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Abstract
All forms of diabetes mellitus involve the loss or dysfunction of pancreatic beta cells, with the former predominating in type 1
diabetes and the latter in type 2 diabetes. Deeper understanding of the couplingmechanisms that link glucose metabolism in these
cells to the control of insulin secretion is therefore likely to be essential to develop new therapies. Beta cells display a remarkable
metabolic specialisation, expressing high levels of metabolic sensing enzymes, including the glucose transporter GLUT2
(encoded by SLC2A2) and glucokinase (encoded by GCK). Genetic evidence flowing from both monogenic forms of diabetes
and genome-wide association studies for the more common type 2 diabetes, supports the importance for normal glucose-
stimulated insulin secretion of metabolic signalling via altered ATP generation, while also highlighting unsuspected roles for
Zn2+ storage, intracellular lipid transfer and other processes. Intriguingly, genes involved in non-oxidative metabolic fates of the
sugar, such as those for lactate dehydrogenase (LDHA) and monocarboxylate transporter-1 ([MCT-1] SLC16A1), as well as the
acyl-CoA thioesterase (ACOT7) and others, are selectively repressed (‘disallowed’) in beta cells. Furthermore, mutations in genes
critical for mitochondrial oxidative metabolism, such as TRL-CAG1–7 encoding tRNALeu, are linked to maternally inherited
forms of diabetes. Correspondingly, impaired Ca2+ uptake into mitochondria, or collapse of a normally interconnected mito-
chondrial network, are associated with defective insulin secretion. Here, we suggest that altered mitochondrial metabolism may
also impair beta cell–beta cell communication. Thus, we argue that defective oxidative glucose metabolism is central to beta cell
failure in diabetes, acting both at the level of single beta cells and potentially across the whole islet to impair insulin secretion.
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Abbreviations
Δψm Mitochondrial membrane potential
ACOT7 Acyl-CoA thioesterase 7
GSIS Glucose-stimulated insulin secretion

KATP ATP-sensitive K+ (channel)
MCT-1 Monocarboxylate transporter-1
MCU Mitochondrial Ca2+ uniporter
miRNA MicroRNA
mtDNA Mitochondrial DNA
OXPHOS Oxidative phosphorylation
PAX6 Paired box 6
PDH Pyruvate dehydrogenase
RFX6 Regulatory factor X6
RNA-seq RNA sequencing

Specialisations of beta cell metabolism

The beta cell is a glucose sensor par excellence, allowing small
fluctuations in circulating levels of the sugar to be tuned to insu-
lin output. Certain amino acids, including those that enhance
mitochondrial metabolism (e.g. glutamine and leucine) [1], also
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stimulate insulin release, a response that may be particularly
important during fetal development [2]. Fatty acids also stimu-
late insulin secretion under some circumstances, but can be
inhibitory [3].

Beta cell metabolism of glucose is central to secretion, and
these cells express critical ‘glucose sensors’, including the
glucose transporter GLUT2 (Slc2a2) in rodents (GLUT1
[SLC2A1] and GLUT3 [SLC2A3] are also expressed in human
beta cells) [4]. More crucially for flux control, the low affinity/
high KM (Michaelis–Menten constant) glucose phosphorylat-
ing enzyme, glucokinase (Gck), ensures that circulating
glucose concentrations are matched to metabolism, which,
via changes in electrical activity mediated by ATP-sensitive
K+ (KATP) channels and Ca

2+ influx, leads to insulin secretion
[5]. Thus, a ‘triggering’ pathway for secretion, largely driven
by glucose-induced increases in the intracellular ATP/ADP
ratio, plays a cardinal role in glucose-stimulated insulin secre-
tion (GSIS). Additional ‘amplifying’ pathways ensure that
glucose also enhances secretion independently of the above
pathway [6]. These are less well understood, but enhanced
production of mitochondrial metabolites, including glutamate,
citrate and reducing equivalents (generated as a result of the
activation of metabolic cycles dependent upon mitochondria),
notably, NAD(P)H, are all implicated. Work by Kibbey and
colleagues [7], also suggests that activated mitochondrial GTP
synthesis is a part of this mechanism (Fig. 1).

The existence of variants in genes associated with monogenic
forms of diabetes (neonatal diabetes or MODY) [8] provides
ample evidence for the importance of several of the key players
listed above, including GCK, and the KATP channel subunit
genes KCNJ11 and ABCC8. Genome-wide association studies
for type 2 diabetes have now also identified ~240 loci and ~400
distinct association signals in the human genome that impact
disease risk [9]. Strikingly, the vast majority affect insulin secre-
tion rather than insulin action. Several laboratories, including our
own, have provided possible mechanisms of action for some of
the implicated genes, including TCF7L2, encoding the Wnt-
regulated transcription factor [10], SLC30A8 encoding zinc trans-
porter 8 (ZnT8, the secretory granule zinc transporter) [11],
PAM, encoding peptidylglycine α-amidating monooxygenase
[12] and STARD10, encoding an intracellular lipid transporter
[13]. The reader is referred to the recent review by Krentz and
Gloyn [14] for a more comprehensive survey. A deeper under-
standing of the roles of these genes, afforded by functional geno-
mics approaches that combine human genetics with intervention-
al (e.g. gene knockout) approaches in tractable systems including
mice or CRISPR/Cas9-edited human beta cell lines [14], has
provided unexpected insights into beta cell biology, such as the
importance of lipid transfer for proinsulin processing [13]. These
approaches also offer the exciting prospect of new, and poten-
tially personalised, therapeutic options (‘precision medicine’).

In addition to the roles of genes that are usually highly
expressed in beta cells, the relatively weak expression

(‘disallowance’) in these cells of several ‘housekeeping’
genes—expressed at high levels in essentially all other cell
types in the body, and including founder members of this list
of disallowed genes, Ldha andMct-1 (Slc16a1) [15]—is also
a defining characteristic of mature beta cells (see below).
Inactivation of the latter enzymes is consistent with an unusu-
ally high proportion (>85%) of glucose carbon, which is
converted to CO2 and water via mitochondrial oxidation in
these cells [16]. Overexpression of either gene impairs GSIS
[17] and unmasks unwanted pathways, including pyruvate-
induced secretion [18]. The latter process underlies a genetic
trait, exercise-induced hyperinsulism, in carriers of activating
variants of the human SLC16A1 (MCT-1) gene [19] (Fig. 1).

A further example of a beta cell ‘disallowed’ gene is Acot7,
the product of which hydrolyses long-chain acyl-CoAs into
NEFA and CoA (Fig. 1). Overexpression of acyl-CoA
thioesterase 7 (ACOT7) in beta cell lines, and in primary beta
cells in mice in vivo, blunts their insulin secretory response to
glucose and fatty acids and results in impaired glucose toler-
ance [20]. In this case, disallowance appears to reflect ATP
sparing for the otherwise futile synthesis and degradation of
certain lipid groups [20].

Our laboratory [21] and others [22] have now identified more
than 60 beta cell disallowed genes, implicating a range of other
cellular processes required for normal insulin secretion and/or
the preservation of beta cell mass. The roles and regulation of
a subset of these is described in Table 1. The mechanisms
involved in the suppression of these genes, and their relevance
for beta cell function and failure in diabetes, is currently an area
of active research. DNA methylation [23] and histone modifica-
tions [24] (Table 1) are well-established mechanisms underlying
beta cell-specific gene disallowance. Of note, the transcription
factor gene RFX6, variants of which were recently identified in
man as being responsible for a form ofMODY [25], was recent-
ly shown to be more weakly expressed in islets from individuals
with type 2 diabetes than individuals without the disease [26].
Importantly, inactivation of Rfx6 in the beta cell in mice both
during development and in adult stages leads to impaired func-
tion [27]. This reflects impaired expression both of beta cell
signature genes and of disallowed genes (below), the regulator
regions of which are directly bound by regulatory factor X6
(RFX6). Similarly, another transcription factor important for beta
cell development, paired box 6 (PAX6), also plays a pivotal role
inmaintaining cellular identity and the suppression of disallowed
gene expression in adult mice [28, 29]. Like RFX6, PAX6
appears to be able to act ‘bimodally’ to either activate or repress
gene expression depending on genomic context.

MicroRNAs (miRNAs) are also important contributors to
beta cell gene disallowance (Table 1). miRNAs are non-coding
RNAs that silence gene expression to fine-tune biological path-
ways and reinforce cellular identity [30]. Beta cell-specific dele-
tion of DICER, an enzyme essential for miRNA biogenesis,
relieved the suppression of several disallowed genes in mice,
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namely, Fcgrt, Igfbp4, Maf, Oat, Pdgfra and Slc16a1 [31].
Whether the more recently identified disallowed genes highlight-
ed in Pullen et al. [21] are also regulated by miRNAs remains to
be investigated. Little is known about the identity of themiRNAs
targeting these genes in beta cells, though miR-29a/b and miR-
34a have been demonstrated to target Slc16a1 [32], and Pdgfra
[33], respectively. It is conceivable that a complex network of
miRNA-disallowed gene interactions contributes to reinforce
beta cell identity by ensuring gene disallowance. Whether other
non-coding RNA species (long non-coding RNAs, circular
RNAs, etc.) are also involved remains to be explored.

Mitochondria and insulin secretion

Weak expression in beta cells of Ldha and Mct-1/Slc16a1
emphasises the likely importance of oxidative metabolism of
glucose carbons for the normal stimulation of insulin release.

Similarly, low expression of Acot7 underlines the importance
of mitochondrial fatty acid metabolism for efficient ATP
utilisation. Thus, mitochondrial ATP synthesis in response
to elevated glucose or other nutrients is essential to both the
triggering and amplifying pathways of insulin exocytosis [34].
There is strong evidence linking the loss or dysfunction of
GSIS in beta cells of diabetic models with altered mitochon-
drial function, where nutrient storage and usage, as well as
mitochondrial dynamics and morphology, are affected [35].
A further striking example is provided by hyperglycaemic
‘βV59M’ mice, expressing an activated form of the KATP

channel subunit Kir6.2 [36], where an increase is observed
in pyruvate dehydrogenase (PDH) kinase expression (expect-
ed to lower PDH activity and hence pyruvate entry into the
cycle), as well as lowered levels of several citrate cycle genes.

Several mtDNA (mitochondrial DNA) variations in human
populations have been implicated in increased or decreased
risk of type 2 diabetes while, in animal models, alterations in
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Fig. 1 Signalling mechanisms and the role of disallowed genes in beta
cell insulin secretion in response to glucose (GSIS). See the main text for
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Products of disallowed genes involved in insulin secretion are represented
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that incorporates into the TCA cycle to potentially enhance insulin secre-
tion. In the cytosol, a glycerolipid/NEFA cycle (GL/NEFA), fatty acids
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generate monoacylglycerol (MAG), which enhances insulin release.
NEFA could potentially (grey dotted arrow) be released from the beta
cell and agonise free fatty acid receptor 1 (FFAR1/GPR40). LowACOT7
limits the FA-CoA hydrolysis that would result in a lower FA-CoA/
NEFA ratio in the cytoplasm or mitochondria. This could affect β-oxida-
tion, the GL/NEFA cycle and the activation of FFAR1 and thus prevent
undesired secretory granule release. Examples of transcription factors
contributing to gene disallowance are depicted in blue (RFX6, PAX6)
and miRNAs are shown in red (miR-29a/b). Ac-CoA, Acyl-CoA; GK,
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tricarboxylate cycle. This figure is available as part of a downloadable
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beta cell mtDNA led to reduced insulin secretion,
hyperglycaemia and beta cell loss [34]. In humans, maternally
inherited diabetes and deafness (MIDD) is often linked to an
mtDNA A3243G point mutation in the TRL-CAG1-7
(tRNALeu) gene, responsible for defective mitochondrial
metabolism and impaired intracellular Ca2+ homeostasis [37].

mtDNA encodes most subunits of the electron transport
chain, and inactivation of the mitochondrial transcription
factor A (Tfam) specifically in mouse beta cells resulted not
only in mtDNA depletion and deficient oxidative phosphory-
lation (OXPHOS) but also in impaired secretion and
hyperglycaemia in vivo [38]. Moreover, mutations in the
mitochondrial gene encoding frataxin, known for its iron–
sulphur cluster activation and respiratory function in mito-
chondria, are associated with Friedreich’s ataxia (FRDA)
[39], which involves mitochondrial iron overload, respiratory
chain dysfunction, impaired OXPHOS and ATP production.
Importantly, frataxin expression is upregulated by glucagon-
like peptide (GLP-1) receptor agonists [40], an effect that may
contribute to the glucose-lowering actions of these drugs.

The role of Ca2+ accumulation by mitochondria has long
been a contested aspect of GSIS. Ca2+ uptake into these

organelles in living beta cells was initially demonstrated in
response to an increase in cytosolic Ca2+ through the use of
a recombinant mitochondrially-targeted aequorin [41].
Although thought likely to lower mitochondrial membrane
potential (Δψm), studies based on the discovery in the
1970s of Ca2+-sensitive intra-mitochondrial dehydrogenases
in the citrate cycle [42] have suggested a positive role for Ca2+

as a stimulator of oxidative metabolism in this compartment.
In line with the latter view, deletion of the mitochondrial Ca2+

uniporter (MCU) selectively in the beta cell of living mice
[43] has revealed that Ca2+ uptake is essential for both phases
of glucose-stimulated ATP synthesis and insulin secretion
in vitro, as well as for the maintenance of normal beta cell
mass. However, beta cell-selective Mcu null mice showed
minor changes in insulin secretion in vivo, suggesting the
existence of currently undefined compensatory mechanisms.

Beta cell mitochondria often exist as densely interconnected
tubules that continually undergo interconversions with more
granular forms via fission and fusion cycles that are under the
control of specific regulatory proteins (Fig. 2). In most cell types,
this dynamic process is influenced by nutrient supply as well as
extra- or intracellular factors that are critical to cell survival. This

Table 1 Selected islet and beta cell disallowed genes describing putative roles, mechanisms of repression and evidence of increased expression in type
2 diabetes

Gene Name Comments Known mechanisms
of repression

Evidence of increase
in T2D from LCM
[61] or islet [62] data

Slc16a1 Monocarboxylate transporter 1 Overexpression causes exercise-induced
hyperinsulinism via pyruvate-induced
insulin secretion

miRNA-29 family [32, 63]
Histone methylation [24]

Islets

Ldha Lactate dehydrogenase A Combined overexpression with Slc16a1
causes lactate-sensitive insulin secretion

DNA methylation [23] LCM

Acot7 Acyl-CoA thioesterase 7 Overexpression impairs glucose- & fatty
acid-stimulated insulin secretion

Histone methylation [24] LCM and islets

Igfbp4 Insulin-like growth factor
binding protein 4

Lower in beta cells than alpha cells [21].
Involved in regulation of proliferation

miRNAs [31] –

Mgll Monoglyceride lipase Catalyses hydrolysis of mono-acyl
glycerol (MAG), a potential coupling
factor in insulin secretion

– Islets

Cxcl12 Chemokine (C-X-C motif)
ligand 12

Role in immune regulation, exogenous
treatment prevents immune rejection
of transplanted islets

– Islets

Smoc2 SPARC related modular
calcium binding 2

Role in islets unknown but evidence
for mitogenic role in other cells

– Islets

Pdgfra Platelet derived growth
factor receptor, alpha
polypeptide

Pro-proliferative role in beta cells,
and repression linked to age-related
decline in proliferative capacity

miRNAs [63, 31] LCM

Hsd11b1 Hydroxysteroid
11-beta dehydrogenase 1

Greatest downregulation in beta cells
vs other tissues [21].

Major regulator of local glucocorticoid
signalling

– –

IGF1 Insulin-like growth factor 1 Pro-proliferative role in beta cells – Islets

Yap1 Yes-associated protein 1 Lower in beta cells than alpha cells [21]
Potent driver of proliferation via

Hippo pathway

miR-375 –

For other details and further references see [21]. LCM: Laser capture microdissection; T2D, type 2 diabetes
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is likely also to be the case in beta cells [44] and may be of
particular relevance given the specialised roles of nutrient metab-
olism in these cells. Given that there is likely to be a close
association between mitochondrial morphology and function,
altered mitochondrial dynamics may well contribute to defective
insulin secretion in diabetes. Indeed, several studies have demon-
strated that mitochondrial morphology and function are altered
in beta cells in diabetic animal models (e.g. the Zucker Diabetic
Fatty rat) [42] and beta cell-derived lines [34].

Beta cells from patients with type 2 diabetes also display a
marked change in mitochondrial function and morphology,
including fragmentation and disruption of cristae morphology
[45]. These changes are associated with reduced insulin secre-
tion, a lower ATP/ADP ratio and impaired polarisation of the
mitochondrial inner membrane (i.e. the generation of a Δψm

to drive electron transport chain activity) [45]. However, mito-
chondrial volume density in beta cells from individuals with
type 2 diabetes was significantly increased in comparison with
healthy or type 1 diabetic donors [46].

Recent results from Ku and colleagues [47], and ourselves
[48] demonstrate that the balance between mitochondrial fission
and fusion (and hence the maintenance of an appropriately
interlinkedmitochondrial network) is critical for normal beta cell
fuel sensing. Thus, deletion or silencing of one or more of these
factors (e.g. Drp1, also known as Dnm1l) which controls mito-
chondrial fission) [47, 49] or the mitofusins Mfn1 and Mfn2
(which control fusion) [48] both exert profound effects on beta
cell mass, insulin secretion and glucose homeostasis in mice.
Similarly, deletion of the dynamin-related GTPase optic atrophy
protein 1 (OPA1), responsible for fusion of the inner mitochon-
drial membrane, from beta cells, results in respiratory chain
defects and impaired insulin secretion [50]. Of note, human
syndromes such as multiple symmetrical lipomatosis
(Madelung’s disease), caused by mutations in MFN2, appear
chiefly to lower insulin sensitivity [51]. Therefore, ablation of
both mitofusins may have a greater deleterious impact on beta
cell function and survival rather than targeting and inactivating a
single mitofusin gene. Interestingly, in studies from Shirihai and
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(depolarised) due to oxidative stress will undergo autophagy, a process
also referred to as mitophagy. Functional mitochondria will instead either
remain fragmented (low secretory responsiveness) during high nutrient
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of a downloadable slideset
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colleagues [52], promotion of a fragmented phenotype in
cardiomyocyte-derived C2C12 cells resulted in a marked reduc-
tion in mitochondrial Ca2+ accumulation, hinting that similar
changes may impair the uptake of these ions into mitochondria
in beta cells, with consequences for glucose metabolism and
insulin secretion. Nonetheless, the role and regulation of mito-
chondrial fission and fusion factors in the beta cell in diabetes
mellitus remain to be fully elucidated.

A role for mitochondria in beta cell
heterogeneity and intercellular connectivity?

As reviewed by Gutierrez et al. [53], data that first emerged in
the 1980s indicated the existence within the islet of multiple
beta cell subgroups with distinct metabolic properties. These
early results were supported recently by a slew of new studies
deploying single cell-omics, notably massive parallel RNA
sequencing (RNA-seq) of islet cells from both mice and
humans. This validation of the existence of intercellular hetero-
geneity has raised the possibility that distinct subgroups of beta
cells may exert differing roles in the control of islet dynamics
(note that the mechanisms though which individual islets are
coordinated across the whole pancreas are not addressed here).
Supporting this possibility, we have shown that intercellular
connectivity is required in the islet for a full insulin secretory
response to glucose and incretins [54]. The physical basis of the
connections between cells that underlie this property are only
partly understood; they include, but are not restricted to, the
formation of Connexin 36- (Cx36/Gjd2) dependent gap
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junctions [55]. A subset of specialised beta cells, which are
unusually highly connected (termed ‘hubs’ or ‘leaders’) [56]
and are often the sites of initiation of Ca2+ waves, play a dispro-
portionate role in the control of beta cell Ca2+ dynamics in the
intact islet. Similar findings of functionally distinct (and poten-
tially controlling) beta cell subpopulations have been described
by others [57, 58]. Importantly, both glycolytic and mitochon-
drial metabolism appear to play exaggerated roles in hub/leader
cells, as exemplified by RNA-seq analyses in the model
zebrafish system (Fig. 3) [59]. Taken together, these data
suggest that genetic variants or environmental insults (e.g.
gluco/lipotoxicity or inflammation) may act through mitochon-
drial perturbations to impair beta cell network dynamics and
hence insulin secretion (Fig. 4). Enhancing mitochondrial func-
tion in this critical subset of cells may thus provide a new
therapeutic opportunity in some forms of diabetes.

In summary, defective mitochondrial function is likely to
have effects contributing to impaired insulin secretion in type 2
diabetes and, conceivably, in those cases of type 1 diabetes
where detectable beta cell mass remains [60]. Importantly,
altered mitochondrial function may affect both individual beta
cells and the ensemble behaviour that coordinates pulsatile insu-
lin secretion. Although not the subject of the present review,
changes in mitochondrial function and structure may also modu-
late beta cell survival and, hence, mass in both disease settings,
for example through the regulation of key pathways such as
autophagy, apoptosis and cell senescence. Finally, altered mito-
chondrial metabolism and signal generation may play important
roles in other islet endocrine (and critical non-endocrine) cells to
influence the overall pancreatic output of endocrine hormones.
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