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By allelotyping for loss of heterozygosity (LOH), we previously identified a deletion region that
harbors the candidate tumor suppressor gene DAL-1 at 18p11.3 in sporadic gastric cancers (GCs). The
expression and function of DAL-1 in GCs remained unclear. Here, we demonstrated that the absence
of or notable decreases in the expression of DAL-1 mRNA and protein was highly correlated with CpG
hypermethylation of the DAL-1 promoter in primary GC tissues and in GC cell lines. Furthermore,
abnormal DAL-1 subcellular localization was also observed in GC cells. Exogenous DAL-1 effectively
inhibited cancer cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT);
exogenous DAL-1 also promoted apoptosis in GC AGS cells. When endogenous DAL-1 was knocked
down in GCHGC-27 cells, the cells appeared highly aggressive. Taken together, these findings provide
solid evidence that aberrant expression of DAL-1 by hypermethylation in the promoter region results
©in tumor suppressor gene behavior that plays important roles in the malignancy of GCs. Understanding
. therole of it played in the molecular pathogenesis of GC, DAL-1 might be a potential biomarker for
 molecular diagnosis and evaluation of the GC.

Gastric cancer (GC) is the fifth most common cancer in the world, nearly 1.0 million new cases were diagnosed
: in 2012. The identification of the vital molecules related to gastric carcinogenesis is very meaningful. Our pre-
: vious allelotyping for loss of heterozygosity (LOH) using 14 polymorphic microsatellite markers first described
© LOH at 18p11.3 in 45 sporadic GCs, suggesting that the 18p11.3 region may be comprised of candidate tumor
. suppressor genes that are found within the deleted band. The differentially expressed in adenocarcinoma of the
. lung-1 (DAL-1), also known as erythrocyte membrane protein band 4.1-like 3 (EPB41L3) or 4.1B, is localized to
© the chromosomal region 18p11.3; this region is affected by LOH in lung, brain, and breast cancers®. DAL-1, which
. belongs to the protein 4.1 superfamily, was first isolated as an expressed fragment of the 4.1 gene by differential
. display analysis of primary adenocarcinomas of the lung by Tran et al. DAL-1 is expressed in various normal
© tissues; however, its expression is greatly reduced or lost in lung?, breast*, prostate®, and kidney® cancers and in
* meningiomas’. The restoration of DAL-1 expression in non-small cell lung carcinoma (NSCLC) and in breast
- cancer cells significantly suppressed cell growth in vitro**. Although LOH on 18p11.3 was reported in approxi-
. mately 40% of NSCLC? cases and in 60-70% of meningiomas’ and breast cancers®, it was determined that LOH in
© this region was not correlated with loss of DAL-1 expression’. Moreover, mutational screening failed to identify
inactivating mutations of DAL-1°. Several studies have demonstrated the epigenetic inactivation of DAL-1 in
. some cancers. DAL-1 methylation in renal, lung, and breast cancers and in nasal NK/T-cell lymphoma was found
. to be associated with the downregulation of DAL-1 expression. Methylation has been shown to be an important
mechanism of transcriptional silencing of this gene in these cancers®!%!2 These findings indicate that DAL-1isa
candidate tumor suppressor gene and may serve as a target for inactivation in carcinogenesis.
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Like other 4.1 protein family members, DAL-1 localizes to the plasma membrane near points of cell-cell
contact. DAL-1 also suppresses growth of lung cancer cells®. DAL-1 directly interacts with tumor suppressor in
lung cancer 1 (TSLC1), whose juxtamembrane portion acts as a 4.1-binding motif. Both DAL-1 and TSLCI are
spectrin-actin-binding proteins. The redistribution of both DAL-1 and TSLCI1 to newly generated membrane
ruffling areas indicates that these proteins are also involved in the cell motility that accompanies actin rearrange-
ment'®. Migration and invasive behaviors are important characteristics of cancer cells. Such behaviors indicate
malignancy, supporting the view that both DAL-1 and TSLC1 can be targeted for the development of anti-cancer
agents'. To the best of our knowledge, the DAL-1 gene has not yet been characterized in GC.

Our previous study described 18p11.3 (DAL-1 locus) LOH in sporadic GCs!, suggesting that DAL-1 may be
a candidate tumor suppressor gene in GC. To further investigate the significance of DAL-1 in gastric carcino-
genesis, we analyzed the expression and methylation status of DAL-1 in eight GC cell lines and 38 surgically
resected primary GCs. We found significant DAL-1 alterations in these GCs and promoter methylation-mediated
downregulation of DAL-1, which appeared to be involved in GC pathogenesis. We also demonstrated through
functional analyses that the aberrant expression of DAL-1 is associated with malignancy in GC cells.

Results

Downregulation of DAL-1 expression in GCs. To evaluate the expression of DAL-1 in gastric carcino-
genesis, we initially analyzed the expression of DAL-1 mRNA and protein in surgically resected GC samples
and adjacent noncancerous tissues from the same patients using RT-PCR and IHC methods. RT-PCR results
demonstrated that DAL-1 mRNA expression was reduced in 13 of 19 (68.4%) primary GC samples (Fig. 1a,
Supplementary Table 1). IHC results revealed that the expression of DAL-1 protein was significantly reduced in
GC group compared to the adjacent noncancerous group (20 of 22, 90.9%) (Fig. 1b, Supplementary Table 1 & 2).
Additional, we analyzed the DAL-1 expression in GCs and the matched normal samples included in The Cancer
Genome Atlas (TCGA) datasets. With the analyses of 333 GC samples and 37 normal gastric samples in TCGA,
we found the expression level of DAL-1 in GCs was significantly reduced compared to the matching controls
(Supplementary Fig. 1a). The data showed the consistence with our clinical study, that the expression of DAL-1
decreased in GCs. Furthermore, we analyzed the staging data of our clinical samples with the expression levels
of DAL-1. We found DAL-1 reduced in various grades and stages, especially in G1, G2, and early stage (stage I)
(Supplementary Fig. 1b,c). Meanwhile, through further analysis using the RNA-seq data of DAL-1 in TCGA data-
set, we found DAL-1 was obviously reduced in G2 and stage I GCs (Supplementary Fig. 1d,e), which was shown
consistent with our clinical samples. It suggested that DAL-1 lost its expression at the beginning of GC develop-
ment. Moreover, we examined the expression level of DAL-1 protein in eight GC cell lines by Western blot. As
shown in Fig. 1c, DAL-1 protein expression was significantly repressed in seven GC cell lines (AGS, NCI-N87,
KATOIII, SNU-1, SNU-5, SNU-16, and Hs746T), except HGC-27, compared to that in HEK-293T cells. These
data indicate that a reduction in DAL-1 expression may be involved in the development of GC.

Methylation of the DAL-1 promoter in GCs. To investigate whether the downregulation of DAL-1
expression in GCs results from methylation in the promoter region of the gene, we examined the methylation
status of the DAL-1 promoter in primary GC tissue samples, and GC cell lines. Thirty-one CpG sites around the
transcriptional start site (from —187bp to 4+100bp) were analyzed using the MSP method in 37 paired speci-
mens of primary GC and cancer-adjacent gastric tissues (partially shown in Fig. 2a), including all 19 RT-PCR
samples and 21/22 THC samples aforementioned. We found DAL-1 methylation in 94.6% (35 of 37) of GC cases;
in comparison, DAL-1 methylation occurred in 70.3% (26 of 37) cancer-adjacent gastric tissues (Supplementary
Table 3). When methylation frequency and DAL-1 expression in GC tissues was compared, we found that the
expression of DAL-1 mRNA or protein decreased in 23 of the 35 GC samples in which DAL-1 methylation was
apparent (Supplementary Table 1). These results suggest that methylation in the DAL-1 promoter is associated
with transcriptional repression of DAL-1 in a subset of GC tissues. However, DAL-1 methylation was also found
in six GC samples with normal DAL-1 mRNA expression levels and in two GC samples with normal DAL-1
protein expression levels. The latter phenomenon might be due to a mechanism other than methylation. We then
evaluated the methylation frequency of CpG sites located in the DAL-1 promoter region using the BGS method
in the GC cell lines AGS, HGC-27, NCI-N87, and KATOIIIL We found that these CpG sites were methylated to
different degrees (Fig. 2b). The CpG sites in three cell lines were highly methylated; the methylation frequencies
were 87.4%, 94.5%, and 76.8% in AGS, NCI-N87, and KATOIII, respectively (Fig. 2b). A decrease in DAL-1
expression was observed in all three cell lines. In contrast, in DAL-1 relatively highly expressed cell line HGC-
27, the methylation frequency of the CpG sites in this line was only 3.23% (Fig. 2b). These results indicate that
the hypermethylation of DAL-1 CpG sites is strongly correlated with the downregulation of DAL-1 expression
in GC cells. To further evaluate whether DAL-1 methylation is a major factor in decreased DAL-1 expression,
three hypermethylated DAL-1 cell lines (AGS, NCI-N87, and KATOIII) were treated with the demethylating
agent 5-Aza-2'-CdR. As shown in Fig. 2¢, the expression of DAL-1 was restored in these cells after 3 or 5 days of
demethylation treatment; a methylation-dependent effect on DAL-1 expression was clearly demonstrated. The
cells with higher methylation level (AGS, 87.4%, and NCI-N87, 94.5%), were more sensitive to demethylating
agent. The results indicated that promoter methylation played an important role in the downregulation of DAL-1
gene expression in these GC cells.

Aberrant localization of DAL-1 protein in GC cells. It is known that DAL-1 is expressed at the cell
membrane, especially at the interface of cells that are in direct contact with one another in lung and breast can-
cers®*. To detect the cellular localization of the DAL-1 protein in GC cells, we preformed immunofluorescence
assays using the following four GC cell lines: AGS, HGC-27, NCI-N87, and KATOIII As seen in the immunoblot-
ting analysis above, endogenous DAL-1 protein was expressed clearly in HGC-27 GC cells but not in other three
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Figure 1. Downregulation of DAL-1 expression in GCs. (a,b) DAL-1 expression in GCs and adjacent
noncancerous gastric tissues in RT-PCR assay (a) (#27 and #14) and in IHC assay (b) (#1, #2, #18).
Magnification 400 x. (c) Western blot shows the expression of DAL-1 in GC cells and HEK-293T cells.

GC cell lines (Fig. 3a). Strong signals of DAL-1 protein diffusely distributed throughout the cytoplasm, as well
as along the cell membrane (particularly in the cell-cell contact interface of HGC-27 cells). This finding suggests
that the pattern of DAL-1 protein expression is aberrant. To validate this finding, we examined whether DAL-1
localizes to the same region as another membrane protein, 3-catenin, in HGC-27 cells'. Cells were co-incubated
with both fluorescein-labeled anti-DAL-1 and anti-(3-catenin antibodies; this incubation was followed by DAPI
staining (Fig. 3b). DAL-1 was clearly visible at the contact interface between HGC-27 cells and was diffusely
dispersed throughout the cytoplasm. 3-catenin staining was detected wherever cell-cell contact occurred. DAL-1
and (3-catenin signals colocalized at cell-cell contact points, double exposure produced a yellow-orange signal.
This complex staining pattern of HGC-27 cells indicates that aberrant DAL-1 protein localization in GC cells may
impair its growth-suppressing properties, as DAL-1 may regulate cell-cell attachment or the attachment of cells
to another surface.

Overexpression of DAL-1 impairs the malignancy of GC cells.  To assess the anticarcinogenic activ-
ity of DAL-1 in GC cells, we determined the effect of DAL-1 overexpression on the malignant behavior of AGS
cells. AGS cells contain a hypermethylated DAL-1 promoter and lack DAL-1 expression. Stable DAL-1 overex-
pressing cells and control AGS cells were established by transfection with the pEZ-M68-DAL-1 and control vectors
(Fig. 4a). Cell proliferation was measured using the MTS assay. Our results demonstrated that the growth rate of
DAL-1 overexpressing cells significantly decreased compared to the control cells (Fig. 4b). This finding suggests
that DAL-1 suppresses GC cell proliferation. We also checked the expression of caspase-8 in these cells. Through
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Figure 2. The methylation status of the DAL-1 promoter in GCs. (a) The methylation of DAL-1 promoter in
GC tissues using the MSP method. Representative cancer specimens showed both methylated and unmethylated
alleles for DAL-1. (b) The methylation of the DAL-1 promoter in four GC cell lines by BGS. Each row in the grid
represents an individual allele of the DAL-1 promoter in one colony sequenced. (¢) DAL-1 expression in GC
cells after demethylation treatment with 5-Aza-2’-CdR.

Western blot analysis, we found that overexpression of DAL-1 notably increased caspase-8 expression (Fig. 4c).
This result suggests that DAL-1 may be involved in inducing apoptosis in GC cells. Furthermore, we examined
whether the upregulation of DAL-1 expression affects AGS cell migration and invasion. By scratching confluent
monolayers of DAL-1-transfected and vector control cells, we found that the migration of cancer cells overexpress-
ing DAL-1 decreased compared to control cells (Fig. 4d). This observation was confirmed by the Boyden chamber
invasion assay, the overexpression of DAL-1 resulted in a significantly reduced invasion rate compared to control
cells (Fig. 4e). In summary, these findings suggest that DAL-1 may repress malignant behaviors in GC cells.
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Figure 3. Immunofluorescence localization of DAL-1 in GC cell lines. (a) Expression and localization of
DAL-1 in AGS, HGC-27, NCI-N87 and KATOIII cells. (b) Immunofluorescence co-localization of DAL-1 and
(3-catenin in HGC-27 cells.

Downregulation of DAL-1 enhances aggressiveness in GC cells. To further confirm the
tumor-suppressing role of DAL-1 in GC cells, we generated a stable knockdown of DAL-1 in HGC-27 cells.
HGC-27 cells contain an unmethylated DAL-1 promoter and high DAL-1 expression level. As shown in Fig. 5a,
DAL-1 expression decreased in HGC-27 cells stably transfected with shRNA-DAL-1-1 and shRNA-DAL-1-2
compared to control cells. DAL-1 silencing significantly increased cell growth, as measured by MTS, and by clo-
nogenicity in a colony formation assay (Fig. 5b-d). Further, we tested the impact of DAL-1 downregulation on
HGC-27 cell migration and invasion using a scratch assay and the Boyden chamber. We observed that the migra-
tion of ShRNA-DAL-1 cells occurred at a significantly faster rate than that of control cells at 48 h after scratch-
ing. When DAL-1 expression was knocked down, more cells invaded through the transmembrane compared to
mock-transfected cells (Fig. 5e-h). Together, these results indicate that DAL-1 is an important negative regulator
of the biologic phenotype in GC cells.

DAL-1 regulates the epithelial-mesenchymal process in GC cells.  Epithelial to mesenchymal tran-
sition (EMT) is a crucial event responsible for cancer cell invasion and metastasis. To determine whether DAL-1
is involved in the EMT process in GC progression, we analyzed the expressions of EMT-related proteins. The four
proteins analyzed were «-1-catenin, 3-catenin, N-cadherin, and vimentin. Protein expression was detected via
Western blot in an AGS cell line overexpressing DAL-1 and a HGC-27 cell line in which DAL-1 expression was
silenced. Compared to control cells, the expression of the epithelial markers a-1-catenin and 3-catenin increased
and the expression of the mesenchymal marker N-cadherin decreased in AGS cells with overexpressing DAL-1
(Fig. 6a). Expression of the epithelial marker o.-1-catenin decreased and expression of the mesenchymal markers
N-cadherin and Vimentin increased in DAL-1-downregulated HGC-27 cells compared to control cells (Fig. 6b).
These data suggest that DAL-1 suppresses EMT via downregulating the expression of mesenchymal markers and
upregulating the expression of epithelial markers in GC cells.

Discussion

In our previous LOH allelotyping experiment, we identified a deletion region at chromosome band 18p11.3
in 45 sporadic GCs; the DAL-1 gene is localized to this region’. This finding encouraged us to further explore
the expression pattern of DAL-1 in primary GCs and GC cell lines. We sought to determine the potential link
between DAL-1 and GC molecular pathogenesis. The results confirmed that the expression of DAL-1 decreases or
was lost in 90.9% (20/22) of primary GCs and 87.5% (7/8) of GCs cell lines. The data of DAL-1 mRNA expression
in GC from TCGA was consistent with ours.
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Figure 4. Overexpression of DAL-1 decreases the malignancy potential of AGS cells. (a) DAL-1 expression
in AGS cells transfected with the DAL-1 and control vector. (b) The growth rate of AGS cells. (¢) The expression
of caspase-8 in transfected AGS cells. (d) The migrating cells obtained at the indicated time points after wound
formation. (e) The percentage of the migration rate. (f) The invading cells passing through the matrigel-coated
membrane. (g) The percentage of the invasion rate. **P < 0.01, ***P < 0.001, with ¢-test analysis.

The DAL-1 gene harbors a typical DNA sequence that matches the criteria of a CpG island in its upstream
region, exon 1, and the beginning of intron 1°. It is known that hypermethylation and the loss of expression of
DAL-1 are correlated in lung'®'6, breast!?, ovarian'®, prostate'®, and renal tumors® and meningiomas®. In our
study, we observed here that DAL-1 was extensively methylated in 75.0% (3/4) of GC cell lines and 94.6% (35/37)
of primary GC tissues; this methylation results in a decrease or lack of DAL-1 expression. It is an interesting point
that not all the methylation resulted in the decreased expression of DAL-1, 68.4% reduced in RT-PCR assay, and
90.9% reduced in IHC assay. The difference may come from the regulation of transciption and translation, and
the limited number of GC cases in this study. In the clinical samples, methylation of the DAL-1 promoter region
in the primary GCs was significantly greater than that in the adjacent noncancerous gastric tissues. The results
further suggest that methylation contributes to DAL-1 deficiency-induced carcinogenesis. Moreover, the meth-
yltransferase inhibitor 5-Aza-2’-CdR induces significant DAL-1 expression in GC cells where DAL-1 expression
is originally repressed. This finding also indicates that methylation is a key factor in DAL-1 gene inactivation.
Seemingly, there was no significant change in the expression of DAL-1 in KATOIII cells after 5-Aza-2’-CdR
treatment, compared with AGS and NCI-N87 cells. This phenomena might largely due to the different methyla-
tion rate among the GC cells. The methylation frequencies were 87.4%, 94.5%, and 76.8% in AGS, NCI-N87, and
KATOIII, respectively (Fig. 2b). The cells with higher methylation level, seemed more sensitive to be demeth-
ylated by 5-Aza-2’-CdR, which made DAL-1 restored easier: NCI-N87 cells with 94.5% methylation showed
expression of DAL-1 restored after 5-Aza-2'-CdR treatment (5 pmol/L) for 3 days; AGS with 87.4% methyla-
tion showed DAL-1 restored after the same treatment for 5 days. As for KATOIII cells, its methylation level is
76.8%, which intuitively needs longer time for DAL-1 to restore after 5-Aza-2’-CdR treatment. In addition, the
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Figure 5. Downregulation of DAL-1 increases the malignancy potential of HGC-27 cells. (a) DAL-1
expression in HGC-27 cells transfected with shRNA-DAL-1 and the control vector. (b) The growth rate of HGC-
27 cells. (c) Cell proliferation of HGC-27 cells. (d) Quantitive analysis of (c). (e) The migrating cells obtained

at the indicated time points after wound formation. (f) The percentage of the migration rate. (g) The invading
cells passing through the matrigel-coated membrane. (h) The percentage of the invasion rate. **P < 0.01,

***P < 0.001, with ANOVA (Dunnett’s multiple comparison test).

differentiation level of cancer cells could also affect the response to the demethylating agent. KATOIII is a poorly
differentiated GC cell line, while AGS and NCI-N87 are well differentiated cell lines®*-**. For the above-mentioned
reasons, we did not observe obvious restored expression of DAL-1 after 5 days of demethylation treatment in
KATOIII cell line.

It has been proposed that promoter methylation of tumor-suppressor genes initially occurs in non-neoplastic
gastric epithelia cells. Methylation levels increase with age, gene functions are ultimately silenced, resulting in a
defect that may predispose tissues to GC?. It is widely accepted that epigenetic alterations are a prerequisite for
cancer formation, and these alterations facilitate the accumulation of further genetic abnormalities that result in
cancer progression through the clonal expansion of cells with a proliferative advantage?. The aberrant methyl-
ation of the DAL-1 promoter in histologically normal gastric mucosal cells may be an early epigenetic event in
the multistep process of GC progression. We tested and found the evidence for the extensive hypermethylation
of the DAL-1 promoter in GC cell lines and primary GCs. Our results suggest that methylation is critical, but
sufficient, for DAL-1 downregulation in gastric carcinogenesis. We previously demonstrated that the 18p11.3
LOH is common in primary GCs. We now present findings of promoter hypermethylation and a loss in DAL-1
expression. Together, these works suggest that the DAL-1 gene is inactivated by both promoter methylation and
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Figure 6. DAL-1 impairs EMT in GC cells. (a,b) An immunoblot for the a-1-catenin, 3-catenin, N-cadherin
and Vimentin in DAL-1-overexpressing AGS (a) and DAL-1-knockdown HGC-27 (b) cells.

LOH. The coexistence of chromosome instability and hypermethylation indicates that both genetic and epigenetic
mechanisms may act in concert to inactivate DAL-1 in primary GCs.

In addition to the phenomenon of DAL-1 downregulation due to promoter hypermethylation, we also
observed the mislocalization of expressed DAL-1 in the GC cell line HGC-27. In cancer cells with abnormal
DAL-1 subcellular localization, the DAL-1 protein was expressed diffusely within the cytoplasm, except along
the cell membrane. Robb et al. have shown that the suppression of growth of meningioma cells by 4.1B/DAL-1
requires proper membrane localization. The localization of the U2 domain of Protein 4.1B to the membrane is
necessary and sufficient for meningioma growth suppression®. Our findings support the idea that this aberrant
pattern of subcellular distribution in renal clear cell carcinoma is associated with impaired 4.1B function as a
potential tumor suppressor®. Additional studies are necessary to prove this concept.

DAL-1 has been previously implicated in cancer cell migration, adhesion, apoptosis, and growth inhibition in
vitro>+26-2 We therefore examined DAL-1 candidate as a potential suppressor of GC metastasis. DAL-1 is not an
adhesion molecule in the classical sense; it acts an anchoring protein, connecting TSLC1 to the actin cytoskeleton
and participating in cytoskeleton-associated processes. The loss of DAL-1 expression could, therefore, lead to
decreased cell adhesion™. It is well known that disrupting the mechanisms that regulate cell adhesion leads to
increased growth, invasion, and metastasis. These phenotypic changes were observed in our study when DAL-1
was overexpressed or knocked down in GC cells. Our data demonstrated that the exogenous expression of DAL-1
significantly decreased cell growth, motility, invasiveness, as well as metastasis, the grisly characteristic of malig-
nancy. In contrast, depletion of DAL-1 reverse the phenomena. Thus, epigenetic silencing of DAL-1 contributes
to the migratory and invasive phenotype of GC cells. In GC cells overexpressing DAL-1, the expression of the
apoptosis-related protein caspase-8 increased. It has been shown previously that the expression of DAL-1 can
induce apoptosis in breast cancer MCF-7 cells*. Although the mechanisms by which DAL-1 promotes apoptosis
remain unclear, our finding supports one study where the overexpression of DAL-1 increased caspase-8 activity
in MCF-7 cells®.

EMT is an essential morphologic conversion that occurs during embryonic development. EMT has gained
more attention in recent years due to its importance in the acquisition of metastatic potential during cancer pro-
gression. The perturbation of EMT results in a loss of intracellular adhesion, resulting in cancer progression®. We
wanted to know whether DAL-1 is involved in the control of EMT in GC. We demonstrated that the overexpres-
sion of DAL-1 in AGS cells restrained EMT. The knockdown of DAL-1 in HGC-27 cells promoted EMT; drastic
changes in EMT markers were observed, suggesting that DAL-1 may be at least partially responsible for decreased
aggressiveness in GC cells.

In summary, the downregulation of DAL-1 is an important event in GC. Downregulation of expression is
mainly attributed to methylation of its promoter. In addition, aberrant localization of DAL-1 protein is still not,
in our view, a minor matter. Functional analyses of two different GC cells models, either overexpressing DAL-1
or downregulating its expression, demonstrated that DAL-1 acts as a negative modulator of the aggressive cancer
phenotype. DAL-1 is therefore a candidate tumor suppressor gene in gastric carcinogenesis. Our studies suggest
it is a promising therapeutic target in certain subtypes of GCs.

Materials and Methods

Cell lines, cell culture, and 5-Aza-2’'-deoxycytidine (5-Aza-2'-CdR) treatment. The human GC
cell lines AGS, NCI-N87, KATOIII, SNU-1, SNU-5, SNU-16, and Hs746T and the human embryonic kidney cell
line HEK-293T were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). The
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human GC cell line HGC-27 was obtained from the Cell Resources Center of Shanghai Life Sciences, Chinese
Academy of Sciences (Shanghai, China). The cells were authenticated by the Beijing Microread Genetics (Beijing,
China) using short tandem repeat (STR) analysis. All cells were routinely maintained. AGS, NCI-N87, and
KATOIII cells (1 x 10/mL) were grown in either the presence or absence of the demethylating agent 5-Aza-
2'-CdR (5pmol/L, Sigma, St. Louis, MO, USA) for 3 to 5 days, and then checked with the expression of DAL-1.

Tissue specimens. Thirty-eight pairs of cancerous and adjacent noncancerous tissues from GC patients were
collected after surgical resection from the First and the Second Affiliated Hospitals of Harbin Medical University
(Harbin, China) in 2005 and 2006. Specimens were snap-frozen immediately after resection. Of the 38 patients,
22 pairs of formalin-fixed, paraffin-embedded specimens (5-pm thickness) were also obtained. Appropriate
informed consent was obtained from the patients. The study was approved by the Ethics Committee of Harbin
Medical University. The methods were carried out in accordance with the approved guidelines.

Immunoblotting analysis and immunofluorescence. For immunoblotting, cells were lysed in
RIPA buffer, followed by centrifugation, and subjected to SDS-PAGE and transferred to polyvinylidene diflu-
oride (PVDF) membranes. The membranes were immunoblotted with various primary antibodies [DAL-1
(Abnove, Taiwan), a-1-catenin (Abcam, Cambridge, MA, USA), 3-catenin (Abcam), N-cadherin (BD
Biosciences, Bedford, MA, USA), vimentin (BD Biosciences) and (3-actin (Zhongshan Biotech Co., Beijing,
China)], followed by the corresponding fluorescent-conjugated anti-mouse or anti-rabbit antibodies (Rockland
Immunochemicals Inc., Gilbertsville, PA, USA). The fluorescence signals were visualized using an Odyssey
Infrared Imaging System (Li-COR, USA). For immunofluorescence, cells were seeded onto coverslips in six-well
plates, and then were fixed in 4% paraformaldehyde. The coverslips were coated with primary antibodies against
DAL-1 and B-catenin, followed by incubation with the anti-mouse or anti-rabbit antibodies respectively, and
4',6-diamidino-2-phenylindole (DAPI) staining. Images were obtained using a Leica DM5000B microscope
(Leica Microsystems, Solms, Germany).

Reverse transcriptase-polymerase chain reaction (RT-PCR). Total RNA was isolated using the
TRIzol Reagent Kit (Invitrogen, Auckland, NZ, USA) according to the manufacturer’s instructions, and then
reverse-transcribed to cDNA using the Reverse TranScription System (Promega, Madison, WI, USA), and was
amplified by PCR. The cDNA expression of DAL-1 was normalized against ACTB. All measurements were per-
formed in triplicate. The primers were designed using Primer 3.0 software. The primers used for DAL-1 were
as follows: 5'-CATTCACAGGCATTAAAGGG-3' and 5'-CCGTGATGACTATTCGCTTC-3'; for ACTB were
5'-ACTCTTCCAGCCTTCCTTCC-3" and 5'-CATACTCCTGCTTGCTGATCC-3'. The PCR products were
then separated by agarose gel electrophoresis.

Immunohistochemistry (IHC). Immunohistochemical staining of DAL-1 (using the anti-DAL-1 antibody,
Santa Cruz Biotechnology, Japan) was performed on 22 paired GC tissues and adjacent noncancerous gastric tis-
sues as previously described®. Global DAL-1 staining was scored as follows: 0 (no staining), 1 (focused or weak),
2 (moderate, 25-50%), 3 (strong, 25-50%), and 4 (strong, >50%).

Bisulfite genomic sequencing (BGS). Genomic DNA from the GC cell lines was isolated using a QIAmp
DNA mini Kit (Qiagen, Valencia, CA, USA), and was modified using a Methylamp™ DNA Modification Kit
(Epigentek, USA). A search for CpG islands in the promoter region of DAL-1 (GenBank accession NM_012307)
revealed a CpG island that was 223 bp long. and located at nt —187 ~ nt +100 from the transcription start
site. Modified DNA from the cell lines was subjected to PCR to amplify a 288 bp DNA fragment (containing
31 CpG sites). The following pair of primers was used: 5'-TTTATGTAATTGTTTTGAAGTATTG -3’ and
5-TTACCTAAAATCAACAAAAAACCC-3'. The purified PCR products were inserted into the pEASY-T3 vec-
tor, and then transformed. At least 10 bacterial colonies were picked for each GC cell line, followed by sequencing
confirmation (Invitrogen Biotechnology Co. Ltd, Shanghai, China). The sequences were analyzed for CpG site
methylation status using BIQ Analyzer software (Max-Planck-Institut Informatik, Munich, Bavaria, Germany).

Methylation-specific PCR (MSP). Bisulfite-treated DNA was amplified using primers designed
to anneal specifically to methylated or unmethylated bisulfite-modified DNA sequences within genes, as
reported previously®’. These primer sequences were as follows: 5'-AGGTTGGTTTTTTTTGTATGGTT-3’
and 5'-AACCCAAAACTACTCACCACT-3" for detecting unmethylated sequences, or
5 -TTGGTTTTTTTCGTACGGTT-3" and 5'-AACCCAAAACTACTCGCCG-3’ for detecting methylated
sequences. The MSP products were then separated by agarose gel electrophoresis.

Generation of stable GC cells overexpressing DAL-1 or expressing shRNA targeting DAL-1.
AGS cells were transfected with the pEZ-M68-DAL-1 vector or a control vector (FulenGen, Guangzhou, China)
using the Lipofectamine 2000 transfection reagent (Invitrogen). Cells were incubated in the presence of 1 ug/mL
puromycin. The expression of DAL-1 protein was confirmed by Western blot. The short hairpin RNA (shRNA)
oligonucleotides targeting DAL-1 were synthesized by Genechem (Shanghai, China). The sequences of DAL-1
shRNAs were as follows: 5'-AAGCGTTTATGAAAGTAT-3’ (shRNA-1) and 5'-ATCACATTTCAGAAACTT-3’
(shRNA-2). The recombinant GV102-shRNA-DAL-1 plasmids and the control vector (control) were transfected
into HGC-27 cells. Stable cell lines were established after G418 (600 jug/mL) selection. The knockdown of DAL-1
expression was confirmed by Western blot.
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Cell viability, colony formation assays, migration and invasion assay.  Cells viability was measured
using MTS solution (Promega) over the course of 7 days. Colony formation assay was performed by growing
the cells for 14 days, and staining the cell colonies with Giemsa to measure the ability of cells to proliferate.
Cells migration were examined at 0, 24 h, and 48 h post scratch. The relative migration rate was determined
by measuring the average area of the wound gap. Cell invasion ability was assessed with Boyden chamber (BD
Biosciences) according to the manufacturer’s instructions. The results were expressed as the percentage of cells
that had migrated relative to the total number of seeded cells.
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