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Abstract High-throughput sequencing has ushered in a diversity of approaches for identi-
fying genetic variants and understanding genome structure and function. When applied to
individuals with rare genetic diseases, these approaches have greatly accelerated gene dis-
covery and patient diagnosis. Over the past decade, exome sequencing has emerged as a
comprehensive and cost-effective approach to identify pathogenic variants in the protein-
coding regions of the genome. However, for individuals in whomexome-sequencing fails to
identify a pathogenic variant, we discuss recent advances that are helping to reduce the di-
agnostic gap.

High-throughput sequencing has helped to uncover the rates at which deleterious or dam-
aging alleles accumulate in specific genes (Lek et al. 2016). For patients with shared rare dis-
eases, it has aided in identifying novel causal genes by their excess of pathogenic variants
(Ng et al. 2010; Muona et al. 2015; Lelieveld et al. 2016; Deciphering Developmental
Disorders Study 2017). In clinical settings, depending on disease type and patient selection,
exome sequencing has been estimated to lead to a diagnosis in 30%–50% of rareMendelian
diseases (McInerney-Leo et al. 2013; Veeramah et al. 2013; Clark et al. 2018). However, di-
agnoses of diseases involving novel mechanisms (Oláhová et al. 2018) can bemore challeng-
ing to perform than well described—although rare—pathologies (Aartsma-Rus et al. 2016).
For “exome-negative” cases, in which no such diagnosis is provided, there remain multiple
approaches after the exome—but choosing that next step in an “experimental maze” still
remains a major challenge.

Negative exome results can be explained in various ways (Fig. 1). To summarize, the
causal variant can bemissed in cases of somaticmosaicism (Priest et al. 2016): If it is in coding
regions but not properly detected (Cornish and Guda 2015); if it is of unknown significance
and was not selected (McCarthy et al. 2014; Hoffman-Andrews 2017); if multiple variants are
responsible for the pathology, in two ormore genes (Liu et al. 2007; Sambuughin et al. 2018);
if it is a structural variant not properly caught through exome sequencing (Merker et al. 2018);
and in cases in which it is not exonic (Short et al. 2018).

Without prior biological knowledge, exome sequencing a single case has a low probabil-
ity of yielding a novel pathogenic variant or gene. The average individual carries approxi-
mately 20 rare, “loss-of-function” variants (MAF≤0.1) (Dewey et al. 2016; Lek et al. 2016)
among which four are splice disrupting. Subsequent filtering of these candidate variants to
identify disease genes is generally easier for recessive inherited diseases than dominant in-
herited diseases in which one causal variant is expected instead of two. However, in both sce-
narios, identifying which variants are most likely to be pathogenic has required either large
control data sets (Dewey et al. 2016; Lek et al. 2016) or family-based sequencing data such
as trio sequencing, particularly in the context of de novo variant discovery (Zhu et al. 2015;
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Wang et al. 2016; Jin et al. 2017; Wright et al. 2018a). Hence, one of the most active areas of
development has been the ongoing expansion and development of large exome resources.
Databases such as ExAC or gnomAD (Lek et al. 2016) and DiscoverEHR (Dewey et al. 2016)
currently provide data on more than 100,000 exomes from diverse populations combined.
Using the ExAC database, Lek et al. developed the pLI score that reflects each gene’s intol-
erance to loss-of-function variation. This score provides priors on the likelihood of seeing im-
pactful variants in specific geneswithin a healthy population sample andhas beenparticularly
informative for discovery of genes contributing to dominant Mendelian disorders (Eilbeck
et al. 2017; Rao and Nelson 2018). Recently, Coban-Akdemir et al. (2018) developed an
NMD escape intolerance score to identify genes in which nonsense alleles may contribute
to gain of function. As these exome resources grow, new and refined scoring metrics that ac-
count for different forms of inheritance and variant impacts are expected to provide new op-
portunities for variant interpretation.

Beyond enhancing sample sizes of case and controls, additional biological knowledge
that aids in identifying candidate causal genes takes advantage of ongoing annotation of
gene and phenotype relationships. Extensive and accurate phenotyping is essential to es-
tablish a proper link between potential candidate genes and disease characteristics. Tools
such as DECIPHER (Firth et al. 2009), the Matchmaker Exchange (Philippakis et al. 2015),
GeneMatcher (Sobreira et al. 2015), or PhenomeCentral (Buske et al. 2015) are allowing to
match cases with similar phenotypes and/or genotypic profiles to help the diagnosis of
rare diseases. Databases such as Human Phenotype Ontology (HPO; Köhler et al. 2017),
OMIM (Hamosh et al. 2005), andOrphanet (INSERM 1997) provide useful information to nar-
row down candidate genes. HPO links phenotypes to genes and diseases. OMIM (https://
www.ncbi.nlm.nih.gov/omim/) and Orphanet (https://www.orpha.net) catalog known rare
disease genes. Complementing these resources, the AMELIE tool has been developed to
curate knowledge of association between genes and phenotypes through extensive

Figure 1. Challenges and approaches in “exome-negative” cases. Depending on the causal variant type, dif-
ferent options are available, influenced by both technical and biological diagnostic challenges. Without know-
ing the cause of the disease, it can be challenging to select a complementary approach in the postexome
“experimental maze.”
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literature curation (Birgmeier et al. 2017). However, it is important to underline that these
databases can rely on different semantics, and the variability of clinical terms when describ-
ing similar clinical features can lead to less accurate analyses. For genetic variants, several
tools that incorporate prior biological knowledge are used to assess potential variant impacts
including SIFT (Ng and Henikoff 2003), PolyPhen (Adzhubei et al. 2013), CADD (Kircher et al.
2014), LoFTEE (MacArthur et al. 2012), and M-CAP (Jagadeesh et al. 2016). As these tools
and databases improve and expand, subsequent reanalysis of exomes continues to show im-
provement of diagnostic rate over time (Ewans et al. 2018; Nambot et al. 2018; Al-Nabhani
et al. 2018; Wright et al. 2018b).

An inescapable limitation to exome sequencing is that it only characterizes the subset of
the genome that encodes protein-coding genes. With rapid reductions in sequencing costs
and a relatively unbiased survey of an individual’s genetic variation, whole-genome se-
quencing (WGS) is a promising approach after the exome. For protein-coding regions,
WGS provides the opportunity to find variants that are poorly captured using exome se-
quencing alone. In particular, WGS allows detection of structural variants more reliably
(Meienberg et al. 2016; Stavropoulos et al. 2016). In a study aiming at comparing the diag-
nostic yield between conventional genetic tests and WGS on 103 patients with suspected
genetic disorders, it was demonstrated that 18 diagnoses would not have been possible
with exome sequencing alone as both structural and nonexonic variants were identified in
disease associated genes (Lionel et al. 2018). It is expected that as costs decrease, WGS fol-
low-up to exome-negative cases or as a first-line approach will become a new standard for
clinical genomics (Stavropoulos et al. 2016; Lionel et al. 2018).

Whole-genome sequencing further provides access to a wealth of noncoding variants.
Each individual carries approximately 30,000 rare variants across their genome (Li et al.
2017). A subset of these is expected to have important impacts on gene expression or alter-
native splicing. Recent estimates of the contribution of de novo mutation in fetal enhancer
regions to neurodevelopmental disorders has identified that up to 3% of “exome-negative”
cases could be explained by de novo mutations in regulatory regions (Short et al. 2018). This
study was further notable in that it estimated that tens to hundreds of thousands of whole
genomes would be required to comprehensively analyze the contributions of variants in non-
coding elements to neurodevelopmental disorders. Exacerbating this challenge, there re-
mains a lack of approaches to interpret increasingly complex scenarios in which coding
and noncoding alleles act together to cause or modify a rare disease. The use of WGS as
a routine will also require the development of robust methods to identify structural variations
across control populations.

Regardless of DNA sequencing approach, it is estimated that the diagnostic rate using
exome or genome sequencing is plateauing between 35% and 50% (Taylor et al. 2015;
Wortmann et al. 2015; Clark et al. 2018; Powis et al. 2018). There is a need for other ap-
proaches to highlight the molecular signature of the disease and therefore target more effi-
ciently the causal gene(s). A potential route is to focus on the consequences of pathogenic
variants on different cellular products, amongwhich are gene transcripts, proteins, or metab-
olites. By adding those layers of information, it is possible to identify aberrant products or
activities that may further narrow the list of candidate genes and variants.

RNA-sequencing (RNA-seq), for example, has now become the gold standard to mea-
sure RNA levels and quantify transcript diversity. RNA-seq shows considerable diagnostic
promise for rare diseases, as it provides a measurement of the consequences of both coding
and noncoding variants on gene expression levels and alternative splicing (Byron et al. 2016).
Under the assumption that only one or very few genes are impacted, RNA-seq makes it pos-
sible to detect and narrow investigation to the subset of genes with aberrant expression or
splicing in affected individuals when compared to unaffected controls. There is further grow-
ing evidence that rare, genetic variants influence these aberrant events, providing further
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data to localize causal variants (Zhao et al. 2016; Li et al. 2017; Pala et al. 2017). By focusing in
on a small set of outlier genes and their regulatory elements, there can be significant power
advantages to detecting causal noncoding variants compared to studies that use only DNA-
based sequencing data alone. Using the DDD model, we have estimated that pinpointing
recurrent outlier activity for a specific regulatory element can substantially reduce the num-
ber of genomes required to associate de novo mutations with disease (Short et al. 2018; Fig.
2A). In the context of rare disease, recent applications of RNA-seq have aided in the diagno-
sis of multiple Mendelian diseases (Estivill 2015; UK10K Consortium et al. 2015; Xiong et al.
2015; Cummings et al. 2017; Kernohan et al. 2017; Kremer et al. 2017). Notably, it has
helped to detect pathogenic splice variants in neuromuscular and mitochondrial diseases
(Cummings et al. 2017; Kremer et al. 2017) some of which were previously undetected by
exome sequencing alone (Kernohan et al. 2017). However, RNA-seq for “exome-negative”
cases has only been used in very specific tissues and subsets of diseases so far and there re-
mains a need to understand the potential applications of RNA-seq in the diagnosis of
Mendelian diseases in a broader context.

A potential limitation of RNA-seq (and other functional genomics assays) is that gene ex-
pression is dependent on environment, cell type, and state. This has direct consequences on
the tissue to use for RNA-seq as a diagnostic tool for Mendelian diseases. Although any sin-
gle tissue can be used for WGS, genes involved in a specific disease might not be expressed
in a ubiquitous manner. Fortunately, the accumulation of RNA-seq studies in multiple tissues
and databases provides an extensive resource to evaluate the expression status of a partic-
ular set of genes across a range of normal biological contexts (Su et al. 2004; Liu et al. 2008;

A B

Figure 2. Using functional genomics to interpret rare diseases. (A) Power estimates for detecting a candidate
regulatory region associatedwith a disease by the presence of recurrent de novomutations.We compare pow-
er differences when there is a single candidate region (red) versus no candidate region (gray) using the model
of Short et al. (2018). This demonstrates that additional biological knowledge of regions that are dysregulated
in diseasemay significantly reduce the number of genomes required for their detection. (B) Ranked expression
of OMIM genes across 53 tissues (GTEx v7). We used k-means to summarize expression data across all genes.
Using three clusters, we show that we can separate our data as follow: high sharing, with high expression across
all tissues (20% of OMIM genes); intermediate sharing, in which genes are expressed in a reasonable amount
of tissues (28%); and low sharing, in which genes tend to be specifically expressed in a few tissues (52%). For
48% of OMIM genes, several tissues can be selected for RNA-seq analysis.
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Krupp et al. 2012; GTEx Consortium 2013; Kim et al. 2014, 2018; Uhlén et al. 2015;
Papatheodorou et al. 2018). Use of these data increases the number of normal samples
and can aid in differentiating between rare events that are random versus biological. The re-
cent work of Cummings and collaborators (Cummings et al. 2017) took advantage of such
an approach by comparing 180 control skeletal muscle samples from the GTEx Project to
50 cases with muscle disorders. They noted that many of their discoveries could not
have been found in blood gene expression alone. With resources that describe cell type
expression and gene/phenotype relationships, we expect that future computational ap-
proaches will further aid in diagnosis by predicting the relevant cell types to study.
Indeed, analysis of gene expression shows 20% of OMIM genes are expressed across mul-
tiple tissues (Fig. 2B).

Induced pluripotent stem cells (iPSCs) constitute another promising avenue to overcome
tissue specificity (Sterneckert et al. 2014; Zhang et al. 2015; Yamasaki et al. 2017). iPSCs pro-
vide access to expression of genes of interest not expressed in the patient’s most accessible
tissues. They have been shown to be extremely useful in the context of heart disease (Bellin
and Mummery 2016) when derived to cardiomyocytes. However, iPSC lines are known to be
heterogeneous (Lund et al. 2012; Germain and Testa 2017); thus, in the context of rare dis-
eases, it is essential to separate expression variability due to the cell line from that due to the
disease. There is also a trade-off to be found between the time and cost to develop iPSC
lines for a patient and the likelihood that genes of interest are expressed and involved in
the mechanisms of disease. The growing availability of iPSC transcriptome data from multi-
ple individuals constitutes a new promising source to help mitigate these challenges and
guide the decision of generating iPSCs for specific cases (Kilpinen et al. 2017; Panopoulos
et al. 2017).

Regardless of the follow-up approach, amajor challenge resides in the rarity of a patient’s
sample. In contrast to association studies for complex traits in which we can evaluate a trait
across data frommultiple individuals, patients with rare disease are often isolated cases. For
gene expression data, when comparing data from one case to multiple controls, one needs
to disentangle what is caused by inherent noise in the sample itself from the actual variation
due to the disease. Analyses are further impacted by the sample imbalance of case versus
controls. Indeed, sample imbalance has been shown to impact differential expression results
(Yang et al. 2006). Robust methods have been developed for genome-wide association anal-
yses from single-case exomes (Wilfert et al. 2016). There is a need in adapting thosemethods
for other datamodalities. In practice, increasing the number of controls fromdifferent studies
not only helps to identify aberrant signals in anN=1 sample but can run the risk of increasing
batch effects by adding variability from individual studies. A crucial step when combining
data sets is therefore to perform an adequate correction for those hidden batch effects, with-
out compromising the relevant information in each sample (Stegle et al. 2012; Risso et al.
2014; Brechtmann et al. 2018).

The challenge of what to do next for “exome-negative” cases resides mainly in how ef-
fectively we can detect signal in either noisy or heterogeneous data. This is where adding
layers of information and combining clues from different data modalities and statistical ap-
proaches can help narrow down from multiple candidate genes to a handful of meaningful
ones. Gene expression is a promising next-step approach but is only one potential window
to look for the effects of variants in exome-negative cases. Some variants, like missense, will
not necessarily affect gene expression. Other scales of analysis, like proteome (Costanzo
et al. 2017), metabolome (Gülbakan et al. 2016), or epigenome (Bjornsson 2015), have
the potential to give access to consequences of those other types of variants. Adding up lay-
ers of information will drastically increase the probability of finding the causal gene.
However, therewill be a trade-off between large-scale functional genomics or more targeted
approaches to confirm a suspected mechanism of action. The balance between processing
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time and cost can be poorly defined with respect to the value of added biological
knowledge.

In the era of personalized medicine and high-throughput technologies, opportunities to
diagnose the causes of rare diseases are abundant. Future efforts will take advantage of a
growing ability to identify and classify different categories of variants. Intriguingly, current
comparisons of genome and exome sequencing have shown similar diagnostic rates
(Clark et al. 2018). However, much of the focus remains on protein-coding “loss-of-function”
alleles, and new approaches are still required to identify different classes and categories of
pathogenic variants, notably in conserved noncoding regions. Indeed, we have observed
scenarios in which longer-read technologies are providing access to structural variants
missed through exome sequencing alone (Merker et al. 2018) or family-based data help
to identify inherited expression outliers (Pala et al. 2017). Furthermore, growing functional
genomics resources such as TOPMed and GTEx provide data from thousands of healthy in-
dividuals and multiple biological contexts. Increasing the scale of these resources in natural
and ex vivo contexts like iPSCs will eventually enable characterization of functional events
that are present at frequencies of 1 in 10,000 or less. As such data types improve diagnostic
yield in monogenic disorders, we expect that they will also provide new tools to identify the
molecular causes of variable penetrance and oligogenic disorders. For “exome-negative”
cases, with ongoing access to diverse data types complemented by data from healthy con-
trols, our knowledge and ability to diagnose rare diseases only has room to grow.
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