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Previous investigations have reported that microRNA-126 (miR-126) and its host gene,
epidermal growth factor-like domain-containing protein 7 (EGFL7) are involved in lung
cancer progression, suggesting EGFL7 and miR-126 play a joint role in lung cancer
development. In this study, we analyzed the methylation-associated regulation of EGFL7
and miR-126 in non-small cell lung cancer (NSCLC) and further investigated the
association between EGFL7/miR-126 polymorphisms and NSCLC susceptibility in the
Han Chinese population. Based on our data, relative to those in adjacent normal tissue,
both EGFL7 expression and miR-126 expression were decreased significantly in lung
cancer tissue (P = 3x10-4 and P < 1x10-4), and the expression of EGFL7 mRNA and miR-
126 was significantly correlated in both NSCLC tissue n = 46, r = 0.43, P = 0.003 and
adjacent normal tissue n = 46, r = 0.37, P = 0.011. Differential methylation analysis
indicated that methylation levels of multiple CG loci in EGFL7 were significantly higher in
the lung cancer samples than in the normal samples (P < 0.01). Moreover, EGFL7 mRNA
and miR-126 were significantly upregulated after treatment with the DNA demethylating
agent 5-aza-2′-deoxycytidine (5-Aza-CdR) in lung cancer cell lines. In addition, the A allele
of rs2297538 was significantly associated with a decreased NSCLC risk (OR = 0.68, 95%
CI: 0.52~0.88), and the expression of EGFL7 and miR-126 was significantly lower in
rs2297538 homozygous G/G tumor tissue than in A/G+A/A tumor tissue (P = 0.01 and
P = 0.002). Our findings suggest that the expression of EGFL7 and miR-126 in NSCLC
can be concomitantly downregulated through methylation and the EGFL7/miR-126
polymorphism rs2297538 is correlated with NSCLC risk. Together, these results
provide new insights into the pathogenesis of NSCLC.
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INTRODUCTION

Lung cancer is one of the most common cancers in the world; in
2020, there were more than 2.2 million newly reported lung
cancer cases and over 1.79 million new lung cancer-related
deaths worldwide (1). Non-small cell lung cancer (NSCLC) is
the most prevalent lung cancer type, accounting for 85–90% of
all lung cancer cases (2).

Recently, studies have demonstrated that genetic factors also
play important roles in the occurrence of lung cancer, and twin
studies have shown that the heritability of lung cancer is
approximately 18% (3, 4). In recent years, a number of
differentially expressed genes have been identified in lung
cancer (5–7), and many researchers have turned their attention
to the study of common single nucleotide polymorphisms
(SNPs) in human carcinogenic/anticancer genes (8–10). These
studies can not only expand our understanding of the
pathogenesis of lung cancer but also provide new clues for the
diagnosis and treatment of this disease.

Epidermal growth factor-like domain-containing protein 7
(EGFL7) is a secreted protein that was initially reported to play a
key role in angiogenesis (11, 12). Subsequently, the dysregulation
of EGFL7 has been found in a variety of tumors, including lung
cancer (13), hepatocellular carcinoma (14), acute myeloid
leukemia (15) and malignant pleural mesothelioma (16),
suggesting that EGFL7 participates in tumorigenesis through a
wide range of effects.

MicroRNA−126 (miR−126) is located within intron 7 of EGFL7
on human chromosome 9q34.3 (17). Recent studies have shown
that miR-126 is downregulated in various cancer tissues, including
breast cancer (18), pancreatic cancer (19) and lung cancer (20). In
recent years, increasing evidence has demonstrated the role of miR
−126 in lung tumorigenesis via targeting multiple genes including
CCR1 (21), PIK3R2 (22), Crk (23) and so forth. In addition, miR
−126 has been found to play a role in both diagnosis and prognosis
of NSCLC (24, 25), thus indicating that miR−126 could be a
promising biomarker in lung cancer.

Previous investigations have shown that miR−126 is not
transcribed from its own promoter but is likely transcribed
together with its host gene EGFL7 (17), indicating that the
expression levels of miR-126 and EGFL7 may be regulated by
the same mechanisms during the occurrence of NSCLC.
Furthermore, studies have identified CpG islands around the
transcription initiation site of EGFL7 (17); thus, it is reasonable
that miR-126 and EGFL7 can be silenced by methylation of
cytosine residues. In addition, recent studies have revealed that
single nucleotide polymorphisms (SNPs) in gene regulatory and
coding regions could confer risk of lung cancer by regulating the
expression of specific genes (26–28). Thus, SNPs in the
transcriptional regulatory region and coding region of EGFL7
might also play a role in the regulation of EGFL7 and miR-126
expression and are further involved in NSCLC susceptibility.
Herein, we explored the methylation-associated regulation of
miR-126 and EGFL7 in NSCLC and further investigated the
association between EGFL7 polymorphisms and NSCLC
susceptibility in the Han Chinese population. We showed that
the expression of miR-126 and EGFL7 is concomitantly
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downregulated in NSCLC through methylation and that the
eQTL-missense polymorphism of EGFL7 is associated with
lung cancer risk in a Han Chinese population.
MATERIALS AND METHODS

Subjects and Tissue Samples
This study was approved by the Ethics Committee of the Third
Affiliated Hospital of Kunming Medical University, and all study
protocols were performed in accordance with the Declaration
of Helsinki. Written informed consent was acquired from
each participant.

We performed a case-control association study, a total of 497
patients with NSCLC treated in the Third Affiliated Hospital of
Kunming Medical University in Yunnan were selected as the case
group, and 502 healthy people undergoing a physical examination
in the hospital during the same period were selected as the control
group. The NSCLC patients were diagnosed according to the
Chinese Medical Association guidelines for clinical diagnosis and
treatment of lung cancer (Edition 2018) at the Third Affiliated
Hospital of Kunming Medical University. The lung cancer
histological type and pathologic stage were identified according to
the International System for Staging Lung Cancer (29). The NSCLC
patient inclusion criteria: 1) the patients were histologically and
pathologically diagnosed NSCLC (adenocarcinoma and squamous
cell carcinoma); 2) the patients had not received chemotherapy and
radiotherapy. The criteria for the exclusion was 1) the patients with
a prior history of primary cancer other than lung cancer; 2) the
patients with small cell lung cancer or unclear pathological
diagnosis; 3) the patient with malignant tumors except lung cancer.

A total of 46 matched sets of primary NSCLC tumors and
adjacent normal tissues were acquired from NSCLC patients at
the Third Affiliated Hospital of Kunming Medical University. All
tissues were identified by pathological examination and fresh-
frozen at -80°C.

Quantitative RT–PCR
Total RNA was isolated from tissues or cells using TRIzol
reagent. The PrimeScript™ RT reagent Kit with gDNA Eraser
(TaKaRa Bio Inc, Tokyo, Japan) was used to synthesize cDNA.
We reverse transcribed 1 µg of total RNA, and diluted cDNA at a
final concentration of 20 µg/µL. Quantitative real-time PCR was
carried out under the following conditions using SYBR Green to
detect the expression levels of EGFL7 and miR-126 in NSCLC
tissues and corresponding adjacent tissues in clinical patients:
denaturation at 95°C for 10 min, followed by 40 cycles of
denaturation at 95°C for 15 s, annealing at 60°C for 15 s, and
extension at 72°C for 15 s. GAPDH was used as the internal
control of EGFL7, and U6 was used as the internal control of
miR-126. All the primers are listed in Table S1.

Cell Culture
All the cell lines used in this study were originally obtained from
the ATCC. Human lung epithelial BEAS-2B cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM, Gibco)
containing 10% fetal bovine serum (FBS, Gibco), SPC-A1 cells
April 2022 | Volume 12 | Article 772405
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were cultured in RPMI-1640 with 10% fetal bovine serum (FBS,
Gibco), H1299 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco) containing 10% fetal bovine serum
(FBS, Gibco). Cells were cultured in a cell incubator at 37°C with
5% CO2.

5-Aza-2’-Deoxycytidine
(5-Aza-CdR) Treatment
5-Aza-CdR has been widely used to demonstrate the correlation
between loss of methylation in specific gene regions and
activation of the associated genes (30). In the current study,
BEAS-2B, SPC-A1 and H1299 cells were seeded in six-well
culture dishes 24 h prior to treatment with 5-Aza-CdR. 5-Aza-
CdR was continuously administered by replacing the medium
containing 5-Aza-CdR (0 mM and 10 mM) every 24 h for 2 days.
The dose of 5-Aza-CdR (10 mM) was chosen based on our
preliminary studies. Similar reactivation was shown of EGFL7
and miR-126 expression when cells were treated with varying
concentrations (1–10 mM) of 5-Aza-CdR as well as previously
published studies (31, 32). Cells were then harvested for total
RNA extraction to demonstrate whether treatment with the
demethylating agent was able to increase EGFL7 and miR-126
mRNA expression in these cell lines.

SNP Selection
In this study, 1670 bp upstream of the EGFL7/miR-126
transcription start site was chosen as the promoter region
according to a previous study (33). JASPAR (http://jaspar.
genereg.net/) was used to predict whether the SNPs in the
promoter region of EGFL7 are located in the transcription
factor binding site and disrupt the binding of specific
transcription factors (34). Missense variants with a minor allele
frequency (MAF) greater than 0.05 were called and filtered using
the Ensembl Variant Effect Predictor (http://www.ensembl.org/
vep) (35). Finally, rs1332793, rs9411260 and rs2297538 were
chosen as candidate SNPs in the current study.

DNA Extraction and Sequencing
A heparin anticoagulant tube was used to collect 10 ml of venous
blood from the study subjects. DNA was extracted by a QIAamp
DNA Blood Mini Kit (Qiagen, Hilden, Germany), and the
concentration and purity of the genomic DNA were detected
by a Multiskan Skyhigh full-wavelength enzyme plate (ND-2000,
Thermo Fisher Scientific). After genomic DNA was extracted, it
was stored in a -20°C refrigerator for later use.

Three SNPs rs1332793, rs9411260 and rs2297538 were
genotyped by TaqMan probe real-time fluorescence
quantitative polymerase chain reaction (RTFQ-PCR). The
probes and primers were designed and produced by Thermo
Fisher Scientific Company (Waltham, MA, USA), and TaqMan
Genotyping Master Mix was purchased from ABI. PCR
amplification was carried out in 384-well reaction plates with
2.5 mL Master Mix, 0.125 mL primer and probe (FAM and VIC)
mix, 1.375 mL ddH2O and 1 mL genomic DNA in each well.
Amplification was conducted in a QuantStudio 6 Flex Fast Real-
Time PCR system as follows: 95°C preheat denaturing for 10
min, 92°C for 10 s and 60°C for 1 min, all repeated for 40 cycles.
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We also confirmed the genotyping results of 20 randomly
selected individuals using Sanger sequencing, and no
genotyping errors were found.

In-Silico Analysis of EGFL7 Expression and
Methylation Status
GEPIA was used to explore the relative expression of EGFL7 in lung
cancer tissue and normal tissue (http://gepia.cancer-pku.cn/), which
provides the expression data of tumors and normal samples from
the TCGA and GTEx projects (36). SurvivalMeth was used to
explore the methylation status of EGFL7 in lung cancer tumor
tissues and normal tissues (http://bio-bigdata.hrbmu.edu.cn/
survivalmeth) (37).

Statistical Analysis
GraphPad Prism 8.3.0 software was used for statistical analysis;
Hardy-Weinberg equilibrium was used to test sample
representativeness. Student’s t-test was used to analyze the age
difference between the NSCLC group and the control group. The
c2 test was used to analyze whether there was a sex difference
between the NSCLC group and the control group. The differences
in allele frequencies and genotype distribution of rs1332793,
rs9411260, and rs2297538 in the NSCLC group and control
groups were also analyzed via c2 test, and the significance
threshold was set at P<0.017 (0.05/3). SHEsis online software
(38) was used to analyze the linkage disequilibrium between SNPs,
and D’ > 0.8 indicates strong linkage between SNPs. The genetic
pattern of SNPs was analyzed by SnpStats online software (39),
obtaining the optimal genetic pattern according to the AIC (akaike
information criterion) and BIC (bayesian information criterion)
values. Relative expression levels of EGFL7 and miR-126 are
presented as the means of 2−DDCt. Statistical tests against
different groups were conducted using a two-tailed t-test.
Spearman’s correlation analysis was performed to detect the
correlation between EGFL7 and miR-126 expression in NSCLC
tumor tissue and adjacent normal tissue. The significance
threshold was set at P<0.05. Statistical analyses were performed
using SPSS 21 (Chicago, IL) and GraphPad Prism 7.00.
RESULTS

Expression of miR-126 and EGFL7 mRNA
Is Significantly Reduced in NSCLC Tissues
Compared With Adjacent Normal Tissues
Previous studies have reported low miR-126 expression in lung
cancer tissue (20). In silico analysis of EGFL7 mRNA expression
indicated that the expression of EGFL7 in lung cancer tissue was
lower than that in normal lung tissue (P < 0.01, Figure S1). To
validate these results, we tested miR-126 and EGFL7 mRNA
expression in lung cancer tissue along with matched adjacent
normal tissue from 46 NSCLC patients using qRT–PCR. We
found that EGFL7 and miR-126 expression decreased significantly
in lung cancer tissue compared with adjacent normal tissue
(P = 3x10-4 and P < 1x10-4, respectively, Figures 1A, B), which
was consistent with in silico analysis (Figure S1) and previous
results (20).
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Expression of miR-126 and EGFL7 mRNA
Is Correlated in NSCLC Tissues and
Adjacent Normal Tissues
To further investigate whether miR-126 and EGFL7 were
concomitantly expressed in NSCLC as previously described for
prostate cancer (17) and malignant pleural mesothelioma (16),
we performed spearman’s correlation analysis to detect the
correlation of miR-126 and EGFL7 expression in both NSCLC
tissues and adjacent normal tissues. Our results showed that the
expression of EGFL7 and miR-126 were significantly correlated
in both NSCLC tissues (n = 46, r = 0.43, P = 0.003, Figure 2) and
adjacent normal tissues (n = 46, r = 0.37, P = 0.011, Figure 2).

EGFL7 and miR-126 Are Upregulated After
Treatment With the DNA Demethylating
Agent 5-aza-2’-Deoxycytidine (5-Aza-CdR)
in Lung Cancer Cell Lines
Previous studies have reported CpG islands in EGFL7 (17). To
investigate the methylation status of EGFL7 in lung cancer tumor
tissues and normal tissues, we performed the differential
methylation analysis of EGFL7 CG loci in patients with
adenocarcinoma (AC) and squamous cell carcinoma (SCC)
using the SurvivalMeth database (http://bio-bigdata.hrbmu.edu.
cn/survivalmeth). Our analysis revealed that the methylation
levels of 4 CG loci (cg08529852, cg14548542, cg17443080 and
cg20997159) within EGFL7 were significantly higher in the AC
Frontiers in Oncology | www.frontiersin.org 4
samples than in the normal samples (P < 0.01, Figure S2).
Furthermore, the methylation levels of 6 CG loci (cg04074066,
cg05936059, cg08529852, cg14353956, cg14548542 and
cg20997159) were significantly higher in the SCC samples than
in the normal samples, while the methylation level of cg21184800
markedly decreased in SCC tumor samples (P < 0.01, Figure S2).
These results were consistent with the result that EGFL7 mRNA
expression decreased in lung tumor tissue and indicated that the
expression of EGFL7 mRNA in NSCLC can be downregulated
through methylation.

To verify the expression of miR-126 and EGFL7 can be silenced
by methylation of cytosine residues in lung cancer cells. BEAS-2B
(non-tumorigenic human bronchial epithelial cells), SPC-A1 and
H1299 cells were treated with 5-Aza-CdR (10 mM) for 48 h. After
treatment with the DNA demethylating agent 5-Aza-CdR, EGFL7
mRNA andmiR-126 were significantly upregulated in both SPC-A1
and H1299 lung cancer cell lines (P < 0.05, Figure 3), while no
significant difference of EGFL7 mRNA expression was observed in
BEAS-2B (Figure 3). Overall, our results indicated that the
expression of miR-126 and EGFL7 mRNA in NSCLC can be
concomitantly regulated through methylation.

Association of EGFL7 and miR-126 Gene
SNPs With NSCLC
Recent studies have revealed that single nucleotide
polymorphisms (SNPs) in gene regulatory and coding regions
A B

FIGURE 1 | Scatter plot of EGFL7 mRNA (A) and miR-126 (B) expression in lung tumor tissue and adjacent normal tissues. The values on Y-axis were presented
as 2–DDCt. **** represent P ≤ 0.0001.
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could confer risk of lung cancer by regulating the expression of
specific genes (26–28), hinting that SNPs in the transcriptional
regulatory region and coding region of EGFL7 might also play
a role in the regulation of EGFL7 and miR-126 expression, and
be further involved in NSCLC susceptibility. Hence, in the
current study, we investigated the association between EGFL7
polymorphisms and NSCLC susceptibility in the Han
Chinese population.

A total of 502 healthy control samples and 497 NSCLC
samples were collected in this study. The clinical characteristics
of the study subjects are summarized in Table 1. No significant
difference in age or sex was found between the control and
NSCLC groups (P = 0.09 and P = 0.13, respectively) (Table 1). In
the NSCLC group, 338 patients had adenocarcinoma (AC), 159
patients had squamous cell carcinoma (SCC), 204 patients were
Clinical stage I+ II, and 293 patients were Clinical stage III+ IV.

All three SNPs (rs1332793, rs9411260 and rs2297538) were in
Hardy-Weinberg equilibrium (HWE) in the control and NSCLC
groups (P > 0.05). The allelic and genotypic distributions of these
Frontiers in Oncology | www.frontiersin.org 5
three SNPs among the healthy control and NSCLC groups are
presented in Table 2. Among these SNPs, the allele and genotype
distributions of rs2297538 were significantly different between
the control and NSCLC groups (P < 0.017). The A allele of
rs2297538 might be associated with a decreased risk of NSCLC
(P = 0.003; OR = 0.68, 95% CI: 0.52~0.88; Table 2). In addition,
the GG genotype frequency of rs2297538 was higher in the
NSCLC group than in the control group (P = 0.012; Table 2). We
further evaluated the distributions of the alleles and genotypes of
these 3 SNPs in different NSCLC pathological types (AC and
SCC) and different NSCLC pathological stages (I+II and III+IV).
Logistic regression analysis revealed no significant differences in
genotypic and allelic distributions of these SNPs among different
subgroups (Table S2). The AIC and BIC were calculated to
evaluate the best fitting inheritance model (codominant,
dominant, recessive, overdominant and log‐additive) for each
SNP in this study (39). Only rs2297538 genotypes were found to
be associated with NSCLC risk (Table 3). The best fit inheritance
model with the lowest AIC and BIC for rs2297538 was dominant,
FIGURE 2 | Correlation between EGFL7 and miR-126 expression in NSCLC tumor tissue and adjacent normal tissue. Spearman’s correlation coefficient (r) and P
values are shown for each analysis.
A B C

FIGURE 3 | Expression of EGFL7 and miR-126 after demethylating agent 5-Aza treatment in BEAS-2B (A), SPC-A1 (B) and H1299 (C) cell lines. * represents P ≤

0.05, ** represents P ≤ 0.01, *** represents P ≤ 0.001, ns represents P > 0.05.
April 2022 | Volume 12 | Article 772405
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and the A/G and A/A genotypes conferred a greater risk of
NSCLC (P = 3.1x10-3; OR = 1.62, 95% CI: 0.65–4.01). These
results indicate that EGFL7 and miR-126 play roles in
NSCLC pathogenesis.

Rs2297538 Is Associated With miR-126
and EGFL7 mRNA Expression
Single nucleotide polymorphisms (SNPs) in gene regulatory and
coding regions often confer a risk of lung cancer by affecting gene
expression (26–28). To determine whether rs2297538 was related
to the expression of nearby genes, we conducted eQTL analysis
between this SNP and miR-126 and EGFL7 mRNA expression
using qRT–PCR in 46 lung cancer tissues. We compared the
mRNA expression of EGFL7 and miR-126 between the risk allele
homozygous group [G/G] and the other genotypic groups [A/G
+ A/A], and we found that the expression of EGFL7 and miR-126
was significantly lower in the G/G group (lung cancer risk allele
homozygotes) than in the A/G+A/A group (P = 0.01 and
P = 0.002, respectively, Figures 4A, B). These results suggested
Frontiers in Oncology | www.frontiersin.org 6
that reduced expression of EGFL7 and miR-126 might be risk
factors for NSCLC and that rs2297538 may confer a risk of
NSCLC by regulating EGFL7 and miR-26 expression.
DISCUSSION

In the current study, we found that the expression of miR-126
and EGFL7 mRNA was concomitantly downregulated through
the methylation of CpG islands in NSCLC and that the eQTL-
missense polymorphism of EGFL7, rs2297538 (located at 386 bp
5’ of miR-126), was significantly associated with the risk of
NSCLC in the Han Chinese population.

Several studies have reported aberrant expression of EGFL7
and miR-126 in various human cancers (40), suggesting that
EGFL7 and miR-126 play a joint role in cancer development. We
found that miR-126 and EGFL7 are significantly downregulated
in lung cancer tissues, which is consistent with the results of Fan
and Yang et al. (13, 20). Our results indicated that aberrant
TABLE 1 | Characteristics of the subjects enrolled in the current study.

NSCLC Control P value

N 497 502
Ages (years) 55.99 ± 10.77 54.70 ± 13.19 0.09
Sex (M/F) 325/172 305/197 0.13
AC 338
SCC 159
Clinical stage
I 124
II 80
III 158
IV 135
April 2022 | Volume 12 | Article
NSCLC, non-small cell lung cancer; AC, adenocarcinoma; SCC, squamous cell carcinoma.
TABLE 2 | The allelic and genotypic distribution of SNPs in EGFL7 genes among healthy control and NSCLC groups.

SNPs Control NSCLC Control VS NSCLC

P value OR[95%CI]

rs1332793
C 333(0.332) 291(0.293) 0.061 0.83

[0.69~1.01]T 671(0.668) 703(0.707)
C/C 54(0.108) 42(0.085) 0.169
C/T 225(0.448) 207(0.416)
T/T 223(0.444) 248(0.499)
rs9411260
G 209(0.208) 187(0.188) 0.261 0.88

[0.71 ~1.10]A 795(0.792) 807(0.812)
G/G 25(0.050) 21(0.042) 0.541
A/G 159(0.317) 145(0.292)
A/A 318(0.633) 331(0.666)
rs2297538
A 157(0.156) 111(0.112) 0.003 0.68

[0.52~0.88]G 847(0.844) 883(0.888)
A/A 12(0.024) 8(0.016) 0.012
A/G 133(0.265) 95(0.191)
G/G 357(0.711) 394(0.793)
The statistical significant threshold was set at P<0.017 (0.05/n, n= 3) after Bonferroni correction.
NSCLC, non-small cell lung cancer.
772405
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expression of EGFL7 and miR-126 could play an important role
in the development of NSCLC. One of the reasons for the
association between aberrant expression of EGFL7 and miR-
126 and NSCLC could be the change in DNA hypermethylation.

Recently, reduced EGFL7 and miR-126 expression regulated
via DNA hypermethylation of the promoter region was observed
in ovarian cancer (41), prostate cancer (17) and malignant
pleural mesothelioma (16). However, only a few studies have
shown the same regulatory mechanism in lung cancer. For
example, Watanabe et al. showed miR-126 can be silenced by
the DNA methylation of its host gene EGFL7 in lung cancer cell
lines (42).Our results also showed that the expression of miR-126
and EGFL7 mRNA in NSCLC is concomitantly regulated,
probably by methylation. This is in accordance with findings
in other cancer types, including malignant pleural mesothelioma
(MPM) (16), breast cancer (13), prostate cancer (17) and lung
cancer (42). In 2011, Azhikina et al. reported that the
methylation level of the EGFL7 promoter is higher in lung
tumors than in healthy lung tissue (43), which further supports
our results. We thus further confirmed that the EGFL7 promoter
CpG island is highly methylated and thus downregulates EGFL7
and miR-126 in lung tumors.

In addition to hypermethylation of the promoter region,
polymorphisms could play an important role in the
development of NSCLC. For example, our previous study found
Frontiers in Oncology | www.frontiersin.org 7
that another common SNP, rs4636297, located in the EGFL7 gene
region (which is also located in the pri-miR-126 gene) was
associated with susceptibility to cervical cancer (44), and a
previous study revealed a significant relationship between the
EGFL7 3’UTR variant rs1051851 and the overall survival of
metastatic colorectal cancer patients (45), suggesting that EGFL7
andmiR-126 SNPs might be associated with multiple cancer types.
In the current study, we found that rs2297538, which located
in exon 7 of EGFL7 and changes valine to isoleucine, was
significantly associated with the risk of NSCLC. To our
knowledge, this is the first study to demonstrate an association
between EGFL7 and miR-126 genetic variants and NSCLC.
Notably, in a recent study, Duan et al. found that individuals
carrying rs2297538 homozygous GG had lower leukocyte
mitochondrial DNA copy numbers in the polycyclic aromatic
hydrocarbon exposure group (46). As a lower mitochondrial DNA
copy number could predict an increased risk of cancer induced by
polycyclic aromatic hydrocarbon exposure (46) and miR-126 has
been reported to regulate mitochondrial energy metabolism (47,
48), it is reasonable to hypothesize that rs2297538 may confer a
risk of NSCLC by regulating miR-126 expression and further
affecting mitochondrial functions. However, because the function
of rs2297538 is currently unknown, we need to expand the sample
size for further validation and explore its role in miR-126 and
EGFL7 mRNA expression as well as mitochondrial function.
TABLE 3 | Inheritance model analysis of SNPs in the EGFL7 gene between healthy controls and NSCLC patients.

SNPs Models Genotypes Control NSCLC OR(95%CI) P value AIC BIC

T/T 223 (44.4%) 248 (49.9%) 1
Codominant C/T 225 (44.8%) 207 (41.6%) 1.21 (0.93-1.58) 0.170 1388.4 1408

C/C 54 (10.8%) 42 (8.4%) 1.42 (0.91-2.21)
Dominant T/T 223 (44.4%) 248 (49.9%) 1 0.080 1386.8 1401.6

rs1332793 C/T-C/C 279 (55.6%) 249 (50.1%) 1.25 (0.97-1.60)
Recessive T/T-C/T 448 (89.2%) 455 (91.5%) 1 0.230 1388.5 1403.2

C/C 54 (10.8%) 42 (8.4%) 1.30 (0.85-1.98)
Overdominant T/T-C/C 277 (55.2%) 290 (58.4%) 1 0.290 1388.8 1403.5

C/T 225 (44.8%) 207 (41.6%) 1.14 (0.89-1.47)
Log-additive — — — 1.20 (0.99-1.45) 0.060 1386.4 1401.1

A/A 318 (63.4%) 332 (66.8%) 1
Codominant G/A 159 (31.7%) 144 (29%) 1.16 (0.88-1.52) 0.510 1390.5 1410.2

G/G 25 (5%) 21 (4.2%) 1.23 (0.67-2.24)
Dominant A/A 318 (63.4%) 332 (66.8%) 1 0.250 1388.6 1403.3

rs9411260 G/A-G/G 184 (36.6%) 165 (33.2%) 1.16(0.90-1.51)
Recessive A/A-G/A 477 (95%) 476 (95.8%) 1 0.600 1389.6 1404.3

G/G 25 (5%) 21 (4.2%) 1.17 (0.65-2.13)
Overdominant A/A-G/G 343 (68.3%) 353 (71%) 1 0.340 1389 1403.7

G/A 159 (31.7%) 144 (29%) 1.14 (0.87-1.49)
Log-additive — — — 1.13 (0.91-1.41) 0.250 1388.6 1403.3

G/G 357 (71.1%) 394 (79.3%) 1
Codominant A/G 133 (26.5%) 95 (19.1%) 1.54 (1.14-2.08) 1.2 x 10-2 1383.1 1402.7

A/A 12 (2.4%) 8 (1.6%) 1.62 (0.65-4.01)
Dominant A/G-A/A 357 (71.1%) 394 (79.3%) 1 3.1x10-3 1381.1 1395.8

rs2297538 C/T-C/C 145 (28.9%) 103 (20.7%) 1.55 (1.16-2.07)
Recessive G/G-A/G 490 (97.6%) 489 (98.4%) 1 0.410 1389.2 1403.9

A/A 12 (2.4%) 8 (1.6%) 1.46 (0.59-3.62)
Overdominant G/G-A/A 369 (73.5%) 402 (80.9%) 1 5.6 x10-3 1382.2 1396.9

A/G 133 (26.5%) 95 (19.1%) 1.52 (1.13-2.05)
Log-additive — — — 1.46 (1.13-1.90) 4 x10-3 1381.6 1396.3
April 2022 | Volum
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The statistical significant threshold was set at P<0.017 (0.05/n, n= 3) after Bonferroni correction.
NSCLC, non-small cell lung cancer; AIC, akaike information criterion; BIC, bayesian information criterion.
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In the current study, we firstly found that rs2297538 was
associated with the expression of miR-126 and EGFL7 mRNA in
lung cancer tissues. As majority of previous studies focus on
transcriptional regulation of EGFL7/miR-126 by DNA
methylation in multiple tumor cell lines, our brand new
finding in this article suggested that EGFL7 and miR-126
mRNA levels could be regulated via DNA methylation as well
as single nucleotide polymorphisms. Moreover, the risk
rs2297538 G allele might be correlated with lower expression
of miR-126 and EGFL7 mRNA in lung cancer tissues, which
indicated that reduced expression of miR-126 and EGFL7 might
be risk factors for NSCLC. However, increased expression of
EGFL7 has been reported in certain epithelial cancers (13). This
may be somewhat surprising, given that elevated expression of
EGFL7 may play a crucial role in cancer biology by modulating
tumor angiogenesis (40). One of the reasons for the discrepancy
might be the different types of cancer, as the lung is inherently a
highly vascularized tissue and maintains high levels of EGFL7. In
addition, decreased expression of EGFL7 may confer a risk of
NSCLC via other biological mechanisms, such as altering the
mitochondrial function of lung cancer cells. Considering that
heterogeneity plays a key role in cancer management, we also
performed the EGFL7 expression assay at single cells’ level using
the human protein atlas data base (49, 50). Our results revealed
that EGFL7 expressed mainly in endothelial cells and alveolar
type 2 cells. In 2016, Pinte et al. reported that EGFL7 was able to
repress endothelial cells activation (51). Their finding indicated
EGFL7 could play a role in tumoral angiogenesis and tumor
progression. In addition, alveolar type 2 cells were reported to
Frontiers in Oncology | www.frontiersin.org 8
play an active role in enhancing alveolar fluid clearance and
reducing lung inflammation. Thus, the alveolar type 2 cells
therapy was used and it was reported to have great potential
effects for acute lung injury/acute respiratory distress syndrome
in several preclinical studies (52). Based on these evidences,
altered expression of EGFL7 in endothelial cells and alveolar type
2 cells could be associated with the lung cancer susceptibility.

Notably, there are several limitations in the current study, and
we are cautious in the interpretation of the present results. Our
data indicated that methylation levels of several CG loci in EGFL7
were significantly higher in the lung cancer samples than in the
normal samples and 5-Aza-CdR treatment of NSCLC cell lines
could result in up-regulation of EGFL7 mRNA expression.
However, the classic locus-specific methylation experiments to
explore the methylation frequency of CpG-islands EGFL7 in
NSCLC cell lines and the methylation changes in different
pathological types and stages should be carried out in the future.
In addition, even though our results indicated that expression of
miR-126 and EGFL7 mRNA are significantly reduced in NSCLC
tissues compared with adjacent normal tissues, the protein
expression difference of EGFL7 also needs to be investigated.

In summary, we confirmed that the expression of EGFL7 and
miR-126 in NSCLC can be concomitantly downregulated
through methylation of CpG islands. We also report that
EGFL7 and miR-126 are correlated with NSCLC risk in the
Han Chinese population, and our results suggest that rs2297538
may confer a risk of NSCLC by altering the gene expression of
EGFL7 and miR-126. Together, these results provide new
insights into the pathogenesis of NSCLC.
A B

FIGURE 4 | Association of rs2297538 with EGFL7 mRNA (A) and miR-126 (B) expression in lung tumor tissue (N = 46). The values on Y-axis were presented as
2–DDCt. * represents P ≥ 0.05.
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