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ABSTRACT
A large library of fibrate-based N-acylsulphonamides was designed, synthesised, and fully characterised in
order to propose them as zinc binders for the inhibition of human carbonic anhydrase (hCA) enzymatic
activity. Synthesised compounds were tested against four hCAs (I, II, IX, and XII) revealing a promising sub-
micromolar inhibitory activity characterised by an isozyme selectivity pattern. Structural modifications
explored within this scaffold are: presence of an aryl ring on the sulphonamide, p-substitution of this aryl
ring, benzothiazole or benzophenone as core nuclei, and an n-propyl chain or a geminal dimethyl at Ca
carbon. Biological results fitted well with molecular modelling analyses, revealing a putative direct inter-
action with the zinc ion in the active site of hCA I, II and IX. These findings supported the exploration of
less investigated secondary sulphonamides as potential hCA inhibitors.
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1. Introduction

Sulphonamides and their N-acyl derivatives represent common
functional groups occurring in natural and synthetic drugs. The
different biological activities played by these compounds attracted
the attention of medicinal chemists, and a great number of lead
compounds of pharmaceutical interest were discovered to date1–3.
Indeed, N-acylsulphonamides have been widely used in medicinal
chemistry as bioisosteres of carboxylic acids, given the similarity in
terms of H-bond properties and acidity4. The bioisosteric replace-
ment of carboxylic group with N-acylsulphonamide produced
novel compounds showing pharmacological activity, sometimes
improved with respect to the parent compounds. Paritaprevir
(NS3 protease inhibitor)5, Venetoclax (Bcl-2 inhibitor)6, and
Selexipag (prostacyclin receptor agonist)7 are N-acylsulphonamide
drugs recently approved by FDA for the treatment of HCV infec-
tion, tumours, and pulmonary arterial hypertension, respectively. A
number of N-acylsulphonamide derivatives, targeting different
enzymes or receptors, have been submitted to clinical or preclin-
ical evaluation: among them, inhibitors of bacterial enzymes8,9,
asparagine synthetase inhibitors10, agonists and antagonists of
nuclear receptor peroxisome proliferator-activated recep-
tors (PPARs)11,12.

Historically, secondary sulphonamides represent an important
class of drugs targeting carbonic anhydrases (CAs)13–16. These
metalloenzymes, catalysing the CO2 hydration reaction, are
involved in several physiologic functions, also depending on their
distribution in different tissues. For these reasons, CA inhibitors
present a wide biomedical application, interfering with acid/base

regulation, respiration, gluconeogenesis, bone resorption, and
tumorigenesis17. CA inhibitors, containing the sulphonamide moi-
ety, are therapeutically used as diuretic, antiglaucoma, anticancer,
and antiobesity drugs. In recent works, N-substituted sulphona-
mides, among other secondary sulphonamides, have been identi-
fied as strong human CA I and II inhibitors, showing nanomolar
inhibition constants18,19.

They were characterised by an ionisable moiety as zinc binder
directly interacting with the zinc ion in the active site, as demon-
strated by X-ray crystallographic studies of human carbonic anhy-
drase (hCA) II-inhibitor adducts20. In the attempt to identify novel
CA inhibitors, in this work, we describe the screening of N-acylsul-
phonamide derivatives previously synthesised and identified as
PPAR antagonists21,22. These compounds belong to a library of
benzothiazole derivatives of fibrates, known PPAR agonists,
obtained by an agonist-antagonist switching programme. The
inhibitory properties of these derivatives were evaluated on four
selected human CA isozymes (I, II, IX, and XII). These isoforms
were selected according to their pharmacological relevance for
the discovery of innovative therapeutic approaches against hyp-
oxic cancers (hCA IX and XII) and for their wide distribution in the
human body (hCA I and II as off-targets). Starting from previously
obtained results, a novel series of benzenesulphonamide deriva-
tives were designed, synthesised, and submitted to CA inhibition
assays. Furthermore, molecular modelling studies were carried out
to explain the putative interactions between this library of hetero-
cyclic compounds and the active sites of the four isozymes in
order to rationalise future synthetic approaches within this
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scaffold and to further understand the structural requirements to
obtain isoform selectivity among the tested CAs.

2. Experimental protocols

2.1. Chemistry

Melting points were determined with a Buchi Melting Point B-450
and were uncorrected. NMR spectra were recorded on a Varian
Mercury spectrometer at 300MHz or on a Bruker spectrometer at
400MHz. Proton chemical shifts were referenced to the TMS
internal standard. Chemical shifts are reported in parts per million
(ppm, d units). Coupling constants are reported in units of Hertz
(Hz). Splitting patterns are designed as s, singlet; d, doublet; t,
triplet; q, quartet; dd, double doublet; m, multiplet; and b, broad.
All commercial chemicals and solvents were reagent grade and
were purchased from Sigma-Aldrich (St. Louis, MO); they are used
without further purification, unless otherwise specified. Reactions
were monitored by thin layer chromatography on silica gel plates
(60 F-254, Sigma-Aldrich) and the analysis of the plates was car-
ried out using a UV lamp 254/365 nm. Flash chromatography was
performed on silica gel 60 (Merck, Kenilworth, NJ). Elemental anal-
yses for C, H, and N were recorded on a Perkin-Elmer 240 B micro-
analyzer obtaining analytical results within ±0.4% of the
theoretical values for all compounds. The following solvents have
been abbreviated: chloroform (CHCl3), dichloromethane (DCM),
diethyl ether (Et2O), dimethyl sulphoxide (DMSO), ethanol (EtOH),
methanol (MeOH), and tetrahydrofuran (THF).

2.1.1. General procedure for the synthesis of benzenesulphona-
mides (19–27)
To a stirred solution of fenofibric acid (1.0mmol) in dry DCM
(10mL) at 0 �C, 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide
hydrochloride (EDC, 1.0mmol), and 4-dimethylaminopyridine
(DMAP, 1.0mmol) were added. After 15min, the selected benzene-
sulphonamide (1.1mmol) was added to the reaction mixture and
the cold water/ice bath was removed. The reaction mixture was
allowed to stir 24 h, diluted with DCM (10mL), washed with 2N
HCl (3� 20ml), dried on Na2SO4, filtered, and evaporated under
reduced pressure. Crude products were purified by column
chromatography.

2.1.1.1. 2-[4-(4-Chlorobenzoyl)phenoxy]-2-methyl-N-[(4-methylphe-
nyl)sulfonyl]propanamide (19). White solid, 51% yield (silica gel,
CHCl3/MeOH 98:2); m.p. 185–186 �C; 1H NMR (DMSO-d6) d1.44 (s,
6H, C(CH3)2), 2.29 (s, 3H, CH3Ph), 6.66 (d, 2H, J 8.7 Hz, CHAr), 7.35
(d, 2H, J 8.1 Hz, CHAr), 7.51 (d, 2H, J 8.7 Hz, CHAr), 7.60–7.71 (m, 6H,
CHAr), 12.40 (bs, 1H, NH, D2O exchange);13C NMR (DMSO-d6) d
21.3, 24.3, 80.9, 117.9, 128.1, 129.1, 129.9, 130.2, 131.6, 132.1,
136.2, 136.5, 137.5, 144.8, 159.0, 172.9, 193.7. Anal. Calcd. for
C24H22ClNO5S: C, 61.08; H, 4.70; N, 2.97. Found: C, 60.93; H, 4.69;
N, 2.97.

2.1.1.2. 2-[4-(4-Chlorobenzoyl)phenoxy]-N-[(4-methoxyphenyl)sul-
fonyl]-2-methylpropanamide (20). White solid, 54% yield (silica
gel, DCM/MeOH 98:2); m.p. 188–189 �C; 1H NMR (CDCl3) d1.51 (s,
6H, C(CH3)2), 3.87 (s, 3H, OCH3), 6.73 (d, 2H, J 8.7 Hz, CHAr), 6.99 (d,
2H, J 8.7 Hz, CHAr), 7.46 (d, 2H, J 8.7 Hz, CHAr), 7.62 (d, 2H, J 9.0 Hz,
CHAr), 7.70 (d, 2H, J 9.0 Hz, CHAr), 7.93 (d, 2H, J 8.7 Hz, CHAr), 8.90
(bs, 1H, NH, D2O exchange); 13C NMR (CDCl3) d 24.3, 55.7, 81.5,
114.1, 119.0, 128.6, 129.0, 130.9, 131.2, 131.9, 132.1, 135.8, 138.8,

157.4, 164.1, 171.9. Anal. Calcd. for C24H22ClNO6S: C, 59.07; H, 4.54;
N, 2.87. Found: C, 59.19; H, 4.53; N, 2.88.

2.1.1.3. 2-[4–(4-Chlorobenzoyl)phenoxy]-N-[(4-chlorophenyl)sul-
fonyl]-2-methylpropanamide (21). White solid, 69% yield (silica
gel, DCM/MeOH 98:2); m.p. 204–205 �C (dec); 1H NMR (DMSO-d6)
d1.44 (s, 6H, C(CH3)2), 6.73 (d, 2H, J 9.0 Hz, CHAr), 7.46–7.69 (m, 9H,
CHAr, and NH, D2O exchange), 7.78 (d, 2H, J 8.7 Hz, CHAr);

13C NMR
(DMSO-d6) d 24.8, 81.3, 117.8, 128.0, 129.0, 129.3, 129.5, 129.8,
129.9, 131.5, 132.0, 136.7, 137.4, 159.5, 174.0, 193.6. Anal. Calcd.
for C23H19Cl2NO5S: C, 56.11; H, 3.89; N, 2.84. Found: C, 56.24; H,
3.88; N, 2.84.

2.1.1.4. 2-[4–(4-Chlorobenzoyl)phenoxy]-2-methyl-N-[(4-nitrophe-
nyl)sulfonyl]propanamide (22). White solid, 56% yield (silica gel,
DCM/MeOH 98:2); m.p. 196–198 �C; 1H NMR (DMSO-d6) d1.45 (s,
6H, C(CH3)2), 6.71 (d, 2H, J 9.0 Hz, CHAr), 7.54 (d, 2H, J 9.0 Hz, CHAr),
7.61 (d, 2H, J 8.7 Hz, CHAr), 7.68 (d, 2H, J 8.7 Hz, CHAr), 8.03 (d, 2H,
J 8.7 Hz, CHAr), 8.34 (d, 2H, J 8.7 Hz, CHAr);

13C NMR (DMSO-d6)
d24.8, 81.3, 117.8, 124.5, 129.0, 129.4, 130.0, 131.5, 132.0, 136.6,
137.5, 150.1, 159.4, 174.3, 193.6. Anal. Calcd. for C23H19ClN2O7S: C,
54.93; H, 3.81; N, 5.57. Found: C, 55.07; H, 3.79; N, 5.56.

2.1.1.5. N-{[4-(acetylamino)phenyl]sulfonyl}-2-[4–(4-chlorobenzoyl)-
phenoxy]-2-methylpropanamide (23). White solid, 53% yield (silica
gel, DCM/MeOH 98:2); m.p. 226–228 �C; 1H NMR (DMSO-d6) d1.44
(s, 6H, C(CH3)2), 2.03 (s, 3H, CH3), 6.69 (d, 2H, J 8.7 Hz, CHAr),
7.52–7.78 (m, 10H, CHAr), 10.37 (bs, 1H, NHSO2, D2O exchange),
12.38 (bs, 1H, NHPh, D2O exchange); 13C NMR (DMSO-d6) d24.3,
24.5, 80.9, 118.1, 118.6, 129.0, 129.4, 130.4, 131.6, 132.0, 136.5,
137.5, 144.3, 159.0, 169.4, 172.7, 173.4, 193.5. Anal. Calcd. for
C25H23ClN2O6S: C, 58.31; H, 4.50; N, 5.44. Found: C, 58.44; H, 4.50;
N, 5.43.

2.1.1.6. N-{4-[({2-[4–(4-chlorobenzoyl)phenoxy]-2-methylpropanoy-
l}amino)sulfonyl]phenyl} benzamide (24). White solid, 51% yield
(silica gel, CHCl3/MeOH 98:2); m.p. 232–234 �C; 1H NMR (DMSO-d6)
d1.46 (s, 6H, C(CH3)2), 6.71 (d, 2H, J 8.7 Hz, CHAr), 7.51–7.68 (m, 9H,
CHAr), 7.82 (d, 2H, J 8.7 Hz, CHAr), 7.84–7.98 (m, 4H, CHAr), 10.64
(bs, 1H, NHSO2, D2O exchange), 12.45 (bs, 1H, NHPh, D2O
exchange); 13C NMR (DMSO-d6) d24.4, 81.0, 118.2, 120.1, 126.9,
128.3, 128.9, 129.3, 130.5, 131.6, 132.4, 134.7, 136.5, 137.6, 139.2,
142.6, 144.4, 159.0, 166.5, 172.8, 193.6. Anal. Calcd. for
C30H25ClN2O6S: C, 62.44; H, 4.37; N, 4.85. Found: C, 62.35; H, 4.36;
N, 4.86.

2.1.1.7. 2-[4-(4-Chlorobenzoyl)phenoxy]-2-methyl-N-({4-[(phenyla-
cetyl)amino]phenyl}sulphonyl) propanamide (25). White solid, 47%
yield (silica gel, DCM/MeOH 98:2); m.p. 170–172 �C; 1H NMR
(DMSO-d6) d1.43 (s, 6H, C(CH3)2), 3.64 (s, 2H, CH2), 6.72 (d, 2H, J
8.1 Hz, CHAr), 7.19–7.30 (m, 5H, CHAr), 7.55–7.76 (m, 10H, CHAr),
10.63 (bs, 1H, NHSO2, D2O exchange); 13C NMR (DMSO-d6) d24.4,
43.7, 81.0, 118.3, 118.9, 127.1, 128.8, 129.1, 129.5, 129.6, 131.6,
132.0, 135.8, 136.5, 144.2, 159.0, 170.3, 172.8, 193.6. Anal. Calcd.
for C31H27ClN2O6S: C, 62.99; H, 4.60; N, 4.74. Found: C, 62.89; H,
4.61; N, 4.75.

2.1.1.8. 2-(4-Benzoylphenoxy)-N-(phenylsulphonyl)acetamide (26).
White solid, 59% yield (silica gel, DCM); m.p. 61–62 �C; 1H NMR
(CDCl3) d4.55 (s, 2H, CH2), 6.95 (d, 2H, J 8.7 Hz, CHAr), 7.45–7.83 (m,
5H, CHAr), 7.66–7.83 (m, 5H, CHAr), 8.10 (d, 2H, J 7.5 Hz, CHAr), 9.06
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(bs, 1H, NH, D2O exchange); 13C NMR (CDCl3) d77.2, 114.4, 126.4,
128.3, 129.0, 129.1, 129.8, 132.3, 132.6, 132.8, 137.6, 142.0, 159.7,
195.2. Anal. Calcd. for C21H17NO5S: C, 63.79; H, 4.33; N, 3.54.
Found: C, 64.02; H, 4.32; N, 3.53.

2.1.1.9. 2-(4-Benzoylphenoxy)-N-(phenylsulphonyl)pentanamide
(27). White solid, 49% yield (silica gel, DCM); m.p. 140–142 �C; 1H
NMR (CDCl3) d0.87 (t, 3H, J 6.9 Hz, CH3), 1.36–1.43 (m, 2H, CH2),
1.82–1.91 (m, 2H, CH2), 4.58 (t, 1H, J 6.0 Hz, CH), 6.83 (d, 2H, J
9.0 Hz, CHAr), 7.46–7.65 (m, 6H, CHAr), 7.71–7.76 (m, 4H, CHAr), 7.95
(d, 2H, J 7.2 Hz, CHAr), 8.81 (bs, 1H, NH, D2O exchange); 13C NMR
(CDCl3) d13.5, 17.8, 34.1, 78.6, 114.7, 126.4, 128.3, 129.0, 129.8,
132.0, 132.3, 132.6, 134.2, 137.6, 137.9, 159.6, 169.3, 195.2. Anal.
Calcd. for C24H23NO5S: C, 65.89; H, 5.30; N, 3.20. Found: C, 65.91;
H, 5.29; N, 3.21.

2.1.2. General procedure for the synthesis of esters (29 and 31)
A solution of sodium (2.5mmol) in absolute EtOH (10ml) was
added to 4-hydroxybenzophenone (2.5mmol), dissolved in abso-
lute EtOH (10ml), at room temperature, and under nitrogen
atmosphere. Ethyl 2-bromoacetate (or ethyl 2-bromovalerate)
(2.5mmol) in absolute EtOH (5ml), was added to the mixture, and
the resulting solution was refluxed for 20 h. After evaporation of
solvent under reduced pressure, the residue was poured into
water (20ml) and extracted with Et2O (3� 20mL). The organic
layer was dried over Na2SO4 and concentrated under
reduced pressure.

2.1.2.1. Ethyl (4-benzoylphenoxy)acetate (29). White solid, 63%
yield. Characterisation data were in agreement with those
reported in the literature23.

2.1.2.2. Ethyl 2–(4-benzoylphenoxy)pentanoate (31). Pale yellow
oil, 69% yield (silica gel, DCM); 1H NMR (CDCl3) d0.98 (t, 3H, J
6.9 Hz, CH3), 1.25 (t, 3H, J 6.9 Hz, CH3), 1.49–1.63 (m, 2H, CH2),
1.83–2.08 (m, 2H, CH2), 4.23 (q, 2H, J 7.2 Hz, OCH2), 4.70 (dd, 1H, J
7.8 Hz, J 7.5 Hz, CH), 6.92 (d, 2H, J 8.7 Hz, CHAr), 7.43–7.48 (m, 2H,
CHAr), 7.52–7.59 (m, 1H, CHAr), 7.75 (d, 2H, J 7.2 Hz, CHAr), 7.79 (d,
2H, J 7.2 Hz, CHAr);

13C NMR (CDCl3) d 13.6, 14.1, 18.5, 34.6, 61.4,
76.2, 114.4, 128.2, 129.7, 130.7, 131.9, 132.5, 138.0, 161.4, 171.2,
195.5. Anal. Calcd. for C20H22O4: C, 73.60; H, 6.79; Found: C, 73.52;
H, 6.81.

2.1.3. General procedure for the synthesis of acids (30 and 32)
2N NaOH (12.5mmol) was added to esters 29 and 31 (1.5mmol)
in THF (10ml) and the mixture was stirred at r.t. overnight. THF
was removed under reduced pressure; the solution was acidified
by 4N HCl, obtaining a precipitate that was collected by filtration
under vacuum.

2.1.3.1. (4-Benzoylphenoxy)acetic acid (30). White solid, 72% yield.
Characterisation data were in agreement with those reported in
the literature23.

2.1.3.2. 2-(4-Benzoylphenoxy)pentanoic acid (32). White solid, 99%
yield; m.p. 75–77 �C; 1H NMR (CDCl3) d0.98 (t, 3H, J 7.2 Hz, CH3),
1.50–1.63 (m, 2H, CH2), 1.96–2.05 (m, 2H, CH2), 4.75 (dd, 1H, J
7.8 Hz, J 7.8 Hz, CH), 6.93 (d, 2H, J 8.7 Hz, CHAr), 7.43–7.48 (m, 2H,
CHAr), 7.53–7.59 (m, 1H, CHAr), 7.74 (d, 2H, J 7.2 Hz, CHAr), 7.81 (d,
2H, J 7.2 Hz, CHAr);

13C NMR (CDCl3) d 13.6, 18.5, 34.5, 75.6, 114.4,

128.2, 129.8, 130.9, 132.1, 132.6, 137.9, 161.2, 175.9, 195.7. Anal.
Calcd. for C18H18O4: C, 72.47; H, 6.08; Found: C, 72.51; H, 6.07.

2.2. CA inhibition assays

An Applied Photophysics stopped-flow instrument has been used
for assaying the CA catalysed CO2 hydration activity. Phenol red
(0.2mM) has been used as indicator, working at the absorbance
maximum of 557 nm, with 20mM Hepes (pH 7.5, for a-CAs) as buf-
fer, and 20mM NaClO4 (for maintaining constant the ionic
strength), following the initial rates of the CA-catalysed CO2 hydra-
tion reaction for a period of 10–100 s. The CO2 concentrations
ranged from 1.7 to 17mM for the determination of the kinetic
parameters and inhibition constants. In particular, CO2 was
bubbled in distilled deionised water for 30min till saturation. A
CO2 kit (Sigma, Milan, Italy) was used to measure the concentra-
tion in serially diluted solutions from the saturated one at the
same temperature. For each inhibitor at least six traces of the ini-
tial 5–10% of the reaction have been used for determining the ini-
tial velocity. The uncatalysed rates were determined in the same
manner and subtracted from the total observed rates. Stock solu-
tions of inhibitor (1 mM) were prepared in distilled–deionised
water and dilutions up to 0.1 nM were done thereafter with the
assay buffer. Inhibitor and enzyme solutions were preincubated
together for 15min at room temperature prior to assay, in order
to allow for the formation of the E–I complex or for the eventual
active site mediated hydrolysis of the inhibitor. The inhibition con-
stants were obtained by non-linear least-squares methods using
PRISM 3 and the Cheng–Prusoff equation and represent the aver-
age from at least three different determinations. All recombinant
CA isoforms were obtained in-house as previously reported24,25.

2.3. Molecular modelling studies

Crystal structures of hCA I (pdb: 3lxe, 1.9 Å, in complex with topir-
amate), hCA II (pdb: 4e3d, 1.6 Å, in complex with 2,5-dihydroxy-
benzoic acid), hCA IX (pdb: 3iai, 2.2 Å, in complex with
acetazolamide [AAZ]) and XII (pdb: 1jd0, 1.5 Å, in complex with
AAZ) were obtained from the Brookhaven Protein Data Bank. All
ligands (AAZ, topiramate and 2,5-dihydroxybenzoic acid) and the
zinc-bound water molecule of the hCA II structure were retained
and all other non-protein atoms were deleted. Chain A was
retained if more than one protein structure was present in the
crystal structure. Hydrogen atoms were added with the “protonate
3D” tool and subsequently a steepest-descent energy minimisa-
tion was performed using the AMBER14:EHT force field (MOE soft-
ware package, version 2018.0101, chemical computing group, Inc.,
Montreal, Canada)26. The four protein structures were superposed
on the backbone atoms of hCA I (Ca atoms, RMSD: 1.395 Å, for
236 residues). The coordinates of the hCA II zinc-bound water
molecule were copied into the other hCA structures.

The molecular structures of the ligands were prepared with the
MOE software package. All stereoisomers were generated.
Subsequently, the ligand structures were energy minimised
(MMFF94x force field) and the ligands were saved as multi-
mol2 files.

Docking calculations were performed with the GOLD software
package version 5.6.1 (CCDC, Cambridge, UK) using the
ChemScore scoring function (25 genetic algorithm runs per ligand)
and default settings. The binding pocket was defined as within
14 Å around a centroid (x: �18.899; Y: 36.167; z: 45.640; corre-
sponds to the AAZ O3 atom of the hCA IX structure after super-
position upon the hCA I structure). Dockings into the active site
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Table 1. Inhibitory activity of derivatives 1–18 and reference compound acetazolamide (AAZ) against four selected hCA isoforms (I, II, IX, and XII) by stopped-flow
CO2 hydrase assay31–35.
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AAZ 0.25 0.012 0.026 0.006

*Mean from three different determinations (errors in the range of 5-10% of the reported values).
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were performed either with or without a zinc-bound water mol-
ecule (obtained from hCA II structure 4e3d)27.

3. Results and discussion

3.1. Synthetic approach and in vitro CA inhibition studies

A wide group of benzothiazole compounds, bearing an N-acylsul-
phonamide portion, have been firstly synthesised by our research
group and tested as PPAR antagonists. Some of them were also
studied for assessing antitumor effects, mainly in cancer models
overexpressing PPARa28,29. We decided to evaluate their inhibitory
effect on four selected human CA isoenzymes (I, II, IX, and XII) and
AAZ was used as reference compound. A preliminary screening of
compounds 1–7, methane and benzenesulphonamide derivatives,
was carried out, and the results are reported in Table 1. The
greater affinities showed by benzenesulphonamide derivatives
prompted us to further explore benzenesulphonamide derivatives
such as p-substitutions on the aromatic ring (8–14). In addition,
we also tested compounds 15–18, previously synthesised starting
from the parent compounds clofibrate, gemfibrozil, bezafibrate,
and fenofibrate30.

The three methanesulphonamide derivatives (compounds 2, 4,
6) showed no activity against CA except for compound 2 which
had a slight activity against hCA XII (Ki ¼ 61.0lM), whereas corre-
sponding benzenesulphonamides (1, 3, 5) moderately inhibited
CA I, II, and IX, with a slight preference for CA II. Compounds 1–4
and 6–7, bearing an alkylic chain on Ca (adjacent to carbonyl
group), produced an improved CA inhibition compared to phenyl
derivative 5.

The series of compounds 8–14 includes p-substituted benzene-
sulphonamides, obtained starting from compound 7. The best
inhibition profiles against CA were found for p-methoxy derivative
9 and p-chloro derivative 10. They produced a selective inhibition
with submicromolar Ki values against hCA IX and hCA II respect-
ively. The insertion of methyl (8), nitro (11), acetylamino (12), ben-
zoylamino (13) and phenylacetylamino (14) groups did not
improve their inhibition properties.

Benzenesulphonamides 15–18, obtained by their carboxylic
precursors, were all inactive against CA XII. Compounds 15 and
16 (clofibrate and gemfibrozil derivatives) were completely
inactive against all tested isoenzymes, whereas 17 and 18 showed
a moderate inhibition against CA I, II and IX. The best inhibition
values were found for 18 (fenofibrate derivative), that showed
submicromolar Ki inhibition against I and IX isoenzymes.

According to the above reported results, we selected fenofi-
brate derivative 18 as a novel lead compound to develop novel
chemical derivatives, by adding substituents in para position to
the benzenesulphonamide moiety (Figure 1) such as methyl,
methoxy, chlorine, nitro, acetylamino, benzoylamino, and phenyla-
cetylamino groups. Compounds 19–25 were easily synthesised by
reacting fenofibric acid, obtained from hydrolysis of fenofibrate,
with p-substituted benzenesulphonamides, in the presence of 1-
ethyl-3–(3-dimethylaminopropyl)carbodiimide (EDC) and 4-dime-
thylaminopyridine (DMAP), in dry dichloromethane and under
nitrogen atmosphere (Scheme 1).

With the aim to evaluate the effect of steric hindrance on Ca,
we planned the synthesis of 26 and 27 (Figure 1), where the Ca
was unsubstituted or substituted with an n-propylic chain; both
derivatives are lacking of chlorine substitution on benzophe-
none ring.

Finally, products 26 and 27 were synthesised as depicted in
Schemes 2–3. Esters 29 and 31 were obtained by nucleophilic dis-
placement of proper ethyl 2-bromoalkanoates by 4-hydroxybenzo-
phenone; hydrolysis by 2N NaOH afforded acids 30 and 32, that
were coupled with benzenesulphonamide as previously described.

Compounds 19–27 were also screened against CA I, II, IX, and XII
to derive robust SAR within this scaffold: results are shown in Table 2.

Overall, the p-substitution of aromatic ring with respect to par-
ent derivative 18 did not improve hCA inhibition, except for com-
pounds 22 and 24, showing both a marked inhibition of hCA II
(Ki ¼16 and 77 nM, respectively), and a good selectivity versus this
isoform. The presence of an acetylamino group was detrimental
for hCA inhibition (23), whereas the introduction of an additional
aromatic ring (24) produced a marked effect on both hCA I and
hCA II. The further elongation of the substituent (25) decreased
the inhibitory effect. Compounds 26 and 27, lacking of the
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Figure 1. From lead compound 18 to novel benzenesulphonimides 19–27.
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chlorine atom on benzophenone structure and showing a differ-
ent steric hindrance on Ca, did not induce a sensible inhibition of
tested isoenzymes.

3.2. Molecular modelling studies

3.2.1. Docking studies into the active site of hCA I
The ligands were docked into the active site of hCA I with and
without a zinc-bound water molecule. This water molecule was
obtained from the hCA II structure (pdb: 4e3d) as described in the
Materials and Methods section. Compounds 3, 18, 21, and 24

show lower Ki values than 10 lM (Tables 1 and 2). Two different
poses have been identified in which the ligands can directly inter-
act with the active site zinc ion. In the first pose, the carbonyl
group located between the two phenyl moieties forms an inter-
action with the active site zinc ion (Figure 2(A)). The two phenyl
groups form hydrophobic interactions with His64, Ala121, Val143,
Leu198, His200, and Val207. A second hydrogen bond is formed
between the other carbonyl atom of the ligand and the side chain
of His67. The terminal unsubstituted phenyl group forms a hydro-
phobic interaction with the side chain of Val62. In addition, hydro-
gen atoms of His64 and Leu198 point towards the centroids of
the phenyl rings resulting in aromatic-H bonds. The sulphonamide
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O O
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Cl
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OH

O
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19-25

Scheme 1. Reagents and conditions: (a) p-substituted benzenesulphonamide, EDC, DMAP, dry dichloromethane, 0 �C-r.t., 24 h.
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Scheme 2. Reagents and conditions: (a) ethyl 2-bromoacetate, sodium, absolute ethanol, reflux, 20 h; (b) 2N NaOH, THF, r.t., 24 h; (c) benzenesulphonamide, EDC,
DMAP, dry dichloromethane, 0 �C-r.t., 24 h.
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Scheme 3. Reagents and conditions: (a) ethyl 2-bromovalerate, sodium, absolute ethanol, reflux, 20 h; (b) 2N NaOH, THF, r.t., 24 h; (c) benzenesulphonamide, EDC,
DMAP, dry dichloromethane, 0 �C-r.t., 24 h.
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Table 2. Inhibitory activity of derivatives 19–27 and reference compound acetazolamide (AAZ) against four selected hCA isoforms (hCA I, II, IX, and XII) by stopped-
flow CO2 hydrase assay31,32.

Ki (μM)*

Cmpd Structure
hCA I hCA II

hCA 

IX

hCA 

XII
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O
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H

O
S

O O
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Cl
96.8 33.1 >100 >100
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O
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H

O
S

O O

O

Cl

O
>100 >100 33.0 >100
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O

N
H

O
S

O O

O

Cl

Cl
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O
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O O

O
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NO2
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O
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O O

O
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O O
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O
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O O
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O
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H
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O O

O

78.1 15.5 43.8 >100

27
O

N
H

O
S

O O

O

58.2 3.2 27.6 >100

AAZ 0.25 0.012 0.026 0.006

*Mean from three different determinations (errors in the range of 5-10% of the reported values).

Figure 2. (A) The docked pose of compound 18 (turquoise), (B) compound 21 (purple) and (C) compound 1 (R-isomer; green) in the active site of hCA I (pdb: 3lxe).
Hydrogen bonds and interactions to the active site zinc ion are indicated in red dashed lines. Aromatic system – H bonds are indicated in yellow dashed lines.
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group is solvent exposed. This pose is observed for many com-
pounds, including compounds 18 and 24.

In the second docked pose, the sulphonamide moiety is
located close the active site zinc ion (Figure 2(B)). One of the sul-
phonamide oxygen atoms forms an interaction with the zinc ion,
while the other oxygen atom forms a hydrogen bond with the
backbone of Thr199. The chlorine-substituted phenyl group forms
hydrophobic interactions with Ala121, Leu141, Val143, and
Leu198. One of the ligand’s hydrogen atoms points towards the
centre of His94 to form aromatic-H bonds. No additional hydrogen
bonds are observed between the ligand and the enzyme, how-
ever, the amide bond and the carbonyl group of the ligand are
solvent accessible and may form interaction with water. This pose
is observed for many compounds, including compounds 3, 18,
and 21.

Docked poses have been identified in which the ligands dir-
ectly interact with the zinc-bound water molecule. For example,
the R isomer of compound 1 forms a hydrogen bond with the
water molecule through its sulphonamide oxygen atom (Figure
2(C)). The carbonyl group of the ligand forms a hydrogen bond
with the side chain of Gln92. A third hydrogen bond is formed
between the ligand and the side chain of Trp5. The propyl group
of the ligand is located in a hydrophobic pocket formed by Val62,
His64, His67, and His200. The phenyl group of the ligand forms
hydrophobic interactions with Phe91, Leu131, Leu141, and
Leu198. Interestingly, similar docked poses have not been
obtained for the S isomer of compound 1. Similar observations
have been made for the other compounds in which some iso-
forms may bind to one stereoisomer but not to the other.

3.2.2. Docking studies into the active site of hCA II
The docked pose of compound 22 (Ki ¼16 nM) suggests that the
nitro group could be located near the zinc ion (Figure 3(A)). The
partially negatively charged oxygen atoms of the nitro group may
form a hydrogen bond with the backbone of Thr199 and electro-
static interactions with the zinc ion. One of the sulphonamide oxy-
gen atoms forms a hydrogen bond with the side chain of Gln92,
while the other oxygen atom is water-accessible. The ligand amide
group forms a hydrogen bond with the side chain of Asn67 and
the chlorine substituent is close enough to the side chain of
Lys170 for electrostatic interactions (distance ¼ 4.5 Å).

Hydrophobic interactions are formed mainly with Leu198. All
hydrogen bond donors and acceptors of the ligand that do not
interact with the active site are water-accessible.

The docked pose of compound 18 (Ki ¼ 1.3 lM) indicates that
the sulphonamide moiety of the ligand is located near the zinc
ion (Figure 3(B)). One of the sulphonamide oxygen forms a direct
interaction with the zinc ion, while the other oxygen atom may
form hydrogen bonds with Leu198 (backbone) and/or Thr200
(backbone and side chain). One of the side chain hydrogen atoms
of Asn67 points towards the centroid of the ligand phenyl group,
which could lead to aromatic-H interactions. The chlorine substitu-
ent may form electrostatic interactions with Lys170 (dis-
tance ¼5.4 Å).

Many docked poses of the other ligands show a similar pos-
ition for the sulphonamide group as obtained for compound 18.

3.2.3. Docking studies into the active site of hCA IX
The docked pose for compound 18 (Ki¼ 0.44lM) indicates that
the sulphonamide may be located close to the zinc ion, enabling
one oxygen to form an interaction with the zinc ion (tetrahedral
orientation around zinc) and the other oxygen atom to form
hydrogen bonds with Thr200 (Figure 4(A)). The carbonyl group
adjacent to the sulphonamide moiety is located close to the zinc
ion and interaction may occur, resulting in a distorted trigonal
bipyramidal orientation around zinc. The terminal phenyl moiety
forms hydrophobic interactions with Val121, Val143, and Leu198.
The central phenyl group forms hydrophobic interactions with
Trp5, while the substituted phenyl group forms hydrophobic inter-
actions with Pro202. A similar docked pose as described for com-
pound 18 or other docked poses in which the ligand directly
interacts with the zinc ion are not observed for most of
the compounds.

An alternative docked pose has been obtained for compound
18 in which it interacts with the zinc-bound water molecule via
one of its sulphonamide oxygen atoms (Figure 4(B)). The other
oxygen atom forms a hydrogen bond to the side chain of Gln92.
A second hydrogen bond is formed with the side chain of Trp5.
The ligand phenyl group forms hydrophobic interactions with
Pro202, while the two methyl groups are located in a hydrophobic
cavity formed by Val131, Leu135, Leu141, and Leu198.

Figure 3. The docked pose of (A) compound 22 (turquoise) and (B) compound 18 (purple) in the active site of hCA II (pdb: 4e3d). Hydrogen bonds and interactions
to the active site zinc ion are indicated in red dashed lines. Aromatic system – H bonds are indicated in yellow dashed lines.

1058 A. AMMAZZALORSO ET AL.



3.2.4. Docking studies into the active site of hCA XII
No docking poses have been obtained in which the ligands inter-
act directly with the zinc ion or the zinc-bound water molecule.

4. Conclusions

This library of fibrate-based N-acylsulphonamides supported the
exploration of other zinc binders for the inhibition of human CAs
with respect to the widely studied primary sulphonamides. These
secondary sulphonamides maintained the possibility to interact
with the zinc ion through several binding modes. As also reported
in previous crystallographic studies, they present a reduced
submicromolar inhibitory activity, but they gained an interesting
isoform selectivity against the four tested hCAs. With the support
of molecular modelling studies, we assessed the structural require-
ments within this scaffold to further improve the biological
activity such as the presence of an aryl ring on the sulphonamide,
p-substitution of this aryl ring, benzothiazole or benzophenone as
tailing moieties, and an n-propyl chain or a geminal dimethyl at
Ca carbon.
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