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The origin and evolution of clitellate annelids—earthworms, leeches and

their relatives—is poorly understood, partly because body fossils of these

delicate organisms are exceedingly rare. The distinctive egg cases (cocoons)

of Clitellata, however, are relatively common in the fossil record, although

their potential for phylogenetic studies has remained largely unexplored.

Here, we report the remarkable discovery of fossilized spermatozoa preser-

ved within the secreted wall layers of a 50-Myr-old clitellate cocoon from

Antarctica, representing the oldest fossil animal sperm yet known. Sperm

characters are highly informative for the classification of extant Annelida.

The Antarctic fossil spermatozoa have several features that point to affini-

ties with the peculiar, leech-like ‘crayfish worms’ (Branchiobdellida). We

anticipate that systematic surveys of cocoon fossils coupled with advances in

non-destructive analytical methods may open a new window into the evol-

ution of minute, soft-bodied life forms that are otherwise only rarely

observed in the fossil record.
1. Background
Despite recent advances in molecular phylogenetics [1–4], the evolutionary

history of Clitellata—earthworms, leeches and their relatives—is still poorly

understood. This is in part because the delicate bodies of clitellates consist

almost entirely of soft tissues, and can thus become fossilized only under excep-

tional circumstances [5]. Nevertheless, these organisms have left a peculiar

presence in the fossil record in the form of dispersed egg cases (cocoons), which

are very resistant to physical and chemical decay [6]. Clitellate cocoons are

common, though sporadically illustrated, components of plant micro- and meso-

fossil assemblages obtained via bulk dissolution of clastic sedimentary rocks [6–9]

as old as Middle Triassic [10]. This potential source of information about the origin

and evolutionary history of clitellates has, however, received little scientific atten-

tion thus far, because it would appear impossible to determine the systematic

affinities of the cocoon producers in any greater detail based on morphology alone.

Here, we report the occurrence of fossil spermatozoa that are preserved

embedded in the wall layers of a 50-Myr-old (early Eocene) clitellate cocoon

from Antarctica. These are the oldest fossil animal spermatozoa yet identified.

Some morphological features of the spermatozoa are reminiscent of those of

extant Branchiobdellida, a peculiar group of leech-like worms whose extant

representatives are ectosymbionts on freshwater crayfish.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2015.0431&domain=pdf&date_stamp=2015-07-15
mailto:benjamin.bomfleur@nrm.se
http://dx.doi.org/10.1098/rsbl.2015.0431
http://dx.doi.org/10.1098/rsbl.2015.0431
http://rsbl.royalsocietypublishing.org
http://rsbl.royalsocietypublishing.org


rsbl.royalsocietypublishing.org
Biol.

2
2. Material and methods
The fossil Clitellata cocoons were collected from marginal-marine

deposits of the La Meseta Formation, Seymour/Marambio Island,

Antarctic Peninsula (e.g. [11]; electronic supplementary material,

figure S1). Individual cocoons were picked from dry-sieved sedi-

ment samples of poorly consolidated, shelly conglomerate

informally referred to as the ‘Natica horizon’. The age of this deposit

is considered to be approximately 50 Ma (Ypresian, early Eocene)

based on strontium isotope dating and mammal biostratigraphy

(e.g. [11]; see the electronic supplementary material). The fossils

were analysed via light and scanning electron microscopy and

via synchrotron-radiation-based X-ray tomographic microscopy

(electronic supplementary material).
Lett.11:20150431
3. Results
A single, approximately 1.5 � 0.8 mm, small annelid-cocoon

fragment (specimen NRM-S089729) exposes the inner surface

of the cocoon wall (figure 1a). The wall consists of a more than

25-mm-thick solid inner layer enveloped by a 5–10-mm-thick

spongy outer layer composed of a loosely amalgamated

network of interwoven ‘cables’ up to approximately 5 mm in

diameter [12] (figure 1b).

SEM analysis revealed various micro- and nano-inclusions

embedded in the inner layer of the cocoon wall (figure 1c). The

most conspicuous biological inclusions are fragments of

straight or variably bent, narrowly cylindrical elements that

reach approximately 18 mm long by approximately 600 nm

wide and have a characteristic, helical ‘drill-bit’ structure,

in some cases containing more than 80 gyres each with indis-

tinct transverse striations (figure 1d– f ). Other elements are

rod-shaped, up to 12 mm long and approximately 500 nm

wide, and with a finely granular texture (figure 1g,h). These

commonly bear a whip-like tail up to approximately 250 nm

thick and more than 30 mm long (figure 1h). Where these

tails are well preserved and sharply defined, they reveal a

regular beaded morphology reminiscent of a helical anatom-

ical structure (figure 1i). In addition, we found a few

approximately 5-mm-long and approximately 400-nm-wide,

isolated elements that are composed of several intertwined,

coiled fibres (figure 1c) that have a significantly lesser angle

of coiling than the rather strongly compressed, simple spiral

of the ‘drill-bit’ elements (figure 1d– f ). Associated fossil

bacteria consist mostly of rod-shaped, approximately 2-mm-

long and approximately 0.8-mm-wide bacilli (figure 1j );
many bear a characteristic dimple on the surface (figure 1j,
arrow), and some occur in chains or clusters. Additionally,

we attempted synchrotron-radiation-based X-ray tomographic

microscopy on a portion of a cocoon wall; possible spermato-

zoa were detectable, but only at the limit of the instrument’s

resolution (see electronic supplementary material, figure S2).
4. Discussion
Similarities in dimensions, structure and texture indicate that

the isolated elements described above represent the various

components of the specialized filiform spermatozoa typical

of clitellate annelids. Being very short-lived and delicate

structures, spermatozoa are very rare in the fossil record.

Perhaps the best-documented examples are spermatozoids

of early land plants from the Devonian Rhynie Chert [13]

and of gymnosperms from the Permian of Australia [14].
Preservation of animal spermatozoa is exceedingly rare, with

just single pre-Quaternary records of collembolan spermato-

zoa from late Eocene Baltic amber [15] and of phosphatized

giant spermatozoa of ostracods from Miocene cave deposits

of Australia [16]. The clitellate spermatozoa described herein

thus constitute the oldest fossil animal spermatozoa yet

recorded, predating the previous oldest occurrence (late

Eocene [15]) by at least 10 Myr.

Interestingly, of all morphological features that the anne-

lid body plan exhibits, those that are currently considered

among the most informative for resolving systematic relation-

ships relate to the morphology and ultrastructure of the

spermatozoa [2,17–20]. However, detailed comparisons of

the fossils with extant taxa are difficult at present for several

reasons: first, although progressively more living taxa are

being sampled [21], our knowledge of the structural diversity

of extant clitellate spermatozoa is still very incomplete;

second, the fossil material consists mostly of disarticulated

remains that yield limited information about the architecture

of the complete spermatozoa; and third, the study of extant

material has relied largely on TEM analysis to resolve ultra-

structural features, whereas little is known about the gross

morphology and texture of spermatozoa when studied

using SEM, as is the case with the fossil material. We surmise

that future detailed analyses of fossil cocoon inclusions,

perhaps using nanotomographic methods (e.g. [16]), might

reveal preservation of ultrastructural features in embedded

spermatozoa, which would provide a great leap forward

for precisely identifying cocoon-producing annelids in the

fossil record.

Despite these constraints, we contend that several features

of the fossil spermatozoa point to probable affinities of

the cocoon producer with the peculiar ‘crayfish worms’

(Branchiobdellida). The long, conspicuous ‘drill-bit’ structures

(figure 1d–f) are very similar to the characteristic, greatly

elongate acrosomes of Branchiobdella (figure 1k–m; [20,22]),

which in extreme cases can reach 90 mm in length, forming

the longest acrosomes in nature [18]. Moreover, the beaded

appearance of some flagella (figure 1d,i) may be due to the

presence of a helical marginal fibre (figure 1k), a feature

unique to the tails of branchiobdellid spermatozoa [19,20].

Finally, the granular surface texture of some elements anterior

to the tail (figure 1g,h) matches that of the nuclear regions

of branchiobdellid sperm as seen in freeze-dried material

studied via SEM (figure 1m,n). Extant branchiobdellids are

obligate symbionts of freshwater crayfish of the Northern

Hemisphere, and their evolutionary and phylogeographic

history is supposed to be closely linked to that of their host

taxa [22]. Hence, their possible fossil occurrence in Antarctic

freshwater ecoystems of the early Eocene greenhouse world

would markedly extend their palaeobiogeographic distribu-

tion, indicating that their evolutionary history may be more

complex than currently recognized.

Clitellate annelids secrete their cocoons from the clitel-

lum—a series of specialized body segments—initially in the

form of a mucous substance onto which proteinaceous

material is deposited in successive layers and in characteristic

arrangements (figure 2; [12]). In most cases, eggs and sperm

are then released into the cocoon by the hermaphroditic adult

as the animal withdraws (figure 2c). The cocoon is finally

sealed and deposited, and then cures over several hours to

days to form a resistant egg case for the developing embryos

[12]. Spermatozoa appear to commonly become entrapped



(a)

(d )

(h)

(k)

ac
nr

mr nr

nr

mr

ac

mp
tl

(l)

(m) (n)

(i) ( j)

(e)

(g)

( f )

(b) (c)

Figure 1. Scanning electron micrographs of the Antarctic annelid-cocoon fossils showing cocoon structure and included spermatozoan fragments and bacteria (a – j),
with images of extant branchiobdellid spermatozoa for comparison (k – n). (a) Overview of cocoon fragment. (b) Fracture surface showing spongy outer (left) and
compact inner (right) wall layers. (c) Encased bacteria and spermatozoan fragments; note element showing multiple coils (arrow). (d ) Encased spermatozoan frag-
ments with tail portions (arrows). (e) Encased spermatozoan fragments resembling acrosomes. ( f ) Encased spermatozoan fragment tangentially encased in the
cocoon wall. (g) Spermatozoan fragment showing granular texture. (h) Spermatozoan fragment showing granular texture and attached tail portion. (i) Isolated
tail portion showing beaded structure (arrow). ( j ) Encased rod-shaped bacilli with characteristic dimples (arrow). (k – n) Spermatozoa of Branchiobdella sp. showing
‘drill-bit’ type acrosomes (ac), mid-pieces (mp) with nuclear (nr) and mitochondrial regions (mr), and tail regions (tl); note the suture between acrosome and
nuclear region in (m) (arrow). Scale bars: (a) ¼ 250 mm; (b) ¼ 20 mm; (c – e,h,i,m) ¼ 1 mm; ( f,g,n) ¼ 500 nm; ( j,l ) ¼ 2 mm; (k) ¼ 10 mm.
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Figure 2. Diagram illustrating the inferred mode of fossilization of microorganisms in clitellate cocoons, exemplified by a common medicinal leech (reproductive
stages modified from Sims [23]). (a) Two leeches mate; (b) a cocoon is secreted from the clitellum; (c) eggs and sperm are released into the cocoon before the
animal retracts and eventually deposits the sealed cocoon on a suitable substrate (d ). Insets depict enlargements of the inner cocoon-wall surface showing how
spermatozoa and microbes become encased in the solidifying inner cocoon wall.
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together with other microorganisms inside the proteinaceous

cocoon wall before the material is completely solidified

(figure 2c,d ). Two previous studies have identified micro-

scopic soft-bodied organisms encased in the walls of fossil

clitellate cocoons: a nematode in an Early Cretaceous cocoon

from Svalbard [24] and a Vorticella-like ciliate protozoan in a

Triassic cocoon from Antarctica [9]. This unusual fossilization

process appears to be analogous to entombment in amber—

both processes permitting three-dimensional preservation of

hard- or soft-bodied microorganisms with very fine morpho-

logical and structural details [25]. Thus, clitellate annelid

cocoons offer an outstanding and little-studied preservational

medium for a potentially broad range of microscopic soft-

bodied organisms of various freshwater, soil and leaf-litter

habitats. We anticipate that systematic surveys of ancient

cocoons may open a unique window into the evolutionary his-

tory of a range of soft-bodied microorganisms that otherwise

lack a fossil record.
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