
outbreaks have also occurred despite strict adherence to 
reprocessing standards [4, 6, 13, 15].

The most common organisms involved in duoden-
oscopy-associated transmission are Klebsiella pneu-
moniae and Pseudomonas aeruginosa [2–15]. These 
bacterial pathogens are known for their biofilm 
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formation and likelihood of multidrug resistance [11, 
17, 18]. The predominance of MDR bacteria in duo-
denoscopy-associated outbreaks is most likely related 
to the fact that duodenoscopy-associated outbreaks are 
mainly noticed as a result of an elevated incidence of 
a specific MDR bacterium demanding infection con-
trol measures [2–15]. An elevated incidence of non-
MDR bacteria is more likely to go unnoticed, leading to 
underestimation of duodenoscopy-associated pathogen 
transmission [8–10]. Duodenoscope contamination 
rates after reprocessing vary between 0.4 and 35.8%. 
This high variability can be explained by the absence 
of standardized sampling and culture methods and dif-
ferent definitions used for duodenoscope contamina-
tion (Table  1) [19–30]. Duodenoscope contamination 
is defined as growth of a specific predefined set of oral 
and/or gastrointestinal bacteria or as growth above 
a predefined threshold of any type of microorganism 
regardless of origin. This is for example described in 
the professional standard of the Dutch steering group 
for flexible endoscope cleaning and disinfection and 

the guideline of the European Society of Gastrointesti-
nal Endoscopy [31, 32]. Although such guidelines have 
clear definitions, in literature a wide array of definitions 
has been used (Table  1). This illustrates the lack of a 
uniform and clear definition, and a standardized proto-
col [19–30].

This narrative review aims to give an overview of the 
problems associated with duodenoscope reprocess-
ing. Novel promising developments for reprocessing of 
duodenoscopes are summarized and discussed. The lit-
erature search for this narrative review used the search 
term “endoscop*” which was combined with the dif-
ferent search terms regarding the topics discussed in 
this review on PubMed. Articles were first screened for 
eligibility based on title and abstract and all remaining 
full text articles were screened completely. A second 
search was performed on PubMed for all topics without 
the term “endoscop*” to see if any articles were missed. 
Finally the selected articles were cross-referenced to 
reveal any additional missed articles.

Table 1  Culture positivity rate of duodenoscopes after strict adherence to reprocessing standards

Only studies published in the last decade have been included. Most studies report two definitions of contamination with accompanying contamination rates

CPD culture positive duodenoscopes, percentage of duodenoscopes regarded contaminated according to the definition given; CFU/ml number of colony forming 
units per milliliter; NA not applicable; CDC sampling was performed using the centers for disease control and prevention interim sampling protocol released in 2015
a Yeast, Staphylococcus aureus, Enterococcus species, Gram-negative enteric bacilli
b coagulase-negative Staphylococcus species, Micrococcus species, Gram-positive rods
c Gram-negative rods, Staphylococcus aureus, beta-hemolytic Streptococcus, Enterococcus species, Yeast
d Undefined
e Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Enterococcus species, Enterobacter cloacae, Aeromonas species
f Yeast, Klebsiella species, Escherichia species, Enterobacter species, Enterococcus species, Pseudomonas aeruginosa, Staphylococcus aureus, Moraxella species, Rothia 
species, Streptococcus species, and Neisseria species
g Enteric Gram-negative bacilli, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus species and Stenotrophomonas maltophilia
h Organisms not defined
i No number per endoscope provided, only a number of contaminated samples is available
j Staphylococcus aureus, Enterobacterales, Pseudomonas species, Stenotrophomonas maltophilia, Acinetobacter species and Candida species

First definition of contamination CPD (%) Second definition of contamination CPD (%) References

Any growth of high-concern organismsa or > 10 CFU of low-
concern organismsb

18% NA NA [29]

Any growth of high-concern organismsc 4.9–5%  > 100 CFU of low/moderate concern organismsd 0.6–4.4% [21]

Any growth of high-concern organismse 0.4% Growth of any organism 7.7% [30]

Growth of any organism 1.1% NA NA [26]

Micro-organism of gastro-intestinal or oral origin regardless of 
quantityf

15% Growth of any organism ≥ 20 CFU/ml 22% [19]

Any growth of Gram-negative bacilliCDC 4.2% NA NA [25]

Growth ≥ 10 CFU/ml on the elevator mechanism or working 
channel

2.3% Growth of any organism on the elevator mecha-
nism or working channel

16.1% [28]

Any growth of pathogenic organismsg 0.9% Growth of any organism 8.4% [23]

 ≥ 50 CFU/ml excluding skin contaminantsh 0.9% Growth of any organism 11%i [20]

Any growth of high-concern organismsCDC 2% Growth of any organismCDC 13.1% [22]

 > 100 CFU of total growth or any growth of high-concern 
organismsj

35.8% Growth of any organism above ≥ 25 CFU NA [27]
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Duodenoscope reprocessing
The different guidelines used for duodenoscope repro-
cessing all use several comparable principal steps (Fig. 1) 
[33]. Variation within each step is common such as the 
chemical used for high-level disinfection (HLD) or the 
type of duodenoscope reprocessor. Immediately follow-
ing the completion of the duodenoscopic procedure, 
reprocessing starts with a pre-cleaning step by wiping 
the outside of the duodenoscope with a cloth immersed 
in an enzymatic solution, flushing the channels with 
a detergent and removing all detachable parts of the 

duodenoscope [32–36]. After pre-cleaning the duoden-
oscope is transported to a cleaning facility where leak 
tests and manual cleaning are performed. Leak testing 
is performed to identify openings in the duodenoscope 
that can lead to entry of liquids, chemicals and organic 
debris [32–36]. Manual cleaning should be performed in 
accordance with manufacturer instructions and usually 
consists of submersion in a detergent solution, flushing 
and brushing of duodenoscope channels and cleaning 
of duodenoscope valves and the elevator mechanism. 
Directly afterwards the duodenoscope is thoroughly 

Fig. 1  Duodenoscope contamination rates after standard duodenoscope reprocessing and the supplemental reprocessing measures. The green 
rectangle represents the duodenoscopic procedure and the blue rectangles show the current standard of reprocessing [33]. The green octagon 
represents the standard reprocessing procedure and the orange octagon represents the addition of one of the supplemental reprocessing 
measures to the standard reprocessing procedure. After standard reprocessing, several studies describe drying and storage and others did not. The 
four supplemental measures which were advised by the FDA in 2015 are depicted in yellow hexagons [57]. Red circles indicate contamination rates 
[19–30, 59, 80, 93]. a Some guidelines allow limited drying-time [38, 42]. b One study used double HLD containing peracetic acid and hydrogen 
peroxide [29]
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rinsed with water to remove any residual detergent and 
debris that has been dislodged during the manual clean-
ing [32–36]. After manual cleaning HLD is performed 
which involves rinsing and flushing of the duodenoscope 
with a chemical such as glutaraldehyde that is capable of 
killing all micro-organisms on the outside and inside of 
the duodenoscope except for bacterial spores [1]. HLD 
can be performed manually or with an automated endo-
scope reprocessor. The last reprocessing step consists of 
drying and storage preferably in a cabinet facilitating dry-
ing by forced air flowing through the cabinet or through 
the duodenoscope channels [37]. It has been shown that 
when a duodenoscope is re-used within 3–4 h after HLD, 
only ten minutes of drying-time is sufficient to prevent 
bacterial growth [32, 34, 38–44]. When duodenoscopes 
are stored longer than 3–4 h continued drying is essential 
for duodenoscope reprocessing as even limited amounts 
of residual moisture may promote bacterial growth and 
biofilm formation [37, 42–45].

Reprocessing failure
The reprocessing procedure is essential because dur-
ing use of duodenoscopes both the out- and inside are 
exposed to body fluids and potential contamination 
requiring disinfection before re-use of the duodenoscope 
[16]. This means that duodenoscopes go through a con-
stant cycle of contamination and reprocessing. During 
these cycles organic material (extracellular matrix) and 
bacteria accumulate inside the duodenoscope channels 
also known as cyclic reprocessing build-up [46]. Depo-
sition of organic material can further be facilitated by 
imperfections in the inner lining of the duodenoscope 
channels. These imperfections can already occur shortly 
after initial commissioning of the duodenoscope [47, 48]. 
Accumulation of cyclic reprocessing build-up and subse-
quent seeding of this cyclic reprocessing build-up with 
bacteria will eventually lead to bacterial biofilm forma-
tion [39, 47–52]. Another important factor complicat-
ing the reprocessing of duodenoscopes is their complex 
design which contributes to reprocessing failure [10–14, 
53]. Design issues have been linked to reprocessing fail-
ure and even outbreaks in the past [10, 11]. The high duo-
denoscope contamination rate after reprocessing despite 
strict adherence to reprocessing protocols, strongly sug-
gests that residual organic debris and bacterial biofilm 
formation occur (Table 1) [19–30, 52, 54–56].

The United States Food and Drug Administration 
(FDA) issued a statement in 2015 advising supplemental 
reprocessing measures for all duodenoscopes to mini-
mize reprocessing failures. These supplemental repro-
cessing measures included double HLD, microbiological 
culturing and quarantine, ethylene oxide (EtO) gas steri-
lization or use of a liquid chemical sterilant [57]. By 2016, 

89.6% of surveyed healthcare facilities in the United 
States of America implemented at least one of these 
measures, with double HLD (63%) and microbiologi-
cal culturing and quarantine (53%) used most frequently 
[58].

Double high‑level disinfection
Double HLD consists of either a second cycle of HLD or 
repetition of the entire reprocessing procedure [28–30, 
59]. This dual definition of double HLD and the fact that 
different studies use different HLD chemicals makes 
comparison between studies difficult [28–30, 59]. The 
additional time added to the entire reprocessing proce-
dure by a second cycle of HLD is less than one hour and 
the additional costs are only $68.55 resulting in the low-
est added costs of all the supplemental measures [60].

To date both approaches of double HLD have shown no 
reduction of the contamination rate of duodenoscopes 
[28, 30, 59]. A reduction in contamination rate has been 
shown after several subsequent cycles of peracetic acid 
based HLD, the contamination rate decreased from 18% 
after the first cycle to below 1% after the third cycle [29]. 
Thus, although the increased reprocessing time and addi-
tional costs incurred by double HLD are limited, most 
data suggest that a second cycle of HLD is not effective.

Microbiological culturing and quarantine
Microbiological culturing and quarantine means that all 
duodenoscopes are sampled after reprocessing for micro-
organism detection. This entails that all duodenoscopes 
need to be quarantined until they are confirmed culture 
negative. When pathogens are identified from a repro-
cessed duodenoscope the duodenoscope needs to be 
reprocessed, cultured and quarantined again. Once cul-
tures are definitively negative another reprocessing cycle 
should be performed before releasing the duodenoscope 
for clinical procedures. Persistently contaminated duo-
denoscopes should be evaluated by the manufacturer for 
internal damage and in case of MDR bacteria, patients 
exposed to the contaminated duodenoscope involved 
should be notified and considered for screening for their 
MDR bacterial carrier status [24].

Implementation of microbiological culturing and 
quarantine is costly and time consuming as it requires 
a microbiological infrastructure, trained personnel, 
enough duodenoscope storage capacity and a large num-
ber of duodenoscopes to continue duodenoscopic pro-
cedures while awaiting culturing results of reprocessed 
duodenoscopes that are quarantined [44, 60, 61]. How-
ever, in a non-outbreak setting periodical sampling of 
duodenoscopes is a more cost-effective option ensuring 
that all duodenoscopes are cultured over a preset period 
of time. Furthermore, in such a setting it will probably 
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be worthwhile not to quarantine duodenoscopes while 
awaiting culture results [14, 24, 26, 62]. Of course when 
a duodenoscope is not quarantined pending culture 
results a positive microbiological culture will demand 
surveillance of patients exposed and outbreak control 
management.

There are different methods for duodenoscope sam-
pling which vary in their sensitivity for detecting micro-
biological contamination (Table  2) [61, 63–68]. This 
variability of sensitivity possibly explains why outbreaks 
with a clear epidemiological link to a duodenoscope have 
revealed no contamination of the duodenoscope when 
cultures were taken [5, 6, 14]. Standardized methods for 
duodenoscope sampling and a uniform definition of duo-
denoscope contamination are lacking and current defini-
tions are based on growth of specific pathogens, number 
of colony forming units or both (Table  1) [19–30]. This 
is the reason that reported duodenoscope contamination 
rates after reprocessing range from 0.4 to 35.8% (Table 1) 
[19–30].

The only multi-society protocol available for microbial 
culturing was released in 2018 by the Centers for Disease 
Control and Prevention (CDC), the FDA and the Ameri-
can Society for Microbiology (ASM) [61]. This protocol 
is divided in two sections describing the microbiological 
sampling and culturing methods. Microorganisms are 
classified as low- moderate- and high-concern and the 
protocol defines which actions are required in case of a 
positive microbiological culture. Gastrointestinal micro-
organisms such as Enterobacterales and Pseudomonas 
aeruginosa are always regarded as high-concern regard-
less of quantity. Microbiological flora such as coagulase-
negative Staphylococcus species and Micrococcus species 
are defined as low/moderate-concern organisms and 
action is only required when the number of colony-form-
ing units (CFU/ml) exceeds 100 CFU/ml. Given that this 
protocol contains more than 100 steps and requires two 
persons for sampling makes it too laborious for use in 
clinical practice and general laboratories [61].

In conclusion, the high costs associated with a com-
plete microbiological culturing and quarantine program 
preclude this measure as a definite solution for duoden-
oscope-associated transmission. However, microbiologi-
cal culturing and quarantine protocols have shown to be 
useful in identifying failures in reprocessing procedures 
[24, 69, 70].

Ethylene oxide gas sterilization
EtO has potent alkylating properties resulting in steri-
lization and has been used for at least 40 years [71–73]. 
EtO allows sterilization of instruments with thermolabile 
materials such as duodenoscopes due to the low tem-
perature typically 50 °C at which the sterilization can be 

performed compared to the higher temperatures needed 
with other sterilization methods. In the past mixtures 
containing EtO with chlorofluorocarbon, hydrochloro-
fluorocarbons or carbon dioxide have been used. How-
ever, nowadays they are replaced by 100% EtO gas due to 
environmental issues [74–76]. EtO is flammable and has 
carcinogenic properties and should therefore be handled 
with care [77].

In the presence of organic deposition and/or biofilm 
the efficacy of EtO is reduced due to limited penetration 
in organic materials and in a clinical setting no added 
benefit has been found from adding EtO gas steriliza-
tion after HLD [28, 75, 78, 79]. Another disadvantage of 
EtO gas sterilization is that it is time-consuming. It takes 
approximately 13 h, one hour exposure time with a 12-h 
aeration cycle due to absorption of EtO in the polymer 
materials of the duodenoscope creating a high burden on 
duodenoscope availability and decreasing cost-effective-
ness [60, 80–82].

Liquid chemical sterilization
In contrast to an agent suited for HLD a sterilizing agent 
such as peracetic acid, sodium hypochlorite or hydrogen 
peroxide can also effectively kill bacterial spores [83, 84]. 
The strong oxidizing properties of these chemicals leads 
to sterilization of the device. Unfortunately, this strong 
oxidizing effect also results in corrosion of parts in the 
duodenoscopes which is why sodium hypochlorite and 
high concentrations of hydrogen peroxide are not used in 
clinical practice [85, 86].

Peracetic acid (1820 mg/l) is effective in sterilizing duo-
denoscopes of different manufacturers [87]. Effectivity 
has also been shown in colonoscopes contaminated with 
Enterococcus faecalis and in bronchoscopes contami-
nated with Mycobacterium gordonae [82, 88, 89]. Con-
cerning organic deposition peracetic acid is superior to 
EtO gas because it removes organic deposition through 
flow [75]. The efficacy of peracetic acid against bacte-
ria in biofilm is comparable to O-phatalaldehyde and is 
superior to glutaraldehyde [90]. It should however be 
noted that certain peracetic acid formulations can have 
a fixating effect on biofilm [91, 92]. In a clinical setting 
peracetic acid has been compared to double HLD reveal-
ing similar effectiveness [93]. Peracetic acid has also been 
used as HLD chemical but revealed contamination rates 
comparable to other HLD chemicals [29]. It should also 
be noted that peracetic acid is a highly toxic chemical and 
requires handling precautions [94, 95]. Current data sug-
gest that contamination of duodenoscopes still occurs 
after liquid chemical sterilization. Implementation of 
liquid chemical sterilization with peracetic acid requires 
limited modifications to the current reprocessing proce-
dure because it only needs replacement of the chemical 
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used in the HLD step. Therefore additional costs and 
added time will be limited compared to other interven-
tions, such as EtO.

Future perspectives
Despite the disappointing results of the supplemental 
measures several promising innovations are under devel-
opment such as, single-use duodenoscopes, bioburden 
assays, electrolyzed acidic water, vaporized hydrogen 
peroxide plasma, cavitation, methylene blue photody-
namic therapy and plasma-activated gas (Table  3) [73, 
79, 96–118]. Unfortunately, the lack of a uniform proto-
col and definition makes it difficult to simulate duodeno-
scope reprocessing in experimental models. Therefore, 
evaluation of the effects of these new methods and their 
usefulness compared to current reprocessing standards is 
difficult.

Single‑use duodenoscopes
In 2019, the FDA approved the first single-use duodeno-
scopes [96]. Their use completely obviates the need for 
reprocessing but incurs significant higher costs com-
pared to reusable duodenoscopes [97]. Cost-effectiveness 
will therefore depend on multiple factors such as rate 
of reusable duodenoscopy-associated infections, costs 
related to a possible duodenoscopy-associated infec-
tion or outbreak, the number of procedures performed 
annually and the performance of these single-use duo-
denoscopes compared to reusable duodenoscopes [97, 
98]. Furthermore single-use duodenoscopes will without 
doubt lead to more waste and have an increased environ-
mental impact.

Bioburden assays
Bioburden assays are rapid and low-cost tests which 
can detect the presence of organic soil by detecting 
biomarkers such as protein, hemoglobin or adenosine 

triphosphate (ATP) [99, 101]. Benchmarks regarding 
detection of protein or ATP have been described and 
used to evaluate the efficacy of manual cleaning [99–
101]. ATP has also been used to evaluate duodenoscope 
contamination but presence of ATP in organic mate-
rial other than viable bacteria causes a poor correla-
tion between ATP levels and bacterial contamination 
[101–103]. Furthermore, it should be noted that the sen-
sitivity of bioburden assays will depend on the sampling 
method used. Given that a standardized method for col-
lection of samples for testing with bioburden assays in 
duodenoscopes is currently unavailable precludes broad 
implementation.

Electrolyzed acidic water
To prepare electrolyzed acidic water an electric cur-
rent is run through a saline solution resulting in acidity, 
hypochlorite ions and free chlorine which all contribute 
to bactericidal activity [104]. Efficacy has been shown in 
both a contaminated gastrointestinal endoscope model 
and clinical practice, and no bacteria were recovered 
when electrolyzed acidic water treatment was used for at 
least 5 min [104, 105]. The efficacy of electrolyzed acidic 
water depends on the amount of organic debris because 
of uptake of the bactericidal chemicals in the organic 
debris therefore adequate manual cleaning prior to use 
is warranted [106]. Interestingly, in a model utilizing 
metal cylinders without organic debris some cylinders 
still harbored viable bacteria after electrolyzed acidic 
water treatment [107]. Electrolyzed acidic water has been 
compared to glutaraldehyde and has comparable efficacy 
based on contamination rate [106, 108–110]. The advan-
tages of electrolyzed acidic water are that it does not 
leave toxic residues, does not fixate proteins and thereby 
is less likely to promote biofilm [107]. A disadvantage 
of electrolyzed acidic water is that it needs to be used 
immediately after preparation because the efficacy of the 

Table 3  New methods for duodenoscope reprocessing

Method Phase of development Advantages Disadvantages References

Single-use duodenoscope Implemented No need for reprocessing, non-
toxic

High costs, quality of duodeno-
scope

[96–98]

Bioburden assays Implemented Quick and easy to use Lack of correlation with microbial 
culture

[99–103]

Electrolyzed acidic water Endoscope tested No biofilm fixation, non-toxic Preparation on site needed [104–110]

Vaporized hydrogen peroxide 
plasma

Endoscope tested No aeration needed, non-toxic Material incompatibility [73, 79, 111–115]

Cavitation Not tested Potentially effective against 
biofilm, non-toxic

No disinfecting properties [116]

Methylene blue photodynamic 
therapy

Model tested Effective against biofilm, limited 
toxicity

Practical application lacking [117]

Plasma-activated gas Model tested Non-toxic Short-lived effect [118]
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solution decreases rapidly due to the unstable nature of 
the ions formed [106]. This complicates the reprocessing 
procedure because efficacy of HLD chemicals needs to 
be guaranteed through testing prior to use. Therefore if 
electrolyzed acid water is implemented this will increase 
reprocessing time because both preparation and test-
ing of the solution need to be performed shortly before 
reprocessing of each duodenoscope. Electrolyzed acidic 
water has been cleared by the FDA since 2002 as a high-
level disinfectant.

Vaporized hydrogen peroxide plasma
In this method hydrogen peroxide vapor is used as pri-
mary sterilizer which in a second step is stimulated to 
form plasma and therewith antimicrobial free radicals 
such as hydroxyl and hydroperoxyl. The process results 
in low temperature sterilization without toxic byprod-
ucts and does not require an aeration cycle such as EtO 
[73, 111]. Vaporized hydrogen peroxide plasma in labo-
ratory studies has been shown to have potent sterilizing 
activity in long narrow lumens however when serum 
and salts are present efficacy is reduced with 65% due 
to hydrogen peroxide reacting with serum and salts [73, 
79, 111]. No contamination was observed when experi-
mentally contaminated flexible gastrointestinal endo-
scopes with Geobacillus stearothermophilus spores were 
examined for residual contamination after application of 
vaporized hydrogen peroxide plasma [111–114]. Vapor-
ized hydrogen peroxide has also been used in conjunc-
tion with ozone as an additional sterilant which resulted 
in complete sterilization of duodenoscopes [115]. Vapor-
ized hydrogen peroxide plasma sterilizers are a promising 
development for reprocessing, however data regarding 
clinical application are still limited. Furthermore there 
is still a matter of material incompatibility because the 
molybdenum disulphide lubricant used in duodeno-
scopes reacts with hydrogen peroxide creating corrosive 
acids that disintegrate the epoxy resin of the duodeno-
scope [114]. These material incompatibility issues will 
need to be solved before FDA approval or widespread 
implementation is considered.

Cavitation
Cavitation is a phenomenon in fluid dynamics where 
spherical cavities (microbubbles) are generated in a 
fluid through ultrasound [116]. Microbubbles interact 
with biofilm through a cycle of microbubble generation 
and collapse. Collapsing of these bubbles close to bacte-
ria leads to bacterial damage and biofilm disintegration. 
Although cavitation could be a promising method for 
removal of biofilm during reprocessing it does not have 
disinfecting properties. Therefore cavitation can poten-
tially be used prior to HLD for removal of biofilm and 

possibly increase the effectiveness of disinfection. Fur-
ther research will be needed to determine if such strate-
gies are feasible.

Methylene blue photodynamic therapy
This method uses laser light to induce reactive oxygen 
species in a methylene blue solution that exerts a bac-
tericidal effect. The method can be enhanced by adding 
hydrogen peroxide which will also make it effective in the 
presence of biofilm [117]. Until now this method has only 
been used in an experimental model. The short half-life 
of reactive oxygen species makes it difficult to apply this 
method to duodenoscopes.

Plasma‑activated gas
This method uses an electrical current to induce a plasma 
state in argon gas. This plasma-activated gas is directed 
through the duodenoscope channel to induce bacteri-
cidal reactive oxygen and nitrogen species [118]. Given 
that plasma-activated gas only produces short-lived 
(microseconds) reactive oxygen and nitrogen species, its 
toxicity is limited and therefore does not require an aera-
tion cycle like EtO [118]. Currently this technique has 
only been applied in a polytetrafluoroethylene test tube 
model and therefore further research will be necessary to 
evaluate if plasma-activated gas is also effective and prac-
tical in a clinical setting.

Discussion
Duodenoscopy-associated infections and outbreaks 
occur worldwide but the exact scope of the problem is 
unknown [2–15]. Reported outbreaks almost exclusively 
involve MDR bacteria making it likely that outbreaks with 
other (non-MDR) microorganisms remain undetected 
[2–15]. Monitoring and estimation of duodenoscopy-
associated transmission can be achieved by determin-
ing the contamination rate. The only available guideline 
for sampling and culturing of duodenoscopes is a multi-
society guideline of the CDC, the FDA and the ASM [61]. 
Unfortunately, this guideline contains over 100 steps 
making it too laborious for widespread implementation 
in general laboratories [61]. Therefore development of a 
uniform and foremost more practical sampling protocol 
for duodenoscope contamination is of the utmost impor-
tance because this would results in more widespread 
implementation. New sampling methods for microbio-
logical culturing can play a major role in such a protocol 
in the future (Table 2) [63–67, 70]. If such a uniform and 
more practical sampling protocol for duodenoscope con-
tamination is developed this will facilitate data collection. 
When more data regarding duodenoscope contamination 
become available this will lead, to not only a more pre-
cise estimation of the duodenoscope contamination rate, 
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but will also facilitate collection in a central database and 
lead to opportunities to examine new reprocessing tech-
niques and procedures.

The implementation of the FDA proposed supplemen-
tal reprocessing measures to improve duodenoscope 
reprocessing outcomes has not resulted in reduction of 
the duodenoscope contamination rate (Fig. 1) [19–30, 57, 
59, 80, 93]. Implementation of the supplemental meas-
ures has however increased reprocessing time and costs. 
Therefore continued use of the supplemental measures 
to reduce the duodenoscope contamination rate is not 
sensible.

Perhaps the solution to the problem of ongoing bacte-
rial contamination of duodenoscopes after reprocess-
ing can be found in novel technical applications and 
reprocessing techniques. Newly proposed methods for 
improvement of duodenoscope reprocessing are prom-
ising and some have already been applied in the repro-
cessing procedure of duodenoscopes (Table  3) [73, 79, 
96–118]. Several other promising methods however 
still remain in a very preliminary phase of development 
and will benefit from a practical standardized sampling 
protocol so their effect on the duodenoscope contami-
nation rate can more easily and rapidly be determined 
(Table 3) [116–118]. This would surely aid in determin-
ing their usefulness in the reprocessing procedure and 
allow comparison to current reprocessing techniques and 
procedures.

Single-use duodenoscopes would surpass the cur-
rent problems of reprocessing. However, these single-
use duodenoscopes are expensive, increase waste and 
cost-effectiveness will depend on performance, rate of 
infection, costs incurred per infection and number of 
procedures performed annually [96–98]. Bioburden 
assays can contribute to monitoring of manual cleaning 
however they are unsuited to replace microbiological 
culturing [99–103]. Furthermore lack of a uniform and 
standardized protocol for sampling of duodenoscopes 
precludes implementation of bioburden assays.

Implementation of novel reprocessing methods that 
will replace parts of or add-on to the existing reprocess-
ing methods such as electrolyzed acidic water, vaporized 
hydrogen peroxide plasma, cavitation methylene blue 
photodynamic therapy or plasma-activated gas suffer 
from lack of a uniform and practical sampling protocol. 
Lack of such a duodenoscope sampling protocol makes 
comparison to current reprocessing methods and tech-
niques difficult.

Conclusions
Reported duodenoscope contamination rates show that the 
current reprocessing methods are inadequate and under-
line the need for further research into novel reprocessing 

methods to improve reprocessing results so that duodenos-
copy-associated infections and outbreaks can be prevented 
in the future. Development of a uniform and practical 
protocol for duodenoscope sampling that can be applied 
in general healthcare facilities is urgently needed and will 
facilitate development of novel reprocessing techniques 
because comparison between current and novel reprocess-
ing methods can be more readily made.
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