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Abstract

Antibodies are widely used reagents to test for expression of proteins and other antigens.

However, they might not always reliably produce results when they do not specifically bind to

the target proteins that their providers designed them for, leading to unreliable research

results. While many proposals have been developed to deal with the problem of antibody

specificity, it is still challenging to cover the millions of antibodies that are available to

researchers. In this study, we investigate the feasibility of automatically generating alerts to

users of problematic antibodies by extracting statements about antibody specificity reported

in the literature. The extracted alerts can be used to construct an “Antibody Watch” knowledge

base containing supporting statements of problematic antibodies. We developed a deep neu-

ral network system and tested its performance with a corpus of more than two thousand arti-

cles that reported uses of antibodies. We divided the problem into two tasks. Given an input

article, the first task is to identify snippets about antibody specificity and classify if the snippets

report that any antibody exhibits non-specificity, and thus is problematic. The second task is

to link each of these snippets to one or more antibodies mentioned in the snippet. The experi-

mental evaluation shows that our system can accurately perform the classification task with

0.925 weighted F1-score, linking with 0.962 accuracy, and 0.914 weighted F1 when com-

bined to complete the joint task. We leveraged Research Resource Identifiers (RRID) to pre-

cisely identify antibodies linked to the extracted specificity snippets. The result shows that it is

feasible to construct a reliable knowledge base about problematic antibodies by text mining.

Author summary

Antibodies are widely used reagents to test for the expression of proteins. However, antibod-

ies are also a known source of reproducibility problems in biomedicine, as specificity and

other issues can complicate their use. Information about how antibodies perform for specific

applications are scattered across the biomedical literature and multiple websites. To alert sci-

entists with reported antibody issues, we develop text mining algorithms that can identify
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specificity issues reported in the literature. We developed a deep neural network algorithm

and performed a feasibility study on 2,223 papers. We leveraged Research Resource Identifi-

ers (RRIDs), unique identifiers for antibodies and other biomedical resources, to match

extracted specificity issues with particular antibodies. The results show that our system,

called “Antibody Watch,” can accurately perform specificity issue identification and RRID

association with a weighted F-score over 0.914. From our test corpus, we identified 37 anti-

bodies with 68 nonspecific issue statements. With Antibody Watch, for example, if one were

looking for an antibody targeting beta-Amyloid 1–16, from 74 antibodies at dkNET

Resource Reports (on 10/2/20), one would be alerted that “some non-specific bands were

detected at 55 kDa in both WT and APP/PS1 mice with the 6E10 antibody. . .”

This is a PLOS Computational Biology Software paper.

Introduction

Antibodies are some of the most common and powerful experimental reagents for detection

and localization of proteins, peptides, polysaccharides, and other antigens. They are essential

in biomedical research. In an immune system, an antibody binds to an antigen with the top

tips of its Y-shaped chemical structure. Scientists take advantage of this property to design

antibodies that target specific antigens to detect their presence or to isolate them from a mix-

ture. Examples of common antibody assays include immunohistochemistry (IHC [1]), western

blot (WB [2]), flow cytometry (FC [3]), and enzyme-linked immunosorbent assay (ELISA [4]).

Antibodies are playing an important role in studies of COVID-19. Over 281 unique

antibodies are associated with COVID-19, according to the Antibody Registry (https://

urldefense.com/v3/__https://antibodyregistry.org/covid19__;!!Mih3wA!

RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8CbeB5I8g$).

One of the most common antibody problems is that the antibody may not bind only to the

antigen that their providers design them for, known as the problem of antibody specificity [5,

6]. There may be cross reactivity due to design flaws, contamination, or use in a novel context

where a similar antigen is detected. While clinical antibodies can be tested for the exact appli-

cation for which they are indicated, research-use only antibodies will be tested typically in one

or more applications in one or a small handful of species, but it is nearly impossible to test

them in all species or under all conditions in which they can potentially be used. Therefore,

these reagents, while specific in a mouse colon, for example, may have specificity issues when

tested for the same target antigen in a zebrafish brain. An experiment using a nonspecific anti-

body may lead to misinterpretation of the results, leading to inaccurate conclusions.

Many have proposed systematic validation of antibodies, including experimental validation

by large consortium projects such as the Antibody Validation Database [7] from the ENCODE

project [8] or the independent validation project [9]; feedback collection, such as the BioCom-

pare Antibody Search Tool (https://urldefense.com/v3/__https://www.biocompare.com/

Antibodies__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_

qS2wwkvT8C2ssCbHc$) and AntibodyPedia (https://urldefense.com/v3/__https://www.

antibodypedia.com__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_

MCSP2lkt0gMeBkRB_qS2wwkvT8CYTdv94o$); and curation based on figures of antibody

PLOS COMPUTATIONAL BIOLOGY Antibody Watch

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008967 May 27, 2021 2 / 18

A. L., K. W., K.-W. L., A. B., I. B. O., J. S. G., and M.

E. M.) have been supported by NIH grant

U24DK097771, which supports the National

Institute of Diabetes and Digestive and Kidney

Diseases (NIDDK) Information Network (dkNET,

https://dknet.org), and NIH’s National Institute on

Drug Abuse award U24DA039832, which supports

the Neuroscience Information Framework (http://

neuinfo.org). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: M.E.M, J.S.G., A.B.

have an equity interest in SciCrunch, Inc., a

company that may potentially benefit from the

research results. The terms of this arrangement

have been reviewed and approved by the University

of California, San Diego in accordance with its

conflict of interest policies.

https://urldefense.com/v3/__https://antibodyregistry.org/covid19__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8CbeB5I8g$
https://urldefense.com/v3/__https://antibodyregistry.org/covid19__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8CbeB5I8g$
https://urldefense.com/v3/__https://antibodyregistry.org/covid19__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8CbeB5I8g$
https://urldefense.com/v3/__https://www.biocompare.com/Antibodies__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8C2ssCbHc$
https://urldefense.com/v3/__https://www.biocompare.com/Antibodies__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8C2ssCbHc$
https://urldefense.com/v3/__https://www.biocompare.com/Antibodies__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8C2ssCbHc$
https://urldefense.com/v3/__https://www.antibodypedia.com__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8CYTdv94o$
https://urldefense.com/v3/__https://www.antibodypedia.com__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8CYTdv94o$
https://urldefense.com/v3/__https://www.antibodypedia.com__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8CYTdv94o$
https://doi.org/10.1371/journal.pcbi.1008967
https://dknet.org
http://neuinfo.org
http://neuinfo.org


experimental results reported in the literature, such as BenchSci (https://urldefense.com/v3/__

https://www.benchsci.com__;!!Mih3wA!RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_

MCSP2lkt0gMeBkRB_qS2wwkvT8CpEsKQ88$). However, because there are more than two

million unique antibodies, according to the Antibody Registry, and new ones are constantly

created, it is still challenging to cover all antibodies with known specificity issues.

Many problems with antibodies are only encountered in the context of individual studies,

where authors work to validate antibodies before use and may report problems with some

reagents. We propose to address the antibody specificity problem by constructing a knowledge

base containing statements about antibody specificity automatically extracted from the bio-

medical literature. A large number of statements about antibody specificity are available by

authors who used antibodies in their experiments. Automated text mining techniques can be

applied to a large corpus of publications to extract and disseminate the information automati-

cally at a pace that matches the growth of new antibodies and publications and provide scien-

tists up-to-date alerts of problematic antibodies to assist their selection of antibodies. The key

contributions of this work include:

• We propose a novel approach to the problem of antibody specificity by alerting scientists if

an antibody is well validated or may be problematic as reported in the literature. The prob-

lem is important in helping ensure reliability of studies using antibodies in the experiments.

• We show that the approach is feasible by developing an automated text mining system called

(ABSA)2 and empirically evaluate its performance with an in-house annotated corpus of

*2,000 articles. (ABSA)2, which stands for AntiBody Specificity Annotator by Aspect-Based

Sentiment Analysis, is a deep neural network model that distinguishes specificity of antibod-

ies stated in a snippet. (ABSA)2 achieves the best F-score for the task of identifying problem-

atic antibodies in our experimental evaluation, outperforming all baselines and competing

models.

• We show that with our automated text mining system, combining author-supplied Research

Resource Identifier (RRID) [10–13] with advanced deep neural network Natural Language

Processing (NLP), we can unambiguously identify an antibody mentioned in the literature,

allowing us to link an antibody specificity statement automatically extracted from the litera-

ture with an exact antibody referred to by the statement. This is crucial in order to provide

useful alerts of problematic antibodies. We anticipate that similar RRID-NLP hybrid text

mining approaches can be applied to quantify qualities and appropriate usages of biomedical

research resources covered by the RRID, including, e.g., cell lines, bioinformatics tools, data

repositories, etc., and properly credit developers of these research resources, a long standing

issue of modern biomedical research that depends heavily on research resources [13–17].

Materials and methods

Our goal is to construct a knowledge base called “Antibody Watch” as a part of our “Resource

Watch” services in dkNET (https://urldefense.com/v3/__https://dknet.org__;!!Mih3wA!

RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8CPUGvyhY

$) for scientist users to check if the antibody they are interested in has been reported in the lit-

erature and if any information has been provided about its specificity with regard to its desig-

nated target antigen. In our vision, “Resource Watch” will cover a broad range of biomedical

research resources in addition to antibodies, such as cell lines, model organisms, bioinformat-

ics tools, and data repositories, etc.“Antibody Watch” will focus on antibodies and provide, for
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each unique antibody, a list of statements extracted from the literature about its specificity,

along with metadata about the antibody to facilitate search.

Problem formulation

Table 1 shows example snippets from real publications that contain keywords related to “anti-

body” (colored in red) and “specific” (in blue) and are potentially the statements that we

would like to extract to include in our knowledge base.

In this work, we consider snippets consisting of no more than three sentences. The choice

of three sentences at most is based on our assumption that the immediate adjacent sentences

before and after the main sentences contain the keywords are sufficient to provide useful infor-

mation while not bringing in too much irrelevant information that creates unwanted noise to

burden the model. The assumption allows us to concentrate on training the model to make a

classification based on three sentences in the context at a time instead of having to read the

entire article.

We classify such snippets into one of the following classes: nonspecific, specific and neutral.
Those snippets classified as nonspecific and specific will be included in the knowledge base

while neutral ones will be excluded. Their definitions are:

• Nonspecific (Negative): the snippet states that an antibody may not always be specific to its

target antigen and thus problematic.

• Specific (Positive): the snippet states that an antibody is specific to its target antigen.

• Neutral: all other snippets that are not about whether the antibody is specific to its target

antigen and thus irrelevant for our purposes.

The problem is related to sentiment analysis that has been intensively studied in NLP,

driven by the need of automatically classifying the sentiment of online customer product/ser-

vice reviews. State-of-the-art approaches can classify not only the overall sentiment of a review

but the sentiment of a designated aspect (e.g., “appetizer” of restaurants) by leveraging atten-

tion mechanisms of deep neural networks (e.g., [18–20]). We leveraged these ideas to develop

effective classifiers for our antibody specificity classification task.

In the last decade, many approaches to aspect-based sentiment analysis (ABSA) have been

developed ranging from statistical machine learning methods [21] to deep learning models

[22]. For example, Wang et al. [23] developed an attention-based model with the bi-directional

long-short term memory (BiLSTM) architecture [24]. Huang et al. [18] introduced an atten-

tion-over-attention (AOA) neural network to capture the interaction between aspects and con-

text sentences. The AOA model outperformed previous BiLSTM-based architectures. A

comprehensive survey of ABSA can be found in [22].

Once a snippet is extracted and classified as an antibody specificity statement, we need to

link the statement to the exact antibody entities referred to in the statement. The task is

Table 1. Example snippets of the antibody specificity classes and the PubMed IDs (PMID) of their sources.

Class Example PMID

Nonspecific
(Negative)

Some non� specif ic bands were detected at ~55 kDa in both WT and APP/PS1 mice with the 6E10 antibody . . . 30177812

Specific (Positive) Our antibody is specif ic, as each immunizing peptide blocked the corresponding immunoreactivity . . . 25650666

Neutral Probing protein arrays with antibodies allows the assessment of their specif icity and cross� reactivity across a large numbers of
potential antigens in parallel . . .

27335636

https://doi.org/10.1371/journal.pcbi.1008967.t001
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challenging because antibody references are obscure [5, 25]. Many antibody providers exist,

including commercial suppliers and academic research labs of various sizes. For any given

antigen, there can be many antibodies from different suppliers, derived from a wide range of

organisms. For example, there are 136 antibodies in the Antibody Registry that match “6E10”

mentioned in the first example snippet in Table 1, but that is the only clue about the antibody

in that snippet.

Instead, we can search for detailed information about the antibodies in the same paper

where the study design is described, usually appearing in the “Materials and Methods” section

of the paper. For example, we have this sentence

Purified anti-β-Amyloid, 1–16 antibody (6E10) (Cat. No. 803003; RRID:AB� 2564652 ) was
obtained from . . .

(PMID 30177812)

in the paper that allows us to link the statement with “6E10” to this unique antibody entity.

“PMID” here is the PubMed ID of the paper where the example snippet appears.

However, several issues must be resolved for the above idea of linking to work. First, how to

identify snippets that contain detailed antibody information? Next, a study may involve several

antibodies. How to use limited clues to correctly link to the right antibody? This is a special

case of the coreference resolution problem in Natural Language Processing [26, 27], a chal-

lenging open research problem. Finally, the information may still be too obscure to allow cor-

rect identification of the exact antibody used. As reported by Vasilevsky et al. [14], in many

cases, even the authors cannot recall exactly which antibody they have used, though the sup-

plier name and the catalog ID were provided to identify an antibody. To identify the supplier,

the city where the supplier is located may also be provided. The catalog IDs may become obso-

lete, authors may use a short-hand syntax for supplier catalog numbers, and suppliers may

change names or merge with another company. Without sufficient metadata, neither NLP nor

human experts will be able to infer the exact antibody from the text because the required infor-

mation to correctly identify the antibody is simply not there.

All these issues can be resolved with the use of Research Resource Identifiers (RRID) [10].

Precisely, we will locate RRIDs of antibodies given in the paper and use the context of each

RRID to guide linking of each antibody specificity statement to the exact one or more antibody

entities that it refers to. In the example snippet above, “RRID:AB_2564652” is the RRID of the

6E10 antibody. Without it, uniquely identifying this antibody would still be difficult based

only on other information such as the catalog number “Cat. No. 803003.”

RRIDs were developed to identify and track what research resources were used in a

given study. The antibody portion of the RRIDs is based on the Antibody Registry

(https://urldefense.com/v3/__https://antibodyregistry.org/__;!!Mih3wA!

RnOtVKTVZZE7zGET2GaOzjvbDlpQCch6_MCSP2lkt0gMeBkRB_qS2wwkvT8CqsOwlIw$),

which assigns unique and persistent identifiers to each antibody so that they can be referenced

within publications. Unlike antibody names or catalog numbers, these identifiers only point to

a single antibody, so that the actual antibody used can be identified by humans, search engines,

and automated agents. The identifier can be quickly traced back in the Antibody Registry.

Once an antibody is assigned an identifier and entered into the Antibody Registry, the record

will never be deleted, so even when an antibody disappears from a vendor’s catalog or is sold

to another vendor, the provenance of that antibody can still be traced. The two million anti-

body RRIDs currently in the Antibody Registry include commercial antibodies from about

300 vendors and non-commercial antibodies from more than 2,000 laboratories.
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Authors supply RRIDs before their manuscript is published. Over 120 journals now request

RRIDs to be included as part of their instructions to authors (e.g., Cell Press, eLife, the Journal
of Neuroscience, Endocrinology, to name a few). Examples of resources that can be identified

using RRIDs include antibodies, cell lines, plasmids, model organisms and digital tools such as

databases, bioinformatics software for statistics and data analysis, and any digital resources

used in the research workflow [28].

If an antibody specificity statement cannot be linked to any RRID in the paper, then the

statement is most likely about an antibody that is not used. This is one of the benefits of linking

to RRIDs because authors are instructed by the publishers to specify an RRID only when the

research resource was actually used in their study.

Fig 1 illustrates the complete workflow of our approach. Given a full-text article from a cor-

pus, e.g., PubMed Central, the workflow starts by extracting two types of snippets in the article.

One of the types consists of “RRID mention snippets” that may appear in “Materials and

Methods” section. The other type, “Specificity mention snippets,” consists of statements about

the specificity of the antibodies, usually appearing in the “Results” or “Discussion” sections,

and figure/table legends. After these snippets were extracted, two tasks are applied to each type

of snippet:

• Task 1 (Specificity classification) determines if a specificity snippet states that the antibody is

specific or not with a deep neural network classifier.

• Task 2 (RRID linking) links each specificity statement to the exact antibody RRID(s) that it

refers to.

The output knowledge base will contain, for each entry, a triple of an antibody, its specific-

ity class (i.e., specific or not), and the evidence—the snippet of the specificity statement in a

source article.

Algorithms

Task 1: Specificity classification. Task 1 is a three-class (positive, neutral, negative) cate-

gorization problem given a snippet related to antibody specificity. Our solution (ABSA)2 is

Fig 1. The workflow to construct Antibody Watch. Given the article PMC6120938, a set of “RRID mention snippets”

and “Specificity mention snippets” will be extracted. Next, a “Specificity classifier” will determine if a specificity mention

snippet states that the antibody, in this case “the 6E10 antibody,” is specific to its target antigen or not. Then, “Antibody

RRID linking” will link each specificity snippet to the “RRID mention snippets,” and thus to one or more exact

antibodies. In this example, “the 6E10 antibody” is linked to the antibody with “RRID:AB_2564652,” which uniquely

identifies an antibody. Finally, an entry is generated and entered into the Antibody Watch knowledge base to alert

scientists that this antibody was reported to be nonspecific in PMC6120938 (PMID 30177812).

https://doi.org/10.1371/journal.pcbi.1008967.g001

PLOS COMPUTATIONAL BIOLOGY Antibody Watch

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008967 May 27, 2021 6 / 18

https://doi.org/10.1371/journal.pcbi.1008967.g001
https://doi.org/10.1371/journal.pcbi.1008967


inspired from models developed for aspect-based sentiment analysis (ABSA), a well-studied

NLP problem aimed at identifying fine-grained opinion polarity for a given aspect. Similar to

formulations of many ABSA models, in addition to the input snippet, (ABSA)2 also takes the

antibody term mentioned in the input snippet as our target aspect to capture specificity

expressed towards each antibody. Specifying a target antibody is important also because there

may be more than one antibody mentioned in a snippet where their specificity may be stated

differently.

In particular, (ABSA)2 is an attention-over-attention model (AOA) for ABSA [18], which

was originally designed on top of context-independent word embeddings based on GLoVe

[29]. AOA worked particularly well with BERT [30] (RRID:SCR_018008) and other contextu-

alized word embedding transformers for our task over other competing ABSA models in our

experimental investigations. Fig 2 shows the architecture of our model.

Given an input snippet s = (w1, w2, . . ., wn) of n tokens and them target aspect tokens t =

(x1, . . ., xm) (e.g., “antibody”). Our model first employs a BERT component with L transformer

layers to calculate the corresponding contextualized representations for the input token

sequences with the formH0 = ([CLS], s, [SEP], t). LetHl be the output of the transformer at

layer l, thusHl ¼ ðhl
0
; hl

1
; . . . ; hln; h

l
nþ1
; . . . ; hlnþmþ1

Þ can be calculated by

Hl ¼ TransformerðHl� 1Þ:

Let a ¼ ðhL
1
; . . . ; hLnÞ and b ¼ ðhLnþ2

; . . . ; hLnþmþ1
Þ from the transformer’s output at the last

layer. The AOA model works by first calculating a pair-wise interaction matrix

I ¼ a � bT 2 Rn�m, where the value of each entry Iij represents the correlation of a word pair

among the snippet and target. Let α be the column-wise softmax of I, representing the target-

to-snippet attention, and β be the row-wise softmax of I, representing the snippet-to-target

attention:

aij ¼
expðIijÞ

Pn
i expðIijÞ

; bij ¼
expðIijÞ

Pm
j expðIijÞ

:

Fig 2. A schematic diagram of the neural network architecture of (ABSA)2 for classifying antibody specificity snippets. (ABSA)2 is an attention-

over-attention model (AOA) based on ABSA [18] but with a transformer (left) as its input word embedding layer. (ABSA)2 takes a snippet and an

aspect token “antibody” as the input to classify the snippet into one of the specificity classes.

https://doi.org/10.1371/journal.pcbi.1008967.g002
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The idea of AOA is to compute the attention weight over averaged attention weight �b 2 R1�m

by g ¼ a�bT 2 Rn, where

�b j ¼
1

n

Xn

i

bij:

Then AOA computes an attention-weighted representation of the input by

rAOA ¼ aT � g: ð1Þ

Since the contextualized sentence-level representation from the last transformer layer hL
0

usually provides useful information to a classification task, we concatenate hL
0

with rAOA as the

final representation of the snippet:

rCLS ¼ concatenateðhL
0
; rAOAÞ: ð2Þ

The final prediction layer is simply a linear layer that takes either rCLS or rAOA as the input

and then followed by a softmax layer to obtain the class conditional probability for each class.

The entire model is fine-tuned with a standard cross-entropy loss with l2 regularization.

We tested many variants of the model described above including adding a layer of BiLSTM

or multi-head attention (MHA) [20] on top of the transformer. As baselines, we also consid-

ered directly use a transformer with or without the aspect terms. The transformers that we

compared include BERT and SciBERT [31]. Other transformers, such as BioBERT [32], can

also be considered here.

Recently, models based on the attention-encoder network (AEN) [20] and local context

focus mechanism (LCF) models [19] were reported to achieve state-of-the-art results for

benchmark ABSA datasets [33]. We also implemented these models and their variants for a

comparison. AEN learns to build attention links within an input sentence and between the

input sentence and the aspects to perform aspect-based sentiment analysis. LCF focuses on

using attention mechanisms to relate local context to the aspects. The details of our implemen-

tation are given in S1(A) Text.

Task 2: Antibody RRID linking. Task 2 is about linking an antibody specificity snippet to

a candidate antibody RRID described in the same paper. We leveraged a BERT model as a sen-

tence pair binary classifier (BERT-SPC) to determine if linking an input specificity snippet to a

RRID snippet can be established. We used [SEP] token to split the specificity snippet and the

RRID snippet and the output [CLS] as the prediction, that is, again, the standard formulation

of a BERT-SPC model. We also considered SciBERT-SPC by replacing BERT with SciBERT.

Again, other transformers, such as BioBERT, can be considered.

We implemented several baselines for the purpose of comparison. One of the baselines

essentially counts common non-dictionary words in the two input snippets, e.g., “6E10” in Fig

1. The common words were matched using the Jaro-Winkler distance [34]. We considered

three thresholds: 1.0, 0.9, and 0.8. Another baseline is the Siamese Recurrent Architectures

[35] with a BiLSTM layer. A neural network model with a Siamese Recurrent Architecture

consists of two recurrent neural network components trained to have identical parameters

(thus the name “Siamese”) to read a pair of different input sentences. Then the difference

between the output vectors of the two components is computed to determine if the input sen-

tences are similar. We used either Manhattan or Euclidean distance as the last layer to measure

the similarity between the input snippet pair. The details of our implementation are given in

S1(B) Text.
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Implementation

Dataset preparation. A corpus of 3,845 papers containing at least an antibody RRID in

the regex pattern AB_[0–9]+ identified by the RRID curation team on their publishers’ web-

sites were retrieved manually [28] and 47,403 RRIDs and their context snippets were extracted.

Among these papers, 2,223 are in the PubMed Central Open Access subset and available legally

for text mining. From the 2,223 full-text documents, we parsed each document into sections

and split each section into sentences using the NLTK sentence splitter [36]. Then we selected

the sentences which contain the regex patterns of (S|s)pecific, ((B|b)ackground
staining) or (C|c)ross(|-)reactiv, to extract the antibody specificity snippets.

These patterns cover the terms used when antibody specificity is discussed and serve as a mini-

mum filter to remove irrelevant snippets which may easily overwhelm the model. Other terms

can be easily included to the data preparation steps if they are found to be useful.

To create snippets, the sentence containing these regex patterns is placed in the middle of

the snippet surrounded by either previous or next sentence from the context. Each snippet

contains at most three sentences, depending on where the key regex patterns appear. Those

appearing in the figure legend of figures or the boundary of a paragraph may consist of less

than 3 sentences. The number of snippets we obtained from this process was 22,013, from

which we then chose 3,192 snippets (from 995 unique articles) that contained the regex pattern

(A|a)ntibod(y|ies) for further labelling. The above steps basically extract candidate

snippets that refer to antibody specificity. We examined the rest of 19,203 snippets and could

not find any related to antibody specificity.

The snippets containing RRID mentions were extracted similarly but extra steps were per-

formed to ensure that there will be no more than one RRID in an RRID snippet to be paired

with a specificity snippet. Given a mention of RRID in the text, we include at most three sen-

tences in its context to create the snippet in the same way as when we prepare snippets for

specificity statements. However, if the sentence before or after the sentence where the RRID

mention appears contain other RRID mentions, they will not be included. If the sentence

where the RRID mention appears contains other RRID mentions, the sentence will be split

into sub-strings at RRID mentions and only the sub-string that contains the RRID mention

will be retained. The sub-strings that contain other RRID mentions will be discarded.

Since the format of RRID is strictly standardized, identifying RRID mentions is highly accu-

rate. We have been using a semi-automatic curation pipeline to monitor how authors specify

RRIDs in publications. In our previous study [28], we found that regex (RRID-by-RDW)

achieved 0.944 F1-score. The errors are due to malformed RRIDs by authors. As more tools

are developed to support the use of RRIDs, we expect these errors to diminish. An example of

such tools has been implemented by the journal eLife [28].

Data annotation. After initial labeling of the specificity levels and RRID linkings between

the RRID and antibody snippets, we created a specialized annotation interface within a Google

Sheets (RRID:SCR_017679) to further annotate the training examples. In each row, the spread-

sheet interface listed the RRID snippet, followed by the supposed antibody snippet in correla-

tion to the RRID, and Apps Script powered cells that allowed the curator to mark whether or

not the RRID linking existed and the specificity of the snippets to one another. The RRID link-

ing choices included yes and no, while the specificity labels included positive, neutral, and neg-

ative. As an example use case, if the antibody in the antibody snippet matched the RRID

presented in the RRID snippet, then the RRID linking would be marked as “yes.” And if the

antibody snippet mentioned that the antibody was specific, then the specificity label would be

marked as “positive.”
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Furthermore, indicating the specificity classes of the antibodies mentioned in the snippets

was made easier by color highlighting. The antibody snippets were populated to highlight the

mentioned antibody in red and its specificity in blue, allowing for easier recognition of an anti-

body with its proposed specificity label.

Based on this specialized annotation interface with color highlighting, a curator would only

need to continue reviewing each RRID snippet with its antibody snippet along the row to be

able to adequately identify whether or not an RRID linking exists, as well as its identified speci-

ficity label. As such, the interface allowed for better and easier linking and specificity labeling

practices moving forward. Two curators with antibody lab experience contributed to the link-

ing and labeling of these snippets. Comparing the annotations by the two curators for 720

snippet pairs, we obtained κ = 0.74 for the task of linking and weighted κ = 0.61 for specificity.

Weighted κ was considered because the classes were ordered. Both are in the range of substan-
tial agreement. These 720 pairs were selected from the error cases from our early versions of

text mining systems and were relatively challenging to annotate. The annotations of all snip-

pets were then cross-examined by other authors to make final annotations (Table 2).

The disagreement was mainly because initially “neutral” was not consistently annotated

between curators, resulting in 128/720 cases being annotated as either “specific” or “neutral.”

Many of them state that a specificity test for antibodies was performed. If a positive result is

reported then it is specific but neutral if no result is reported. For example:

To confirm specificity of each monoclonal antibody, an ELISA was performed . . .

The above sentence (PMID 27342872) is followed by a lengthy description of how the

ELISA test was performed but no result was given and should be annotated as “neutral,”

though one may argue that no result given implies that no issue and thus is specific. However,

we would like to train the model to classify based on given evidence instead of inferring what

may be implied and decided to annotate in this way.

As expected, the data are highly skewed to the class “specific” because most authors vali-

dated their antibodies either experimentally or by citing one or more sources, but we still iden-

tified about 9.44% of cases that were nonspecific. It is expected that there should be more

neutral statements but we filtered out most of them with keywords (missing any mention of

terms like “antibody”). For the task of RRID linking, since specificity statements link only to a

small number of all antibodies used in a study, “yes” linking constitutes only 15.18% of pairs.

Finally, the last row of Table 2 shows the number of each specificity class of the specificity snip-

pets annotated in the 1,100 positive RRID linking examples. These annotations served as our

ground truth to evaluate the joint task—combining task 1 and task 2 to extracting triples of

Table 2. Statistics of the annotated data. We annotated 2,639 snippets for specificity classification (Task 1) and 7,245 snippet pairs for RRID linking (Task 2). Among

7,245, 1,100 are linked. Their specificity class distribution is shown (Joint).

Task (unit) Label Number

Task 1: Specificity Classification (snippets) Nonspecific Neutral Specific Total

266 263 2,110 2,639

Task 2: RRID Linking (snippet pairs) Yes No Total

1,100 6,145 7,245

Joint (triples of RRID-specificity-snippet) Nonspecific Neutral Specific Total

87 76 937 1,100

https://doi.org/10.1371/journal.pcbi.1008967.t002
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RRID, specificity class, and the specificity snippet to populate the Antibody Watch knowledge

base.

Results

Task 1: Specificity classification

Table 3 shows the results of 5-fold cross-validation for a broad range of models for Task 1 spec-

ificity classification. Our experiments comparing BERT, BioBERT and SciBERT showed that

models using SciBERT constantly outperformed their counterparts though the results with the

other two transformers are competitive. We therefore show the results of all models using Sci-

BERT for an in-depth comparison and only the best models from BioBERT. The hyperpara-

meter settings for the training are given in S1(C) Text.

Models named with “CLS” are those using Eq (2) as the final snippet representation, while

those without use Eq (1). SciBERT and SciBERT-SPC are baseline models that use the output

term of the last layer of the transformer as the predicted class without or with the aspect term

(i.e., “antibody”), respectively. We replaced the BERT layer in AEN [20] and LCF [19] with Sci-

BERT and tested them with or without “CLS” as described above to create four competing

models.

Among the twelve models tested, “AOA-CLS-SciBERT” in our (ABSA)2 family achieved

the best overall performance and the best for the nonspecificity (negative) class, the most

important class for our aim of providing alerts of problematic antibodies. SciBERT-SPC also

performed well as the overall second best model. Additional layers on top of the AOA model

failed to improve the overall performance, though BiLSTM with CLS performed the best for

the neutral class and can be helpful to exclude irrelevant statements. AEN and LCF models

also performed well but fell short of our best (ABSA)2 model. We note that our dataset is more

unbalanced than the benchmark datasets for ABSA sentiment analysis [33] yet our numbers

are at about the same level. The results suggest that our task of specificity classification can be

accomplished with our (ABSA)2 model.

Table 3. Specificity classification performance comparison.

Model Specific Non-specific Neutral Macro F1 Weighted F1

(ABSA)2 Models (Ours)

AOA-SciBERT 0.956 0.830 0.748 0.845 0.921

AOA-CLS-SciBERT 0.958 0.832 0.750 0.847 0.925

AOA-BiLSTM-SciBERT 0.954 0.820 0.734 0.836 0.918

AOA-BiLSTM-CLS-SciBERT 0.956 0.794 0.768 0.839 0.921

AOA-MHA-SciBERT 0.954 0.798 0.746 0.833 0.917

AOA-MHA-CLS-SciBERT 0.944 0.618 0.718 0.760 0.909

SciBERT 0.908 0.640 0.274 0.607 0.819

SciBERT-SPC 0.954 0.824 0.756 0.845 0.924

BioBERT-SPC 0.946 0.800 0.732 0.826 0.912

AOA-BioBERT 0.956 0.796 0.746 0.830 0.918

AEN-SciBERT 0.958 0.826 0.728 0.837 0.921

AEN-CLS-SciBERT 0.956 0.812 0.740 0.836 0.920

LCF-SciBERT 0.952 0.812 0.724 0.829 0.916

LCF-CLS-SciBERT 0.956 0.826 0.746 0.843 0.922

Numbers are F1; in bold fonts are the best results. Macro F1 is the average of F1 of all classes. Weighted F1 is the average of F1 weighted by the number of instances of

each class.

https://doi.org/10.1371/journal.pcbi.1008967.t003
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Task 2: Antibody RRID linking

A 5-fold cross-validation was applied to evaluate the performance of each model for the RRID

linking task (Table 4), in which SciBERT-SPC performed the best, achieving 0.962 in accuracy,

even though the data is highly skewed to “no” linking. Remarkably, the baselines and the

BiLSTM Siamese models are far off from the level of the performance of those with transform-

ers, suggesting that the task is difficult for these methods.

Complete workflow

We have evaluated the performance for each individual task. We would like to evaluate both

tasks jointly as a complete workflow shown in Fig 1. That is, how well can the workflow cor-

rectly extract triples of RRID, specificity class and snippet as the evidence to effectively popu-

late the Antibody Watch knowledge base automatically?

Table 5 shows the result by joining our best performing models for Task 1 and 2 according

to Tables 3 and 4, respectively, to assign RRID and specificity class to a specificity snippet.

Here, a true positive is defined as a pair of RRID-snippet and specificity snippet where the

RRID-linking assignment is “yes” and the specificity class is the same by both ground truth

annotation and model prediction. Precision of a class C is the ratio of the number of true posi-

tives of C and the number of all predictions where the RRID-linking assignments are “yes” and

the specificity classes are C. Recall of a class C is the ratio of the number of true positives of C
and the number of all ground truth annotations where the RRID-linking assignments are “yes”

and the specificity classes are C.

Table 4. RRID-linking performance comparison.

Model Precision Recall F1 Accuracy

BERT-SPC 0.830 0.859 0.844 0.952

SciBERT-SPC 0.861 0.896 0.878 0.962

BioBERT-SPC 0.844 0.874 0.858 0.956

Baseline (0.8) 0.579 0.633 0.605 0.483

Baseline (0.9) 0.591 0.665 0.626 0.600

Baseline (1.0) 0.603 0.671 0.635 0.689

BiLSTM+Manhattan 0.502 0.506 0.504 0.696

BiLSTM+Euclidean 0.522 0.536 0.529 0.664

Numbers in bold fonts are the best results.

https://doi.org/10.1371/journal.pcbi.1008967.t004

Table 5. Complete workflow performance.

Class Truth Predicted Precision Recall F1

Nonspecific 87 101 0.802 0.931 0.862

Neutral 76 81 0.728 0.776 0.752

Specific 937 924 0.938 0.925 0.932

Total/Macro 1,100 1,106 0.823 0.878 0.848

Weighted 0.913 0.915 0.914

The last second row shows the totals for the ground truth (Truth) and the predicted (Predicted) numbers and the macro averages of the metrics. The last row shows the

weighted metrics as defined in the footnote of Table 3.

https://doi.org/10.1371/journal.pcbi.1008967.t005
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Table 5 shows that our workflow equipped with (ABSA)2 for specificity classification and

SciBERT-SPC for RRID linking achieved macro F1 over 0.8 and weighted F1 over 0.9 on

5-fold cross validation.

Discussion

Remarkable cases

When authors were unsure about the specificity of antibodies, we annotated those cases as

nonspecific, i.e., problematic. For example,

. . .A panShank antibody was also used to assay overall Shank protein levels, with the caveat
that the affinity of the PanShank antibody to different Shank isoforms was unknown. . . .

(PMID 2925091)

Note that the snippet contains three sentences but we only show the sentence that illustrates

the point to fit the page limit. Again, “PMID” is the PubMed ID of the paper where the exam-

ple snippet appears.

A source of confusion that puzzled both curators and our deep neural network models is

that the term “nonspecific” may be used to refer to an antibody that is used purposefully not to

target an antigen in order to block unintended reactions or serve as a negative control in

experimental validation of antibodies. For example, here is a snippet that should be labeled

“positive.”

. . .The supernatant was pre-cleared by immunoprecipitation with non � specif ic antibodies
(NIgG) to remove and identify non � specif ic proteins, which may contaminate the Atk2 Co-
IP and . . .

(PMID 26465754)

Another positive example with “nonspecific” mentioned:

To test if this effect was direct, ChIP assays were performed using anti-E2F1 antibodies and

specific primers amplifying the -214/+61 PITX1 proximal promoter region. . . .A
nonspecif ic antibody was used as a negative control, and the thymidine kinase (TK) promoter
region, containing known E2F1 binding sites, was used as a positive control . . .

(PMID 27802335)

Still, most snippets with “nonspecific” state that an antibody does not always bind to its tar-

get antigen and is problematic.

. . .five out of six commonly used anti-Panx1 antibodies tested on KOmouse tissue in Western
blots were “non� specif ic” . . .

(PMID 23390418)

(ABSA)2 can correctly classify all examples above as well as double negation snippets as pos-

itive as given below.
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. . .Negative controls for CD99 immunohistochemistry were established on adjacent lung sec-
tions by omitting incubation with CD99 primary antibody and did not demonstrate
nonspecif ic binding. . . .

(PMID 26709919)

RRID

Our approach leverages RRIDs to link a snippet about antibody specificity to an exact antibody

entity used in the reported study. Not all papers identify antibodies with their RRIDs. It is our

plan to mine these statements with our task 1 model and manually (or semi-automatically)

assign these statements to antibodies. We are currently developing a prototype pipeline to

facilitate the whole process as a part of our dkNET service.

Meanwhile, the use of RRIDs has grown steadily. From an initial pilot in 2014 comprising

approximately 25 journals, mostly in neuroscience, the use of RRIDs has grown considerably,

with RRIDs appearing in over 1,200 journals and 21K articles. They are required by several

major journals across multiple biomedical disciplines. Over 225K resources have been identi-

fied using the RRID specification as of March 2020. The RRID syntax was recently added to

the Journal Article Tag suite (JATS ver# 1.3d1), an XML standard for mark-up of scientific

articles in the biomedical domain, signaling that the academic publishing community has

accepted RRIDs as a standard method for tagging research resources.

The prevalence of RRID and advances in NLP will allow text mining knowledge bases like

Antibody Watch to grow into mature and indispensable references for scientists and general

public users to obtain reliable statistics about a broad range of biomedical research resources.

The approach presented here is an example where we add “landmarks” (i.e., RRIDs) to allow

automation to become practical. This approach can be traced back from the rails and airports

for trains and airplanes to operate, to landmarks in an automobile plant for assembly robots to

calibrate, and more recently, proposals to assign special traffic zones with signs and rules

designed for autonomous vehicles. Mons [37] asked “why bury it first then mine it again?” and

advocated the use of semantic tagging in scientific publication to facilitate biomedical text

mining. Here, we present a successful use case where RRIDs serve as the landmarks for text

mining robots, making detecting antibody specificity feasible and reliable.

Future work

We plan to extend and replicate the general approach of integrating RRID with advanced deep

neural network NLP models to quantify impact and influence of research resources by auto-

mated text mining. We will develop more text mining systems to extract quality statements

about other research resources, including cell lines, data repositories, statistics and bioinfor-

matics tools, etc. These statements will be made available through the “Resource Reports”

developed by the NIDDK Information Network (dkNET.org). Resource Reports aggregate

information based on RRIDs into a single report. Information includes basic information

about the resource, papers that use the resource and any known issues regarding its perfor-

mance. In a previous study [17], we showed that the use of RRIDs for cell lines correlated with

a dramatic decrease in the number of papers published using problematic cell lines. We specu-

late that because when authors search the resource database for cell lines to obtain an RRID,

they are confronted with a warning when the cell line is contaminated or misidentified. We

hope to achieve the same type of alerting service for other types of resources like antibodies.
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Conclusion

In this work we present a novel approach to the antibody specificity problem by automated

text mining and show that the approach is feasible. We formulated the problem and divided it

into two tasks: 1) extracting and classifying snippets about antibody specificity and 2) linking

the extracted snippets to antibodies that they refer to. We created a set of ground truth from

two thousand articles reporting studies using antibodies as experimental reagents. We pro-

posed an approach leveraging RRID to solve the challenging antibody identification problem

and developed deep neural network models based on a transformer to achieve weighted F1

and accuracy over 0.9 for the two tasks respectively and the joint task when the two tasks com-

bined to complete the workflow, where antibody specificity statements are extracted and

assigned to exact antibody entities unambiguously. We will continue annotating more training

examples to boost the performance. The approach can be applied to the ever growing number

of publications and antibodies and provide scientists a reliable source about the specificity of

antibodies.

Supporting information

S1 Text. Implementation details. A. Overview of AEN and LCF. B. Siamese BiLSTM. C.

Hyperparameter settings. Recently, models based on the attention-encoder network (AEN)

and local context focus mechanism (LCF) models were reported to achieve state-of-the-art

results for benchmark ABSA datasets. We also implemented these models and their variants

for a comparison. AEN learns to build attention links within an input sentence and between

the input sentence and the aspects to perform aspect-based sentiment analysis. LCF focuses on

using attention mechanisms to relate local context to the aspects. The details of our implemen-

tation are given in A. A neural network model with a Siamese Recurrent Architecture consists

of two recurrent neural network components trained to have identical parameters (thus the

name “Siamese”) to read a pair of different input sentences. Then the difference between the

output vectors of the two components is computed to determine if the input sentences are sim-

ilar. We used either Manhattan or Euclidean distance as the last layer to measure the similarity

between the input snippet pair for our task of RRID linking. B describes the details. The hyper-

parameter settings for the training are given in C.
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