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Many broadly neutralizing antibodies (bnAbs) targeting the HIV-1 envelope glycoprotein
are being assessed in clinical trials as strategies for HIV-1 prevention, treatment, and
antiretroviral-free remission. BnAbs can neutralize HIV-1 and target infected cells for
elimination. Concerns about HIV-1 resistance to single bnAbs have led to studies of bnAb
combinations with non-overlapping resistance profiles. This review focuses on the
potential for bnAbs to induce HIV-1 remission, either alone or in combination with
latency reversing agents, therapeutic vaccines or other novel therapeutics. Key topics
include preliminary activity of bnAbs in preclinical models and in human studies of HIV-1
remission, clinical trial designs, and antibody design strategies to optimize
pharmacokinetics, coverage of rebound-competent virus, and enhancement of cellular
immune functions.
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INTRODUCTION

Antiretroviral therapy (ART) has dramatically reduced the morbidity and mortality associated with
human immunodeficiency virus type-1 (HIV-1) infection by suppressing viral replication (1, 2) but
ART does not cure HIV-1 because of long-lived cells carrying replication-competent (intact)
proviruses (3–5). Viral rebound occurs within weeks in most people with HIV-1 (PWH) who
discontinue ART, including those who initiate ART early during acute infection with long-term
successful suppression of plasma viremia measured as HIV-1 RNA (6, 7). Additionally, there are
barriers to universal ART uptake that include toxicities, stigma, and the need for lifelong adherence
(8–10). Therefore, alternative ART-free strategies that confer durable viral suppression, prevent
disease progression, and avoid drug resistance are highly desirable (11, 12). Proposed minimal target
profiles for these strategies include the ability to maintain plasma HIV-1 RNA below the level at
which transmission occurs, for at least 2 years, and be generally safe and tolerated (13).
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Broadly neutralizing antibodies target specific vulnerable sites
on the HIV-1 envelope, mediate neutralization and target
infected cells for elimination. In this review, we will focus on
the potential for bnAbs to induce antiretroviral-free HIV-1
control, either alone or in combination with latency reversing
agents, immune activating agents, therapeutic vaccines or other
novel therapeutics.
BROADLY NEUTRALIZING ANTIBODIES
IN CLINICAL DEVELOPMENT

Multiple bnAbs that exhibit breath and potency against epitopes
on the HIV-1 envelope trimer are currently being assessed in
clinical trials for HIV-1 prevention, treatment as well as
remission induction. The targeted areas on HIV-1 envelope
(see Figure 1) include the CD4-binding site (CD4bs) on gp120
[VRC01 (14); VRC01-LS (15), 3BNC117 (16), 3BNC117-LS (17),
VRC07-523LS (18) and N6LS (19)]; the glycan-dependent
epitopes on V1/V2 (PGDM1400 (20) and CAP256V2LS (21)
as well as V3 loops (10-1074 (22), 10-1074-LS (17), PGT121 (23)
and PGT121.414.LS); the linear epitopes in the membrane-
proximal external region (MPER) on gp41 [10E8VLS (24, 25)].
Other bnAbs with high potency and breadth that have not
yet entered clinical trials include antibodies targeting the
gp120-gp41 interface (26) and the N49 lineage of CD4bs
bnAbs (27, 28).

A number of clinical trials have shown that bnAbs (including
VRC01, 3BNC117, 10-1074, VRC01-LS, VRC07-523LS, PGT121
and N6LS) are safe and well tolerated (29–38). Serious adverse
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events are rare but have been reported. A phase 1 study
evaluating the subcutaneous administration of 10E8VLS alone
or concurrently with VRC07-523LS in healthy adults was paused
and the administration of 10E8VLS terminated due to local
reactogenicity. Seven of 8 recipients of 10E8VLS experienced
erythema and induration within 24 hours and a biopsy from 1
participant with induration demonstrated panniculitis (39).

The utility of bnAbs for HIV prevention have been reviewed
extensively (40–42) and thus will not be a focus of this article.
The recently completed Antibody Mediated Protection (AMP)
trials, 2 parallel phase 2b multicenter, randomized, double-blind,
placebo-controlled trials involving over 4600 participants and
over 3000 recipients of VRC01, every 8 weeks for 20 months have
further demonstrated the safety, feasibility and scalability of
intravenous bnAb infusion (43). Though VRC01 did not
prevent overall HIV-1 acquisition, it did reduce the acquisition
of viruses highly sensitive (an 80% inhibitory concentration,
IC80 of <1 mg/mL) to VRC01, emphasizing the importance of
breath and potency for bnAb efficacy.

In PWH and plasma viremia, bnAb monotherapy leads to
transient reductions in HIV-1 RNA of ~1.5 log10 copies/mL (in
the absence of pre-existing resistance), with mean HIV-1 RNA
reductions of 1.48, 1.14, 1.52 and 1.7 log10 copies/mL for 3BNC117,
VRC-01, 10-1074 and PGT121, respectively (30–32, 36). These
safety and antiviral activity data supported the investigation of
bnAbs as potential therapeutics for HIV-1. The two main
therapeutic applications that are in clinical evaluations are the use
of bnAbs in place of current antiretroviral regimens to maintain
viral suppression and the use of bnAb as part of a therapeutic
combination to target and eliminate the HIV-1 reservoir.
FIGURE 1 | Anti-HIV-1 broadly neutralizing antibodies in clinical trials and their targets on the HIV-1 envelope.
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THE USE OF BNAB IN PLACE OF ART TO
MAINTAIN VIRAL SUPPRESSION

The potential of bnAbs in maintaining viral suppression during
analytical treatment interruption (ATI) has been assessed in a
number of clinical trials. When 3BNC117 was administered
during ATI to PWH with undetectable plasma HIV-1 RNA
while on ART and with 3BNC117-sensitive outgrowth viruses,
viral rebound was delayed to 8.4 weeks when compared to 2.6
weeks in matched historical controls. In the majority of
participants, emerging viruses showed 3BNC117 resistance,
indicating bnAb selection of escape variants. However, 30% of
participants remained suppressed until 3BNC117 levels waned
below 20 mg/mL, and the viruses emerging in all but one of these
participants showed no apparent resistance to 3BCN117,
suggesting failure of bnAb escape over a period of 9-19 weeks
(44). In contrast, when 3BNC117 was administered to PWH at
24 weeks, 12 weeks and 2 days before ATI and 3 weeks after ATI,
without pre-selection for 3NBC117 sensitivity, the time to
rebound was strongly influenced by the neutralization
sensitivity of the pre-treatment viruses, 3.6 vs 9.2 weeks in
those with resistant vs sensitive viruses, respectively (45).

In 2 single arm clinical trials, AIDS Clinical Trials Group
(ACTG) A5340, and National Institutes of Health (NIH) 15-I-
0140, VRC01 during ATI was associated with a higher proportion
of participants with undetectable HIV-1 RNA at 4 weeks post ATI
when compared with historical controls. However, the difference
was no longer significant at 8 weeks. VRC01 exerted pressure on
the rebounding viruses, resulting in selection for preexisting and
emerging bnAb-resistant viruses (46).

The aforementioned studies involved participants with
treated chronic HIV-1 infection. PWH who initiated ART
during acute HIV-1 infection (AHI) have smaller (47–49) and
less diverse viral reservoirs (50, 51) as well as more preserved
immune responses and thus may potentially display more
favorable responses to bnAbs. VRC01 infusions during ATI in
PWH who initiated ART during AHI did not significantly delay
time to viral rebound of >20 copies/mL but did delay time to viral
rebound of >1000 copies/mL, at a median of 33 days in VRC01
recipients when compared to 14 days in placebo recipients (52).
Importantly, neutralization sensitivity was similar after viral
rebound when compared to at the time of AHI diagnosis,
indicating the lack of selection for VRC01 resistance during
ATI. This was most likely secondary to the near-absence of
diversity among these participants’ sequences and short duration
of viral replication due to prompt ART initiation. Consistent
with studies in chronic HIV-1 infection, participants with strains
most sensitive to VRC01 rebounded later. Interestingly, viral
rebound occurred while the average serum VRC01 level was
50 times higher than in vitro IC80 values, suggesting that the
VRC01 concentrations achieved were therapeutically insufficient.
This may be a result of inadequate levels or speed of VRC01
penetration into tissue reservoirs, off target protein binding,
or other factors, emphasizing that in vitro IC50 orIC80 values
do not necessarily translate to therapeutic concentrations in
humans (53).
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Collectively, these clinical trials indicate that bnAb
monotherapy does not have sufficient breadth to prevent
rebound in most individuals. However, in the setting of
adequate neutralization breadth to cover rebound competent
viruses, bnAbs have the potential to maintain viral suppression
during ATI as long as therapeutic levels are maintained in
plasma and tissues, although further studies are needed to
define adequate therapeutic levels.
MECHANISMS TO IMPROVE POTENTIAL
FOR BNABS TO SUPPRESS VIRAL
REPLICATION

Increasing Half-Life and Potency
The current requirement for frequent dosing (monthly) reduces
the appeal of bnAbs to maintain ART-free viral suppression.
Thus, two amino acid mutations (methionine-to-leucine
substitution and an asparagine-to-serine substitution at amino
acid positions 428 and 434, respectively, collectively referred to
as “LS”) have been introduced into the fragment crystallizable
(Fc)-region of a number of bnAbs to improve affinity to the
neonatal Fc-receptor (FcRn), leading to recirculation following
cellular endocytosis and thereby extending the in vivo half-life
(15, 17, 54).

In non-human primates (NHP), the LS substitution extended
serum half-life by 2-3 fold (17) and also resulted in longer periods
of protection against repeated mucosal challenges with Simian/
Human Immunodeficiency Virus (SHIV), expressing HIV-1
envelope on a SIV backbone, with medians of 14.5 vs 8, 27 vs
12.5 and 17 vs 13 weeks for VRC01-LS, 10-1074-LS and 3BC117-
LS, respectively when compared to the unmodified parental bnAb
(17, 55). In people without HIV, the LS substitution extended
serum half-life of VRC01 from 15 to 71 days (34). Serum half-life
after intravenous infusion was 38 days for VRC07-523LS (35) and
44 days for N6LS (38). Pharmacokinetics data for 3BNC117-LS
(NCT03254277), 10-1074LS (NCT03554408), PGT121.414.LS
(NCT04212091) and CAP256V2LS (NCT04408963) are
forthcoming, and the impact of LS mutations on bnAb half-life
in tissues is yet to be quantified.

Other mutations to extend half-life have also been reported,
including the Met252Tyr, Ser254Thr, and Thr256Glu (YTE)
substitution that is associated with a 4-fold increase in serum
half-life (56, 57). However, YTE substitution also reduces ADCC
activity of the antibody (56), which potentially reduces its utility
in HIV remission induction strategies that will likely
require ADCC.

Subcutaneous administration of bnAb by direct needle and
syringe injection obviates the need for venous access and
volumetric pump infusion and is thus more scalable for
widespread use. However, when compared with intravenous
infusion, subcutaneous injections of VRC01, VRC01-LS,
VRC07-523LS and N6LS showed markedly reduced maximal
serum concentration (Cmax) and delayed time to maximal
concentration TMAX (29, 34, 35, 38).
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Next-generation sequencing, computational bioinformatics,
and structure-guided design can be employed to modify bnAbs
to enhance neutralization potency and breadth. This approach
was applied to VRC01 and resulted in the development of
VRC07-523-LS, that is over 5-fold more potent than VRC01
and neutralized 96% of a panel of 171 HIV-1 pseudotyped
viruses in vitro (18).

Addressing the Issue of bnAb Activity,
Breadth and Resistance
Certain HIV-1 strains are intrinsically resistant to bnAbs targeting
specific epitopes. BnAbs targeting V3 glycans, including 10-1074
and PGT121, have little to no neutralizing activity against
CRF01_AE and can only neutralize a minority of Clade D strains
(22). In contrast, bnAbs targeting the V1/V2 loop have suboptimal
activity against Clade B strains, with PGDM1400 neutralizing 70%
(20) and CAP256-VRC26.25 neutralizing only 15% (58). Thus,
data regarding the major prevalent subtypes for a particular
geographic location must be considered in the selection of bnAbs.

In PWH with plasma viremia, bnAb mediated HIV-1 RNA
reductions were mostly observed in those with sensitive HIV-1
strains. Furthermore, reduction in sensitivity developed within
weeks of monotherapy, due to expansion of pre-existing resistant
viruses or selection of new resistant variants (30–32, 36).
Screening for pre-existing resistant variants is especially
relevant for clinical trials assessing the utility of bnAbs during
ATI. BnAb sensitivity of virus in plasma can be readily
determined in participants with viremia; whereas in
participants on suppressive ART, bnAb sensitivity can be
determined using HIV-1 enveloped pseudovirus derived from
proviral DNA in PBMC or directly using viruses from outgrowth
cultures (31, 44, 59). However, these assays are labor intensive,
impractical for widespread implementation, and may not capture
the spectrum of minor viral variants that could emerge (60, 61).

An approach to expand neutralization coverage is to use
bnAbs targeting different HIV-1 envelope epitopes in
combination. Combinations of three and four bnAbs can
neutralize 98-100% of viruses from a diverse panel of 125 Env-
pseudotyped viruses in vitro (62, 63). In clinical trials, the
combination of 3BNC117 and 10–1074 was safe and generally
well tolerated and pharmacokinetics were similar to when these
bnAbs were administered as monotherapy (61, 64).

Co-administration of 3BNC117 and 10–1074 to PWH and
plasma viremia resulted in an average 1.65 log10copies/mL
reduction in HIV-1 RNA. The four participants with dual
antibody-sensitive viruses had greater and more prolonged
HIV-1 RNA reduction (average of 2.05 log10 copies/mL for over
3 months). Suppression to undetectable levels was seen in one
participant with low (730 copies/mL) pre-bnAb HIV-1 RNA. In
3 of the 4 initially sensitive participants, rebound viruses were
resistant to 10–1074, but remained sensitive to 3BNC117 (as the
shorter half-life of 3BNC117 resulted in a tail of 10–1074
monotherapy) (60). Thus, in PWH with plasma viremia, dual
bnAbs are not sufficient to suppress viremia to undetectable levels.

In contrast, co-administration of 3BNC117 and 10–1074
during ATI to PWH who had undetectable plasma HIV-1
Frontiers in Immunology | www.frontiersin.org 4
RNA while on ART and outgrowth viruses that were
sensitivity to both 3BNC117 and 10-1074, maintained viral
suppression for extended durations. The median time to
rebound was 21 weeks compared to 8.4 weeks with 3BNC117
monotherapy and 2.3 weeks for historical controls. In
participants with no detectable resistant viruses pre-infusion,
viral rebound occurred when the levels of bnAb waned. Rebound
viruses were resistant to 10–1074, but remained sensitive to
3BNC117 (due to the shorter half-life of 3BNC117) but none
developed viruses resistant to both antibodies (61). This study
supports that bnAbs used in combination can maintain long-
term viral suppression in PWH with antibody-sensitive viruses
as long as therapeutic levels are maintained. A number of clinical
trials assessing the efficacy of combinations of bnAbs in
maintaining viral suppression during ATI are currently
ongoing (Table 1). Differential clearance of bnAbs used in
combination that could result in a tail of bnAb monotherapy
remains an issue to be addressed by thorough understanding of
bnAb pharmacokinetics and interactions in clinical trials.

Expanding bnAb Breadth
Newer technologies allow for the construction of antibodies with
two, three, or four different binding sites on a single molecule.
Targeting multiple HIV-1 envelope epitopes in a single bnAb
molecule reduces the risk of developing viral resistance during
periods of essential monotherapy due to differential half-lives of
combination bnAbs, simplifies manufacturing and downstream
product development and thus scalability. The 10E8V2.0/
ibalizumab bispecific ab, generated using CrossMAbs
technology, neutralized 100% of a panel of 118 HIV-1
pseudotyped viruses in vitro with mean IC50 values of 0.002
mg/mL. Furthermore, it also protected humanized mice against
repeated intraperitoneal HIV-1JR-CSF challenges (65). Currently,
a phase I dose-escalation study on the safety, tolerability,
pharmacokinetics, and anti-HIV-1 activity of the 10E8.4/
ibalizumab bispecific Ab is in progress (NCT03875209).

Tri-specific abs have also been generated using knob-in-hole
heterodimerization to pair a single arm derived from a normal
immunoglobulin (IgG) with a double-arm generated in the
cross-over dual variable Ig-like proteins (CODV-Ig). Two lead
tri-specific Ab, N6/PGDM1400-10E8v4 and VRC01/
PGDM1400-10E8v4 were able to neutralize 207 and 204 of 208
pseudotyped viruses in vitro, respectively. When NHP were
challenged intrarectally with a mix of SHIV325c (resistant to
VRC01) and SHIVBaLP4 (resistant to PGDM1400), 6 of 8 animals
infused with VRC01 alone and 5 of 8 animals infused with
PGDM1400 became infected. In contrast, none of the 8 animals
infused with VRC01/PGDM1400-10E8v4 trispecific Ab were
infected (66). This demonstrated that tri-specific ab conferred
protection against viruses that otherwise showed resistance to
single parental bnAbs. The VRC01-LS/PGDM1400-10E8v4
trispecific ab (SAR441236) is currently being evaluated in a
dose escalation study to determine safety, pharmacokinetics
and anti-HIV-1 activity (NCT03705169).

It is anticipated that the modified versions of 10E8 used in the
aforementioned bi- and tri-specific bnAbs will not recapitulate
July 2021 | Volume 12 | Article 710044
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TABLE 1 | Ongoing clinical trials of bnAb as part of HIV-1 therapeutic or remission strategy.

BnAb Target site Additional
Intervention(s)

Study population Study Endpoints Clinicaltrials.gov
identifier

Studies on antiviral effects of bnAbs
VRC01-LS or
VRC07-523LS

CD4bs Adults with HIV-1 and plasma viremia Safety, PK and effects on plasma
viremia

NCT02840474

3BNC117 + 10-
1074

CD4bs, V3 glycans Adults with HIV-1 and plasma viremia Safety and effects on plasma
viremia

NCT03571204

3BNC117-LS +
10-1074-LS

CD4bs, V3 glycans Adults with HIV-1 and plasma viremia Safety, PK and effects on plasma
viremia

NCT04250636

VRC07-523LS +
PGT121 +
PGDM1400

CD4bs, V3 glycans,
V1/V2 loop

Adults with HIV-1 and plasma viremia Safety, PK and effects on plasma
viremia

NCT03205917

10E8.4/iMab MPER, CD4 Adults with HIV-1 and plasma viremia Safety, PK and effects on plasma
viremia

NCT03875209

SAR441236 Trispecific Ab
targeting CD4bs, V2
loop, MPER

Adults with HIV-1 and plasma viremia Safety, PK and effects on plasma
viremia

NCT03705169

VRC01 CD4bs Adults at the diagnosis of acute HIV-1
infection, in addition to ART

Safety and effects on plasma
viremia

NCT02591420

VRC01 CD4bs Infants with HIV-1, in addition to ART Safety, PK and effects on plasma
viremia

NCT03208231

3BNC117 CD4bs Albuvirtide (Fusion
inhibitor)

Adults with multi-drug resistant HIV-1 Effects on plasma viremia NCT04560569

Studies on efficacy in maintaining viral suppression during ATI
3BNC117 + 10-
1074

CD4bs, V3 glycans Adults with HIV-1, on ART Effects on the latent reservoir,
impact on viral rebound and safety

NCT03526848

3BNC117 + 10-
1074

CD4bs, V3 glycans Adults with HIV-1, on ART, initiated during
primary HIV-1 infection

Safety and impact on viral rebound NCT03571204

VRC01-LS + 10-
1074

CD4bs, V3 glycans Children with antepartum or peripartum
HIV-1 infection, on ART, initiated early
after diagnosis

Safety, impact on viral rebound
and PK

NCT03707977

VRC01 + 10-
1074

CD4bs, V3 glycans Adults with HIV-1, on ART Safety and impact on viral rebound NCT03831945

3BNC117-LS +
10-1074-LS

CD4bs, V3 glycans Adults with HIV-1, on ART, initiated during
primary HIV-1 infection

Safety and impact on viral rebound NCT04319367

VRC07-523LS +
PGT121 +
PGDM1400

CD4bs, V3 glycans,
V1/V2 loop

Adults with HIV-1, on ART Safety, PK and impact on viral
rebound

NCT03721510

3BNC117 CD4bs Albuvirtide (Fusion
inhibitor)

Adults with HIV-1, on ART Impact on viral rebound NCT03719664

3BNC117-LS +
10-1074-LS

CD4bs, V3 glycans Lenacapavir (capsid
inhibitor)

Adults with HIV-1, on ART Safety, impact on viral rebound
and PK

NCT04811040

VRC07-523LS CD4bs Long-acting
cabotegravir

Adults with HIV-1, on ART Safety and impact on viral rebound
and PK

NCT03739996

Studies on bnAbs in combination with additional interventions to target and eliminate the viral reservoir
3BNC117 CD4bs Romidepsin (LRA) Adults at the diagnosis of HIV-1 infection,

in addition to ART
Safety, effects on plasma viremia
and the latent reservoir

NCT03041012

3BNC117 CD4bs Romidepsin Adults with HIV-1, on ART Safety, impacts on viral rebound
and the latent reservoir

NCT02850016

VRC07-523LS CD4bs Vorinostat (LRA) Adults with HIV-1, on ART Safety, effects on viral reservoir NCT03803605

3BNC117 + 10-
1074

CD4bs, V3 glycans Lefitolimod (TLR9
agonist)

Adults with HIV-1, on ART Safety and impact on viral rebound NCT03837756

VRC07-523LS +
10-1074

CD4bs, V3 glycans N-803 (IL-15
superagonist)

Adults with HIV-1, on ART Safety, impacts on viral rebound
and the latent reservoir, PK

NCT04340596

3BNC117 + 10-
1074

CD4bs, V3 glycans Pegylated Interferon
alpha 2b

Adults with HIV-1, on ART Safety, NK cell activity and impact
on viral rebound

NCT03588715

VRC07-523LS +
10-1074

CD4bs, V3 glycans HIV DNA vaccine,
HIV MVA vaccine,
lefitolimod

Adults with HIV-1, on ART Safety, proportion with post
treatment control, immunogenicity

NCT04357821

10-1074 V3 glycans HIV RNA vaccine,
romidepsin

Adults with HIV-1, on ART Safety, impacts on viral rebound
and the latent viral reservoir,
immunogenicity

NCT03619278
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the local reactogenicity associated with 10E8VLS due to
differences in amino acid sequences as well as antibody-antigen
interactions between the bivalent 10E8VLS and the monovalent
10E8.4 arm of the bi- or tri-specific bnAbs. Due to their novel
structures, recombinant multi-specific Abs have a higher
theoretical possibility of inducing anti-drug Abs. However, this
has not been reported in the preliminary trials to date and will
need to be confirmed in larger scale studies in humans.
THE USE OF BNABS TO TARGET,
CONTROL AND POTENTIALLY ELIMINATE
THE VIRAL RESERVOIR

BnAbs Alone
Data from rhesus macaques inoculated with SHIV suggest that
bnAb when administered alone may induce sustained ART free
remission (Table 2). When 3BNC117 and 10-1074 were
administered to animals 3 days post intra-rectal SHIVAD8-EO

inoculation, plasma viremia was only detectable in 2 of 6
animals in the first month. Viral suppression was maintained
for 8-25 weeks until bnAb levels waned. Importantly, 3 animals
developed viral control. In a follow-on experiment, the same bnAb
regimen was administered 3 days post intravenous SHIVAD8-EO

inoculation. Plasma viremia was initially detected in all animals
post inoculation (PI), but then declined to undetectable levels by
4 weeks post bnAb administration. Rebound occurred at 7-16
weeks PI when bnAb levels waned. Three of 7 animals developed
post-rebound viral control. Subsequent CD8 T cell depletion in all
6 controllers resulted in increase in plasma viremia, suggesting a
CD8 T cell dependent mechanism for control (67).
Frontiers in Immunology | www.frontiersin.org 6
To evaluate the above strategy at a more clinically relevant
post infection timepoint, SHIVAD8-EO -infected monkeys were
treated with bnAbs (10-1074 and 3BNC117) alone or with ART
plus bnAbs starting at 2 weeks PI. In the bnAb alone group,
bnAbs reduced plasma viremia overall, but only 1 animal
achieved full plasma viral suppression. This animal later
rebounded and subsequently regained control. Three other
animals also controlled virus, but much later, at 90-150 weeks
post infection. Viral rebound occurred in all animals in the ART
plus bnAbs group when bnAb levels waned. Three animals
developed post-rebound viral control at weeks 70-160. CD8 T
cell depletion in controllers from both groups also led to
transient increases in plasma viremia (68).

Therefore, bnAbs initiated on day 3 or day 14 PI resulted in
CD8 T cells dependent viral control in about half the animals.
However, the time required to develop viral control was much
more protracted when the initiation of bnAbs were delayed. The
authors speculated that though bnAbs administered early post
infection suppressed viremia, very-low levels of antigen
production likely persisted and in the presence of bnAbs
stimulated immune complex formation and dendritic cell
activation leading to the induction of CD8 T cell responses.
Immune responses were further augmented during viral
rebound, culminating in viral control.

There is little data in humans on the efficacy of bnAbs to
induce T cell responses leading to viral control. In the study by
Mendoza et al, in which a combination of 3NBC117 and 10-1074
was administered during ATI, increased Gag-specific CD8+ and
CD4+ T cell responses were seen in 9/9 and 8/9 participants with
sensitive viruses and prolonged viral suppression. The increases
were attributed to both newly detectable reactivity to HIV-1 Gag
epitopes and the expansion of pre-existing measurable responses
TABLE 2 | Non-human primate studies on the use of bnAbs to target, control and potentially eliminate the viral reservoir.

SHIV ART
initiation

BnAb Additional
Interventions

Outcome

Nishimura
et al. (67)

SHIVAD8-EO No ART 3BNC117 + 10-1074 at days 3, 10
and 17 PI

Viral control in 3 of 6 animals from intra-rectal
and 3 of 7 animals from intravenous inoculation

Nishimura
et al. (68)

SHIVAD8-EO 2 weeks post infection 3BNC117 + 10-1074 alone at weeks
2, 4 and 6 PI or
ART initiation at week 2; 3BNC117 +
10-1074 at weeks 9, 11 and 13; ART
discontinuation at week 10

Viral control in 4 of 6 animals in bnAb alone
arm in 3 of 6 animals in bnAb and ART arm

Borducchi
et al. (69)

SHIVSF162P3 7 days post infection PGT121 TLR7 agonist No rebound in 5/11 animals and delay in
rebound when compared to controls (112 vs
21 days)

Hsu et al.
(70)

SHIV1157ipd3N4 2 weeks post infection PGT121 + N6-LS TLR7 agonist Delay in rebound when compared to controls
(6 versus 3 weeks)

Barouch
et al. (71)

SHIVSF162P3 12 months post infection PGT121 or its FC modified version
(GS9721)

TLR7 agonist No rebound in 7/17 animals

Whitney
et al. (72)

SHIVAD8 ~50 days post infection 3BNC117 + 10-1074 IL-15 superagonist No difference in time to rebound. Post-rebound
control in 6 of 8 animals

Barouch
et al. (73)

SHIVSF162P3 9 days post infection PGT121 TLR7 agonist,
Ad26/MVA vaccine

4 of 12 PGT121+TLR7 agonisttreated animals
and 4 of 10 Ad26/MVA vaccine+PGT121
+TLR7 agonist-treated animals did not
rebound post treatment interruption. Only 4 of
10 Ad26/MVA vaccine+PGT121+TLR7
agonist-treated animals remained viremic 140
days post treatment interruption.
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(74). However, whether the increase in responses contribute to
viral control remains to be elucidated.

Data from human trials involving bnAbs infusions concurrent
with ART [including VRC01 (31, 75) and 3BNC117 (45)] showed
no measurable impact on the latent reservoir. The impact of
bnAbs on the reservoir would likely be improved when used in
combination with other strategies, including latency reversal
agents to induce proviral activation and cell-surface expression
of viral envelopes so that they can be targeted by bnAbs, immune
activating agents to enhance anti-viral responses and Fc-mediated
killing of infected cells, or therapeutic vaccination to stimulate
T cell responses for viral control.

BnAbs and Immune Activating Agents
In the study by Borducchi et al., toll-like receptor 7 (TLR7)
agonist was incorporated to induce innate immune activation
and enhance anti-viral responses (76, 77). In this study, TLR7
agonist and PGT121 were administered in addition to ART
(initiated at 7 days post SHIVSF162P3 inoculation). ART was
discontinued after antibody washout at week 130. Only 6 of 11
(55%) animals that received PGT121+TLR7 agonist rebounded,
at a median of 112 days vs 21 days in controls (p=0.0001) (69).
Interestingly, no induction of CD8 T cell responses was seen.
Importantly, in the animals that did not rebound, adoptive
transfer experiments did not reveal infection of naïve hosts.
Furthermore, SHIV RNA also remained undetectable after CD8
T cell depletion. These data suggest that the combination of
immune stimulation with bnAb administration may potentially
eliminate the viral reservoir.

In a follow-on study by Hsu et al., rhesus macaques inoculated
with SHIV1157ipd3N4 were initiated on ART on day 14 to more
closely mirror what is logistically feasible in humans. ART
initiation was followed by the administration of TLR7 agonist
and dual bnAbs (N6-LS and PGT121). ARTwas discontinued after
antibody washout. Though TLR7 agonist and dual bnAbs delayed
viral rebound by 2-fold (3 vs 6 wks, p=0.024), viral rebound
occurred in all animals (70). The delay in ART initiation, the
shorter duration of ART and the lower number of doses of bnAbs
administered (ranging from 2-5 doses, limited by the development
of anti-drug antibody) may have contributed to the reduction in
efficacy when compared with the Borducchi et al. study.

In a recent study, Barouch et al., demonstrated in SHIVSF162P3-
infected animals that initiated ART 12months after infection, TLR7
agonist and PGT121 or its Fc-modified version, GS-9721 prevented
viral rebound in 7 of 17 animals following ART discontinuation.
These data suggest that TLR7 agonist and bnAb administration is
efficacious for ART-free remission of chronic SHIV infection (71).

Whitney et al. explored the use of N-803 [IL-15 superagonist
that has been shown to increase NK and CD8 T cells in the
peripheral blood as well as SHIV-specific CD8 T cells in
lymphoid follicles (78–80)] in combination with 3BNC117 and
10-1074 in macaques on ART for chronic SHIVAD8 infection.
ATI occurred after bnAb washout. Viral rebound occurred in
all animals and no differences in time to rebound were seen
between the active and control groups. However, post-rebound
viral control occurred in 6 of 8 animals in the active group
4 months from the start of ATI (72).
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Data regarding the effects of bnAbs in combination with
additional strategies on the latent reservoir in humans is
forthcoming. In a trial of 3BNC117 and romidepsin [a histone
deacetylase inhibitor (81)], in 20 PWH on ART, the addition of
3BNC117 did not significantly reduce HIV-1 DNA or delay viral
rebound when compared to romidepsin alone (82). A number of
clinical trials, including 3BNC117+romidepsin (NCT03041012,
NCT02850016), VRC07-523LS+vorinostat (NCT03803605),
pegylated-interferon Alpha 2b+3BNC117+10-1074 (NCT03588715),
lefitolimod (TLR9 agonist)+3BNC117+10-1074 (NCT03837756)
and N-803+VRC07-523LS+10-1074 (NCT04340596) are currently
on-going (Table 1).

Use of bNabs With Vaccination
The effects of immune stimulation (TLR agonism) and bnAbs may
be further enhanced by the addition of therapeutic vaccine to
induce anti-HIV-1 CD8 T cell responses. This strategy was
explored in SHIVSF162P3-infected rhesus macaques that were
initiated on ART day 9 post infection. Following ART
discontinuation, all control animals rebounded. All 12 of the
Ad26/MVA vaccine+TLR7 animals also rebounded, but 3
developed post-rebound viral control. In contrast, only 8 of 12 of
PGT121+TLR7 treated animals and 6 of 10 of Ad26/MVA vaccine
+PGT121+TLR7 treated animals rebounded. Moreover, some
animals exhibited post-rebound viral control so that by day 140
following ART discontinuation, only 4 of 10 of Ad26/MVA vaccine
+PGT121+TLR7 treated animals have detectable viremia (73).
Thus, combined TLR7 agonist, active and passive immunization
resulted in both delayed viral rebound and post-rebound control
following ART. This strategy is also being explored in an upcoming
clinical trial involving therapeutic conserved element DNA
vaccine+MVA vaccine+VRC07-523LS+10-1074+lefitolimod
(NCT04357821) and ChAdOx/MVA HIV mosaic vaccine
+3BNC117LS+10-1074LS+vesatolimod (ACTG5374) in PWH
who initiated ART during acute HIV infection. Such human data
is essential to determine whether results in NHP can be reproduced.

Data regarding the use of bnAbs to target, control and
potentially eliminate the viral reservoir are largely from small
NHP studies. However, there are differences between SHIV-
infected NHP and PWH including lower viral diversity and
higher rate of natural control in SHIV infection. Furthermore,
efficacy of bnAbs is reduced with delay in bnAb administration
or ART initiation, suggesting a narrow window of opportunity to
intervene. Finally, a prolonged duration of viremia is also
required for the observation of post treatment control. Thus,
feasibility and translatability in PWH who started ART during
chronic HIV infection is yet to be demonstrated.
INCORPORATING LESSONS LEARNED
INTO CLINICAL TRIAL DESIGN

The Use of bnAbs to Maintain Viral
Suppression
Available data demonstrated that bnAbs are generally safe and
suggest that bnAbs can maintain viral suppression during ATI as
long as the pre-existing viruses are sensitive and therapeutic
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levels are maintained. Judicious selection of bnAbs based on
neutralization-sensitivity of the predominant variants in a given
geographic location, screening for pre-existing resistance and the
use of bnAbs in combination to increase breadth and coverage
will minimize the selection of escape variants. These
optimization strategies will need to be further assessed in
phase II or III clinical trials involving participants with chronic
HIV infection to determine longer term efficacy. The ultimate
goal is to identify antibody combinations with adequate breath to
cover for circulating variants to obviate the need for screening for
pre-existing resistance, which is a major barrier to widespread
use. When bnAbs are used in combination in the absence of
ART, considerations must be given to differences in half-life of
each respective bnAb. In addition to peripheral blood, collection
of tissue samples including lymph node and gut biopsies should
be incorporated into clinical trials to allow measurement of the
levels of bnAbs so as to inform what constitutes therapeutic
levels in reservoir sites.

The use of bnAbs with LS modifications will extend duration
above therapeutic threshold and reduce infusion frequency.
This, together with alternative routes of administration such as
subcutaneous injection will facilitate scale-up and access. Data
from clinical trials evaluating long-acting injectable anti-HIV
drugs, including monthly intramuscular cabotegravir (integrase
strand transfer inhibitor) and rilpivirine (nonnucleoside reverse-
transcriptase inhibitor) (83) or 6-monthly subcutaneous
lenacapavir (capsid inhibitor) (84) are becoming available.
Monthly intramuscular cabotegravir and rilpivirine demonstrated
non-inferior viral suppression when compared to standard ART.
The development of resistance is infrequent. However, injection-
related adverse events were common (>80% of participants) but
only infrequently led to medication withdrawal (83). Long acting
ART will contend with bnAbs as preferred agents to maintain
long-term viral suppression with infrequent dosing. Given that
both strategies have pros and cons, usage and uptake will likely be
driven by considerations including availability, local HIV-variant
sensitivity profile, tolerability, relative cost and availability, and
individual and local cultural preferences. While some may prefer a
daily oral pill, others may prefer a less frequent schedule of
administration. Dosage route, frequency, and potential for bnAbs
self-administration will be important factors in this consideration.

The Use of bnAbs to Induce
HIV Remission
BnAbs alone are unlikely to be adequate to eliminate the latent
reservoir. A handful of NHP studies where bnAbs were used in
combination with innate immune activating agents have shown
promise. However, mechanisms for delay in viral rebound or
post-rebound viral control have not been delineated. The strategy
of innate stimulation, active and passive immunization are in the
early stages of development and data is needed to inform
decisions regarding optimal timing and order of administration
of individual interventions to maximize therapeutic effects.

It is important to bear in mind that immune activating agents
may potentially expand the reservoir through clonal
proliferation. It remains possible that certain reservoir sites
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including the central nervous system may be exposed to
latency activation and viral replication but little bnAb
mediated anti-HIV-1 effects due to the blood brain barrier
limiting bnAb penetrance. These questions can be addressed in
NHP models where direct tissue sampling of the brain is more
feasible. In parallel, clinical trials administering bnAb therapies
can also monitor differential impact on bnAb therapies
administered by varying routes on viral burden or cellular
reservoirs in the cerebrospinal fluid relative to blood.

Data from NHP studies suggest that the opportunity to
intervene may be narrow, with reduction in efficacy or
substantial increase in time required to observe results when
bnAb administration or ART initiation is delayed just by a few
weeks. The MHRP RV217 prospective cohort involving
seronegative high-incidence populations who underwent twice-
weekly HIV-1 RNA testing estimated the eclipse phase (the time
between HIV-1 infection and a diagnosable infection by nucleic
acid testing) to be one week (85). Therefore, taking into account
the time required to diagnose, screen and then enroll participants
into a clinical trial, the earliest that interventions can realistically
be administered is likely around 2 weeks post infection. The
clinical trial NCT02591420 that explores the effects of VRC01
when administered at the time of diagnosis of AHI on the viral
reservoir has just completed clinical follow-up, demonstrating that
intervening early during HIV-1 infection is logistically feasible.
However, the majority of PWH initiated ART during chronic
infection and the impacts of these strategies in this setting are yet
to be defined.

Though NHP studies demonstrated that post-rebound viral
control is possible, a protracted period of viremia may be
required prior to the development of control. The delicate
balance between the utility of an extended ATI to observe
post-rebound viral control versus the associated risks of
transmission to sexual partners, symptomatic HIV disease,
immune depletion, and emergence of new drug resistance
mutation has generated much debate among researchers,
ethicists and PWH (86–89). Research in delineating
mechanisms and/or correlates for delay in viral rebound and
sustained post-rebound viral control is urgently needed to reduce
the reliance on extended ATI as an outcome measure.

BnAbs are generally safe and well tolerated and have been
shown to maintain viral suppression in the setting of sensitive
pre-treatment viruses. Mechanisms to improve antiviral effects
and ease of use are becoming available. Thus, bnAbs used in
combination have the potential to replace ART and obviate the
need for high level adherence that is necessary for daily ART. The
use of bnAbs as a component of combination strategies to target
the reservoir has shown promise in NHP models. However, the
window of opportunity to intervene for maximal effect may be
narrow. A remission strategy should be effective across the
spectrum of HIV infection. Thus, much work needs to be done
to answer questions regarding the penetration into tissue sites,
what constitutes therapeutic levels, and the mechanisms of
action in the delay of viral rebound and post-rebound control
before bnAb can become an important therapeutic advance
for PWH.
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