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ABSTRACT: Integration of data from genome-wide single nucleotide polymorphism (SNP) association studies of different
traits should allow researchers to disentangle the genetics of potentially related traits within individually associated regions.
Formal statistical colocalisation testing of individual regions requires selection of a set of SNPs summarising the association
in a region. We show that the SNP selection method greatly affects type 1 error rates, with published studies having used
methods expected to result in substantially inflated type 1 error rates. We show that either avoiding variable selection
and instead testing the most informative principal components or integrating over variable selection using Bayesian model
averaging can help control type 1 error rates. Application to data from Graves’ disease and Hashimoto’s thyroiditis reveals a
common genetic signature across seven regions shared between the diseases, and indicates that in five of six regions associated
with Graves’ disease and not Hashimoto’s thyroiditis, this more likely reflects genuine absence of association with the latter
rather than lack of power. Our examination, by simulation, of the performance of colocalisation tests and associated software
will foster more widespread adoption of formal colocalisation testing. Given the increasing availability of large expression and
genetic association datasets from disease-relevant tissue and purified cell populations, coupled with identification of regulatory
sequences by projects such as ENCODE, colocalisation analysis has the potential to reveal both shared genetic signatures of
related traits and causal disease genes and tissues.
Genet Epidemiol 37:802–813, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

In recent years, genome-wide association studies (GWAS)
have facilitated a dramatic increase in the number of genetic
variants associated with human disease and other traits such
as gene expression. Understanding the means by which these
variants exert their effect will aid the design of the detailed
functional followup studies already underway. Although the
causal variants are not commonly known, multiple traits have
been mapped to the same genetic loci, raising the possibility
that the same variants affect multiple traits either directly or
with one trait mediating the other. For example, genetic sus-
ceptibility to type 2 diabetes across 12 loci appears mediated
by the genetic influence on body mass index [Li et al., 2011].
Within individual loci, researchers are examining the genetic
association signals from pairs of traits in parallel, with similar
results interpreted as evidence that the two traits may colo-
calise, or share a common causal variant. These traits may be
eQTL signals across two or more tissues [Dimas et al., 2009;
Fairfax et al., 2012], eQTL and disease signals [Nica et al.,
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2010; Wallace et al., 2012] or two or more diseases [Cotsapas
et al., 2011]. Distinguishing cases where related diseases share
a common causal variant vs. those where neighbouring but
distinct variants appear to underlie disease risk in a region will
aid identification of cross-disease and disease-specific mech-
anisms. In addition, comparison of disease and eQTL data has
the potential to reveal both the likely disease causal gene in re-
gions where a number of candidate causal genes exist, and the
relevant tissue type where tissue-specific eQTLs exist. How-
ever, dependence between genotypes at neighbouring SNPs,
caused by LD, means that determination of colocalisation
is not obvious, as there may exist distinct but neighbouring
causal variants for each trait that are mutually associated.

When these traits are measured in the same individuals,
it is possible to use conditioning to determine whether one
trait mediates the other [Li et al., 2011]. For example, if
both body mass index (BMI) and type 2 diabetes (T2D)
have been linked to a SNP, then when including BMI and
the SNP as explanatory variables for T2D, BMI but not the
SNP should show association if BMI is a mediator. How-
ever, when the traits are measured in distinct samples, or
when two traits may share a common causal variant without
one mediating the other, most researchers have approached
the task of looking for colocalisation either by examining by
eye the association signals across a set of common SNPs in the
two datasets [Dubois et al., 2010] or by testing for evidence of
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residual association in their available dataset conditional on
the most associated SNP in the other [Nica et al., 2010]. When
full data for both traits are available, colocalisation may be
tested by examining whether coefficients from regressions of
each trait against two or more SNPs are proportional, as they
should be if those SNPs jointly tag a common causal variant
[Plagnol et al., 2009; Wallace et al., 2012].

We show here that naı̈ve application of both conditional
and proportional colocalisation tests may result in substan-
tially inflated type 1 errors, and explore reasons for that infla-
tion. The inflation cannot be easily resolved for conditional
tests, but we demonstrate two alternative approaches for pro-
portional testing that result in unbiased inference. Finally, we
apply these methods to colocalisation testing of 13 regions
shown in Supplementary Table S1 that have been associated
with one or both of the autoimmune thyroid diseases, Graves’
disease (GD) and Hashimoto’s thyroiditis (HT), using previ-
ously published dense genotyping data [Cooper et al., 2012].

Methods

Approaches to Colocalisation Testing

We begin by introducing some notation and setting out
the details of the existing approaches to colocalisation testing
that are explored in this paper. Assume two traits, Y and Y ′,
have been measured in distinct samples and evidence exists
for association of both traits to some genetic region. Let the
region be covered by p SNPs genotyped in both samples, with
the genotype matrices denoted by X =

(
X 1, . . . , X p

)
and

X ′ =
(
X ′

1, . . . , X ′
p

)
, respectively. Conditional approaches be-

gin with identifying the most strongly associated SNPs for Y
and Y ′, SNPs k and k′, say, then examine whether there is any
evidence for association between Y and SNP k conditional
on SNP k′. The null hypothesis is therefore

H cond
0 : Y ⊥ X k|X k′ . (1)

Concerned that LD would make interpretation of the con-
ditional test difficult, Nica et al. [2010] extended the condi-
tional method as follows. For every SNP j generate residuals
Rj from a regression of Y against X j and test the correlation
of Rj and X k using Spearman’s rank correlation test, generat-
ing p values Pj . The evidence against the null hypothesis (1)
is then measured by the rank of Pk′ in the empirical distribu-
tion, [Pj ], generated. This effectively compares the P value
at the test SNP k conditional on SNP k′ to that conditioning
on all other SNPs in the region. However, note that because
this method summarises evidence for colocalisation by a rank
only, there is no statistical inference attached. Thresholds for
interpreting ranks would be expected to depend on SNP den-
sity and LD patterns.

The proportional approach frames the null hypothesis dif-
ferently. A set of q SNPs are chosen that are deemed somehow
to jointly be good predictors of one or both traits. Regress-
ing Y and Y ′ against these columns of X and X ′ respec-
tively produces estimates, b1 and b2, of regression coeffi-
cients β1 and β2, with variance-covariance matrices V1 and

V2, respectively. Since sample sizes are large, the combined
likelihood may be closely approximated by a Gaussian like-
lihood for (b1, b2), assuming V1, V2 are known and that
Cov(b1, b2) = 0. Assuming equal LD in the two cohorts, i.e.,
that the correlation structure between the SNPs does not dif-
fer, Plagnol et al. [2009] show that the regression coefficients
should be proportional and proposed testing for a shared
causal variant by testing the null hypothesis

Hprop
0 : β1 ∝ β2,

i.e., β1 = 1
η
β2 = β. The chi-squared statistic

T(η)2 = uTV–1u ∼ χ2 (2)

is derived from Fieller’s theorem [Fieller, 1954], where
u = (b1 – 1

η
b2) and V = V1 + 1

η2 V2. If η were known, T(η)2

would have a χ2 distribution on q degrees of freedom. Plagnol
et al. take a profile likelihood approach and replace η by
its maximum likelihood estimate, η̂, which also minimises
T(η)2. Asymptotic likelihood theory suggests that T(η̂)2 has
a χ2 distribution on q – 1 degrees of freedom. Alternatively,
Wallace et al. [2012] take a Bayesian approach. They begin by
reparametrising the likelihood in terms of θ = tan–1(η) and
rewriting the null hypothesis as

Hprop
0 : β1 = β cos(θ); β2 = β sin(θ).

This allows calculation of the posterior distribution of θ,
P(θ|b1, b2), assuming uninformative priors for θ and β. In-
ference is based on posterior predictive P values∫

T∗(θ)P(θ|b1, b2) dθ (3)

where T∗(θ) is the P value associated with T(tan(θ)). Full
mathematical details are given in the supplementary material
of Wallace et al. [2012], but it is worth revisiting here the
justification of a flat prior for θ. If β1, β2 were univariate
with Gaussian priors and mean 0, then tan(θ) =

β1

β2
would

have a Cauchy(0, k) prior where k is the ratio of the prior
variances of β1 and β2. Thus, it seems an appropriate form
to consider for the prior for θ in the multivariate case. k is
unknown, but Wallace et al. [2012] found that varying k had
a negligible effect on the posterior predictive P value for the
sample sizes common in GWAS and eQTL studies (100s to
1,000s of subjects) and we have set k = 1, implying a uniform
prior for θ, for all analyses in this paper.

Posterior predictive P values have a somewhat different
interpretation than and appear conservative in comparison
to standard P values [Meng, 1994; Rubin, 1984]. However,
they avoid assuming the log-likelihood for η is approxi-
mately quadratic near its maximum that is not always the
case. In practice, Wallace et al. [2012] found standard and
posterior predictive P values to be almost identical in large
samples.

Hprop
0 is not the same as H cond

0 as it does not explicitly con-
dition on the most associated SNPs, but is a general property
expected to be true of any pair of traits that share a common
causal variant. While a shared causal variant should imply
Hprop

0 is true at any pair of SNPs, and that H cond
0 is true if
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k = k′ is the causal variant, the reverse is not the case as it is
possible that two traits have distinct causal variants in com-
plete LD. Thus, failure to reject the null hypothesis indicates
only that the data are consistent with a shared causal variant.

Note that colocalisation testing may be applied equally
to case control data (using logistic regression), expression
data (using linear regression) or to compare case control
results against expression results for a specific gene. Most
commonly, this last approach might be applied in turn to
all genes with a known eQTL signal in the neighbourhood
of the disease association signal. However, it is assumed
that cov(b1, b2) = 0, meaning that case control studies may
only be compared if they do not share a common control
group.

Choice of SNPs for Proportional Colocalisation Testing

The choice of SNPs for colocalisation testing will be shown
in this paper to have a considerable influence on the type 1
error rate of colocalisation tests. The aim of selecting the most
informative subsets of SNPs for proportional colocalisation
testing is to minimise the degrees of freedom of the test, and
hence maximise power. However, unless independent data
are available for variable selection, this increase in power
comes at a cost to type 1 error rate control as shown above.
In this paper, we propose two methods for avoiding this
problem.

Summary of Genetic Variation by Principal Components

If the region of interest displays strong LD, a modest num-
ber of principal components (PCs) are generally required to
capture most of the SNP variation (Supplementary Fig. S4)
and we can use a subset of the most informative compo-
nents for colocalisation analysis. Because PCs are by defi-
nition uncorrelated, and because the selection is not based
on their relationship to the traits of interest, the estimated
coefficients at any such subset are unbiased. To allow PC
analysis of two datasets, we first form a combined genotype
matrix, center and scale each SNP, and then define the prin-
cipal components. Colocalisation testing is performed using
the projection of the data onto the transformed basis for the
most important components. The optimal choice of thresh-
old defining the ‘most important’ components is not obvious,
and we explore that in our simulations.

Bayesian Model Averaging

Alternatively, we may combine the ideas of Bayesian model
averaging (BMA) [Viallefont et al., 2001] and posterior pre-
dictive P values, to treat the model describing the joint
association itself as a nuisance parameter, and average the
P values not just over the posterior for η, but also over the
posterior for all SNP selection models. Analogous to equa-
tion (3), posterior predictive P values are therefore defined

by

ppp =
∑

m∈M
p ∗(m)P(m) (4)

where M is the set of models under consideration, P ∗(m)
is the colocalisation testing P or ppp value under the SNP
model m, and P(m) is the posterior probability of model m
given the data and under the assumption that one of M is
the true model. To minimise the degrees of freedom of the
test, we explore all two SNP models and, in the absence of
any independent evidence to favour one SNP over another,
we assume the prior is evenly spread over the set of mod-
els. Approximating the posterior probabilities by means of
the Bayesian Information Criterion approximation [Hoeting
et al., 1999; Schwarz, 1978] and discarding highly improba-
ble models at the outset, this could be done without excessive
computational burden (see Supplementary Material for full
details).

Both the PC and BMA approaches are available in
our R [R Development Core Team, 2010] package, coloc,
available from the Comprehensive R Archive Network
(http://cran.r-project.org/web/packages/coloc).

Simulation

We used simulation to demonstrate the effects of variable
selection on the power and type 1 error rate for colocalisa-
tion testing. Full details are given in Supplementary Material.
Briefly, we sampled, with replacement, haplotypes of SNPs
with a minor allele frequency of at least 5% found in phased
1000 Genomes Project data [Consortium et al., 2012] across
all 49 genomic regions outside the major histocompatibility
complex (MHC) that have been identified as type 1 diabetes
(T1D) susceptibility loci to date, as summarised in T1DBase
[Burren et al., 2011]. These represent a range of region sizes
and genomic topography typical of GWAS hits. We excluded
the MHC region that is known to have high variation, strong
LD and exhibits huge genetic influence on autoimmune dis-
ease risk involving multiple loci and hence requires individual
treatment in any GWAS [Nejentsev et al., 2007].

Using a single ‘causal variant’ SNP chosen at random, we
sampled case and control haplotypes according a multiplica-
tive disease susceptibility model with relative risks of ranging
from 1.1 to 1.3 to represent GWAS data. To simulate a quan-
titative trait, and to extend our exploration to two causal
variants in each trait, we selected one or two ‘causal variants’
at random, and simulated a Gaussian distributed quantitative
trait for which each causal variant SNP explains a specified
proportion of the variance. To reflect our expectation that
this test will be applied in cases in which some nominal asso-
ciation to a region has already been established, we discarded
datasets in which all single SNP association P > 10–4. We ei-
ther used all SNPs or the subset of SNPs that appear on the
Illumina HumanOmniExpress genotyping array to conduct
colocalisation testing to reflect the scenarios of very dense
targeted genotyping vs. a less dense GWAS chip. All analyses
were conducted in R [R Development Core Team, 2010] using
the coloc package for proportional colocalisation testing.
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Colocalisation Testing for Autoimmune Thyroid Disease

An association study of the autoimmune thyroid diseases
GD and HT has recently been completed using the Im-
munochip for genotyping, which provides dense coverage
of regions of the genome previously associated with autoim-
mune disease [Cooper et al., 2012]. The paper presented a
total of 2,285 Graves’ disease cases, 462 Hashimoto’s disease
cases and 9,364 controls. We split the controls randomly into
two groups of size 4,682, and analysed each of the 13 regions
reported to be associated with one or both diseases [Cooper
et al., 2012]. Missing data were rare, but regression mod-
els require complete genotyping data. We therefore imputed
missing genotypes by means of multiple regression, as imple-
mented in the R package snpStats [Clayton and Leung, 2007].
We conducted proportional colocalisation analysis using the
the two alternative methods set out above. For the PCs ap-
proach, we used components that captured at least 90% of the
observed genetic variation. For the BMA approach, we aver-
aged either over the universe of all possible two SNP models
or that of all three SNP models.

Results

Naive Application of Colocalisation Tests Leads to Biased
Inference

The choice of SNPs to use for testing can induce bias for two
reasons. First, selecting the ‘most associated’ SNP on the basis
that the evidence for its association is strongest amongst all
SNPs tested does not guarantee either that it is the causal SNP
or even the best proxy. Random variation and LD mean that
evidence for association may peak at an alternative SNP even
when the causal SNP is included in the genotyping panel, a
bias that is more pronounced for weaker effects and smaller
sample sizes (Supplementary Fig. S1). Second, although it
is well known that regression coefficients are unbiased esti-
mates of population effects, this property does not hold after
variable selection [Miller, 1984], an effect that has been re-
ferred to as ‘Winner’s curse’ in genetics [Gring et al., 2001;
Lohmueller et al., 2003]. Choosing SNPs on the basis of their
significance or some other measure of strength of associa-
tion induces a bias away from the null—i.e., coefficients of
selected SNPs are expected to overestimate the true effect—
and again the effect is more pronounced for smaller sample
sizes and weaker effects (Supplementary Fig. S2). These two
biases mean that, in conditional testing, there is likely to be
some residual association between the phenotype Y and the
remaining genetic markers after conditioning on the selected
SNP k′ because (1) the conditioning SNP k′ may not capture
all the true association and (2) the estimated effect at the
tested SNP k tends to be an overestimate. The result is very
poor control of the type 1 error rate (Fig. 1, track C1). Con-
ditioning on the common causal variant rather than the most
associated SNP (which is only possible in simulation studies)
reduces the bias by removing the SNP selection problem, but
does not eliminate it due to the overestimation of effect size
(Fig. 1, track C2).

As seen in Supplementary Fig. S3, Nica’s score tends to-
wards to 1 for traits that share a causal variant and is uni-
formly distributed on [0, 1] for distinct unlinked causal vari-
ants. Its distribution is increasingly skewed towards 1 as the
LD between distinct causal variants increases. This makes
sense if one considers that the case of two distinct variants in
some LD lies partway between the extreme cases of distinct
unlinked causal variants and a single common causal vari-
ant, which is equivalent to distinct causal variants in complete
LD. The effect of using the most associated SNPs for testing
compared with using the true causal SNPs is to reduce the
skew towards higher rank scores as the r2 between variants
increases. Thus, Nica et al.’s extension [Nica et al., 2010] may
prioritise the likely colocalisation signals within a set, but as
it avoids formally testing a null hypothesis, and because the
scale against which to interpret the rank score is likely varies
according to effect size, it does not provide a means to as-
sess evidence for or against colocalisation at a given locus of
interest.

For the proportional approach, two strategies have been
applied. Either colocalisation has been tested using the pair
of SNPs k and k′ defined above [Plagnol et al., 2009] or a
lasso approach, where SNPs are first selected in a lasso for
one trait, and then additional SNPs are selected in a further
lasso for the other trait [Wallace et al., 2012]. However, as
shown by Miller [Miller, 1984], any variable selection method
must induce bias in the estimated coefficients (b1, b2) if the
estimation occurs in the same dataset as the selection. We
show here that neither method maintains control of the type
1 error rate (Fig. 1, tracks P1, P2 and P3), although the bias
is less extreme than for conditional testing. The two-step
lasso selection does reduce bias compared to independent
lasso selection in the two datasets, but, perhaps counter-
intuitively, leads to greater bias than simply testing the pair of
most associated SNPs (k, k′) when only tagging genotypes are
available and effect sizes are large (relative risk ∼ 1.3). This
is because, in this situation, lasso may select SNPs that are
apparently weakly associated (either truly or through random
noise) at which, as demonstrated in Supplementary Fig. S2,
effect estimates are more strongly biased.

Alternative Approaches to Proportional Testing

We propose two alternative approaches to proportional
testing, either of which can help control type 1 error rates.

Principal Components

The first is to use a set of principal components that sum-
marise the genetic variation in the region, instead of individ-
ual SNPs. However, it is not obvious how many components
are required. As more components are selected, more infor-
mation about the genetic variation in a region is captured,
and hence we are more likely to accurately capture the signal
of any causal variants. However, successive components add
decreasing amounts of information whilst still adding an-
other degree of freedom. At some point the negative effect of
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Figure 1. Type 1 error rates in naive colocalisation testing. A nominal type 1 error rate of 5%, shown by a dashed line, is consistently exceeded
using conditional colocalisation testing conditioning on either the most associated SNP for the other trait (C1) or the common causal SNP that
is only possible in simulated complete genotyping data (C2). Proportional colocalisation testing tends to exhibit lower type 1 error rates, but the
excess can still be substantial when using the most strongly associated SNPs in each dataset (P1); the union of lasso variable selection in each
dataset (P2) or a two stage lasso variable selection (P3) as previously described [Wallace et al., 2012]. In contrast , type 1 error rates are well
controlled for proportional testing using principle components that capture 85% of the genetic variation (P4) or within a Bayesian Model Averaging
approach to variable selection (P5), even appearing conservative for small effect sizes. Note that Bayesian Model Averaging was not examined in
the complete genotyping scenario due to computational burden. The X axis shows the relative risk of disease (RR) with columns divided according
to the number of cases and controls in a case-control dataset. Type 1 error rates were calculated by comparing two case-control datasets of equal
sample and effect size, simulated to share a common causal variant.

increasing degrees of freedom will outweigh the positive effect
of increasing information, and we were concerned that the
optimal test may depend heavily on the threshold used to de-
termine the number of components selected. Instead, power
seemed broadly acceptable once components capturing 70–
90% of variation were selected (Supplementary Fig. S5). In
our 49 test regions, 70% of the variance could be captured
by selecting an average of 7 (range 2–18) or 9 (range 3–
44) components under a tagging or complete genotyping
approach.

We found type 1 error rates were controlled across the range
of thresholds explored, but show for illustrative purposes the
results when we fixed the threshold at ≥90% of genetic vari-
ation (Fig. 1). We examined power to detect departure from
colocalisation using simulations in which the causal variants
are distinct for two traits but placed no restrictions on the
LD between these variants. We first examine the theoretical
maximum power of the test by testing the two causal variants
themselves, which are known in a simulation study but not
in real data (Fig. 2). As might be expected, power increases
with sample size and effect size, but is negatively correlated
with the r2 between the causal variants, and is maximum
when the two are completely unlinked (r2 = 0). When using
PCs, the power is reduced reflecting the loss of information

in not knowing these causal variants, but the loss is greatest
for complete genotyping scenarios, suggesting that we may
be selecting too many components in the case of complete
genotyping and emphasising the difficulty in choosing one
optimal threshold for all studies and regions.

Bayesian Model Averaging

Our second proposed approach is to test the proportional
null hypothesis using all possible two SNP models. The result-
ing P values may then be averaged, weighting by each model’s
posterior probability, in a Bayesian model averaging frame-
work and generating a posterior predictive P value. Because
of its computational burden for simulations, we only consider
the BMA approach under a tagging genotyping scenario. This
demonstrates good control of the type 1 error, even tending
to be mildly conservative, as has previously been reported
when posterior predictive P values are interpreted simi-
larly to standard P values [Meng, 1994]. Despite the slightly
more conservative type 1 error rates, the BMA approach ap-
pears more powerful than the PCs approach (Fig. 2), which
presumably reflects the greater degrees of freedom required
for the PCs approach.
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Figure 2. Power for proportional colocalisation analysis using PC or BMA approaches. The theoretical maximum power (Max) is calculated using
the two causal variants (which are known in simulated data) and show that the predominant determinant of power is the r 2 between the variants,
with power decreasing as LD increases. When the causal variants are not known, power decreases under either a PC or BMA approach. The X axis
shows the maximum r 2 between the causal variants, i.e., r 2 has been categorised into five groups: [0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8], [0.8, 1.0].
N is the number of cases and controls in a case-control dataset with relative risk of disease RR. Power is shown for comparing two case-control
studies with equal sample numbers and effect sizes (solid lines) or for comparing a case-control study to an eQTL study of 1,000 samples where the
causal variant explains 30% of the variance of the expression. The PC approach was implemented by selecting the smallest subset of components
that captured 85% of the genetic variance. We considered only tagging genotype scenarios to reduce computation time.

Sensitivity to the Assumption of Equal Linkage
Disequilibrium

The proportional colocalisation test assumes identical pat-
terns of LD in the two datasets so that the effect of a shared
causal variant is proportional across any set of SNPs. To ex-
plore its sensitivity to this assumption, we considered sam-
pling haplotypes for one dataset from a subset of European
populations, and for the other dataset from a either a mix-
ture of European populations or a mixture of European and
African populations. As might be expected, for strongly ad-
mixed datasets, the control of type 1 error rate is lost, with
type 1 error rates up to eightfold that seen under the case
of no mixing (Fig. 3). However, it is perhaps surprising that
the effect of mixing between two European populations, or
mixing very small proportion of African haplotypes (∼ 5%)
into a mainly European population, is barely detectable at

the sample sizes of 1,000 used, and indicates that the method
is robust to small departures from the assumption of equal
linkage disequilibrium. Of course, as with any genetic anal-
ysis, it remains sensible not to rely on this property, but to
formally examine the evidence for population structure and
exclude obviously outlying samples.

The Case of Multiple Causal Variants

So far, we have only considered the case of a single causal
variant for each trait. But the proportional test makes no
assumption about the number of causal variants, only that
their effects are proportional. Figure 4 shows that in the case
of eQTL data with two shared causal variants, having equal
effects on each trait, type 1 error rates are still controlled. It has
been reported that genes may exhibit a common cross-tissue
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Figure 3. Departure from assumption of equal LD structure. Each plot reflects simulations in which a single, common causal variant explains
a fixed proportion of variance of two quantitative traits, shown on the x axis, each available in a sample of 1,000 individuals. In the top row, all
haplotypes in the first dataset and (1 − π ) of the haplotypes in the second dataset were sampled from the European CEU, GBR and FIN populations,
with the remaining π in the second dataset from the alternate European TSI and IBS populations. In the bottom row, we used the same strategy
but sampling either from all European populations (CEU, GBR, FIN, TSI and IBS) or from a mixture of these European populations and the African
ASW, LWK and YRI populations. The y axis shows the relative type 1 error rate—the ratio of the estimated rate for the given scenario and the
estimated rate for the equivalent scenario with no mixing. Because these are ratios, there is rather less certainty than for other plots and 95%
confidence intervals calculated by means of the delta method are shown for each point. Analysis was conducted by proportional testing using
either a PC approach with number of principal components selected to capture 90% of genetic variation or a BMA approach, averaging over the
space of either all possible two SNP models. We considered only tagging genotype scenarios. CEU=Utah Residents (CEPH) with Northern and
Western European ancestry; GBR = British in England and Scotland; FIN = Finnish in Finland; TSI = Toscani in Italia; IBS = Iberian population in
Spain; ASW = Americans of African Ancestry in SW USA; LWK = Luhya in Webuye, Kenya; YRI = Yoruba in Ibadan, Nigeria.

eQTL, located proximal to the gene, as well as distinct tissue-
specific eQTLs in more distal locations [Brown et al., 2012].
We were therefore interested to explore the case where our two
traits share one causal variant, but one or both are also under
the influence of additional, distinct variants. Testing a single
hypothesis of colocalising vs. not colocalising variants cannot
capture the complexity of this situation, but it is instructive to
explore the test’s expected behaviour in order to allow proper
interpretation with real data where the number, and sharing
configuration of causal variants is unknown. Figure 4 shows
that, under a tagging genotyping scenario, the proportional
test tends to reject the null of colocalisation in the case of any
distinct causal variants, even in the presence of an additional
shared variant, although with slightly less power than when
there is no shared variant.

Varying the Number of SNPs in Bayesian Model Averaging
Models

So far, also, we have assumed that it was enough to con-
sider only the universe of two SNP models when applying
our BMA approach. The motivation for this was that a two
SNP model leads to a one degree of freedom test, and might
therefore be expected to maximise power. We examined the
effect of averaging over either all two SNP or all three SNP
models in the context of the above multiple causal variant
simulations. This shows that type one error rates are similar,
that power is similar for two SNP models, but that power can
be increased by averaging over three SNP models compared
to two SNP models, particularly when there are really three
or more distinct causal variants (Fig. 4).
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Figure 4. Effect of more than two causal variants. Each plot reflects simulations in which causal variants in total explain a fixed proportion
of variance of two quantitative traits, shown on the x axis, each available in a sample of 1,000 individuals. The total number of causal variants
is shown by the number of circles above each plot, with full circles indicating a causal variant shared by both traits and half shaded a causal
variant associated with one trait or the other. Analysis was conducted by proportional testing using either a PC approach with number of principal
components selected to capture 90% of genetic variation or a BMA approach, averaging over the space of either all possible two SNP or three
SNP models. We considered only tagging genotype scenarios.

Application to Colocalisation Testing of Autoimmune
Thyroid Diseases

Existing evidence suggests that a single locus may contain
variants that predispose to any one of multiple diseases, e.g.,
the nonsynonymous C1858T SNP in PTPN22 is associated
with rheumatoid arthritis and T1D [Barrett et al., 2009; Stahl
et al., 2010], or distinct variants that predispose to differ-
ent diseases, e.g., distinct variants in IL2RA are associated
with T1D and multiple sclerosis [Maier et al., 2009; Martin
et al., 2012]. We used the proportional colocalisation ap-
proach outlined above to examine the disease signals for the
autoimmune thyroid diseases HT and GD from a recent dense
genotyping study [Cooper et al., 2012].

We first examined the seven regions where a sig-
nificant single SNP effect has been identified in both
diseases, i.e., at study-wide significant levels for GD
(P < 1.1 × 10–6, a permutation derived threshold specific
to this study) and at a nominal significance threshold of
P < 0.05 for HT. Six of these display no evidence against
colocalisation (all posterior predictive P > 0.01), the ex-
ception being 2q33.2/CTLA4/ICOS in which the ppp value

for the BMA approach is 6 × 10–3 (two SNP models) or
8 × 10–5 (three SNP models). In this region, the pro-
file of the single SNP P values do differ (Supplementary
Fig. S6), but it would require larger sample sizes to confi-
dently conclude that the two diseases have different causal
variants in this region given the number of tests completed.

The coefficient of proportionality, η, can be usefully inter-
preted when analysing two diseases. Two values of particular
interest are η = 0 that would indicate no effect in HT given
an effect in GD and η = 1 that indicates equal effects in each
disease. In most of the seven regions, the credible interval
for η includes 1 (Fig. 5), the exceptions being 2q33.2 and
10p15.1, where it ends just below 1 using a PCs approach,
and 3q27.3/3q28/LPP where it starts just above 1 on either
BMA approach.

Turning to the the six regions where there is evidence of
association in only GD, we do not expect to see any de-
parture from the null of colocalisation, without evidence of
association to both traits, and indeed all posterior predictive
P > 0.01. However, our estimate of ηhelps infer whether this
reflects a lack of power or genuine absence of association for
HT. We evaluated the credible intervals for η in each region
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Figure 5. Colocalisation analysis of Graves’ and Hashimoto’s diseases. Regions are labelled by chromosome and likely candidate gene(s) and
arranged so that the top seven regions showed marginally significant association with both GD and HT (P < 0.05) and the bottom six with just GD
in the published single SNP analysis [Cooper et al., 2012]. The left panel shows the estimate of the coefficient of proportionality, η, for the estimate
of the ratio of effect sizes in HT compared to GD, and its 95% credible interval, calculated using either the PCs approach (PC), or BMA averaging
over two SNP models (BMA.2) or three SNP models (BMA.3). The middle panel shows the the evidence against colocalisation using either the
− log10(P ) value (PCs) or the posterior predictive − log10(P ) (BMA). The right panel summarises the evidence for association of the region with
each disease using − log10(P ) values for the association analysis of Graves’ and Hashimoto’s using the selected principal components for the PCs
approach. The − log10 scale has been truncated at 10 so that more extreme P values are displayed at − log10( p) = 10. For the PC approach, testing
was based on the smallest subset of components that captured 90% of the genetic variance.

and across four of the six regions, the credible interval for
η includes 0, whilst in only one does the credible interval
include 1 for all approaches. In 14q31.1/TSHR, the credible
interval ends just below 0 for the BMA approaches, whilst
for 6q27/CCR6, it starts just above 0 and includes 1 for all
methods. TSHR represents the primary autoantigen in hyper-
thyroidism of GD [Brand and Gough, 2010], so is unlikely to
be involved in HT.

Discussion

There are two sources to the bias in colocalisation test-
ing presented above. The problem of variable selection is
well studied in statistics generally [Miller, 1984] but has per-

haps been neglected in statistical genetics, where the aim has
been to detect convincing association to a region, rather than
pinpoint the causal variant, particularly as most datasets to
date have included an incomplete selection of variants in any
region. Selecting SNPs that do not fully capture the trait asso-
ciation will affect conditional colocalisation testing because
some residual association must remain after conditioning.
On the other hand, it should not bias proportional testing
as the aim there is to test for proportionality of effect size
rather than evidence of residual effect. This may explain the
substantially higher error rates for naive conditional testing
vs. naive proportional testing seen in Figure 1.

The bias in effect size estimates affects both methods, how-
ever. In genetics, we are familiar with ‘Winner’s curse’, which
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causes effect estimates examined conditional on the value of
the associated P value to be biased away from the null. Some
attempts to correct this effect size bias have been made, ei-
ther by modelling a selection procedure defined as a single
SNP exceeding a predetermined level of significance [Zollner
and Pritchard, 2007], or by bootstrapping that can in theory
account for the full selection strategy [Sun et al., 2011]. We
explored both approaches, but found neither led to unbiased
or even nearly unbiased inference (data not shown). For Zoll-
ner and Pritchard [2007], this failure is presumably down to
the discrepancy between correcting for a P value that exceeds
some threshold and selecting the SNP with the minimum
P value. In the case of Sun et al. [2011], it is possible that
single loci do not contain sufficient information for a boot-
strap based correction; the corrected estimates tended to be
biased in the opposite direction, suggesting the method was
over-correcting.

Our proposed solution is to use proportional testing and
either avoid variable selection altogether by using the PCs that
capture the majority of genetic variation in the region, or in-
tegrate over the variable selection using BMA. Either method
maintains type 1 error, and the BMA approach appears more
powerful than the PC approach, although both have reduced
power compared to the hypothetical scenario of being able to
test the causal variants themselves. Recall from equation (4)
that the ppp depends on both the posterior probabilities of
individual SNP models and the degree of departure from the
null under each model, P ∗(m). If the posterior probability
was spread broadly over the model space and P ∗(m) varied
considerably across models, the distribution of ppp would be
far from uniform, with too few observations in the tails. The
fact that we observe only mildly conservative type 1 errors,
even in the weakest associations considered here (case con-
trol sample sizes of 2,000, and relative risks of 1.1), probably
reflects our requirement in simulating our datasets that some
nominal level of association must be observed for at least one
SNP in a region. This means that, for our simulated data, the
posterior probabilities tend to be mainly focused on a small
subset of models, and these models tend to contain sets of
SNPs related by LD so that P ∗(m) does not vary substan-
tially across the set of models on which most of the posterior
probability is concentrated. Whether caution is needed in ap-
plying this approach in smaller datasets depends somewhat
on a researcher’s view. Certainly, it is unlikely that the ppp
distribution would be uniform if small samples with weak
associations were used, and therefore power to detect de-
parture from colocalisation would be reduced. However, the
alternative to colocalisation being tested is not just that of no
colocalisation, but implicitly that of distinct causal variants
in two traits. If there is weak or only limited evidence for
association with either trait, then it does seem appropriate
that one cannot reject a null of colocalising causal variants
in favour of an alternative distinct causal variants. On the
other hand, if evidence for association has been indepen-
dently established, a researcher may be sure that there are
causal variants for each trait although there is only weak ev-
idence in the currently available datasets, in which case they

may wish to explore calibrating the ppp distribution, for ex-
ample by means of simulation [Hjort et al., 2006], so that its
null distribution is uniform between [0, 1].

Regions are typically defined after GWAS studies according
to genetic distance in order to describe the physical region
within which a causal variant tagged by the association is ex-
pected to lie. T1DBase uses a definition of 0.1cM surrounding
any single SNP with P < 5 × 10–8 and we used a 0.1cM win-
dow around the most associated SNP in our AITD analysis.
If regions were defined more broadly, one might expect the
BMA method to be relatively unaffected, as SNPs beyond
the boundary of the current regions would not show much
evidence for association. On the other hand, we expect the
power of the PC approach would decrease, as the number
of components, and therefore the degrees of freedom of the
test, would increase without any compensatory increase in
information.

We have proposed alternative approaches to colocalisation
testing, but how should a researcher choose that approach
and the parameters specific to that approach? Our view is
that we would use PCs as a first pass if many loci are under
consideration, to prioritise regions for more detailed analy-
sis. The optimal number of components is unknown, but a
number that captures something in the region of 70–90% of
genetic variation seems acceptable. However, if evidence for
association is strong in both datasets, BMA is a more pow-
erful approach and there seems little reason beyond compu-
tational expense to prefer averaging over the universe of two
SNP models to that of three SNP models. However, in large
regions, a relatively modest number of SNPs can cause the
number of three SNP models to be infeasible. For example,
100 SNPs can generate 4,950 two SNP models but 161,700
three SNP models. We would not suggest exploring four SNP
models because that seems likely to spread the posterior prob-
abilities very thinly, and we haven’t explored combining two
and three SNP models because it is unclear what prior weight
should be given to a two SNP compared to a three SNP model.

As an example application of our proposed approaches, we
analysed 13 loci associated with the autoimmune thyroid dis-
eases GD and HT. Reassuringly, inference was broadly similar
regardless of method, and we and showed that in the seven re-
gions where a locus has been associated with the two diseases,
the data are generally consistent with common causal variants
exerting an equal effect on each disease. In regions previously
significantly associated with only GD, posterior predictive
P values are unlikely to detect any departure from colocal-
isation for reasons described above, but here the Bayesian
approach does allow us to use make some inference using
the posterior distribution of η. Given the relatively smaller
number of HT cases (462) compared to GD (2,285), it might
be expected that many of the loci only associated with GD
have failed to be reach significance for HT due to lack of
power. Estimates of power to detect association with HT un-
der the assumption of equal effects in GD and HT are broadly
similar across the seven regions associated with both diseases
and the six regions associated with GD only (Supplementary
Table S1), but these are likely to be over optimistic due to
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the expected bias in the GD effect size estimates. However,
for five of these six regions, the evidence suggests that failure
to detect association with HT is more likely to be due to a
discrepancy in effect size, with the effect considerably larger
in, and possibly specific to GD, compared to HT, rather than
a lack of power. However, while the data suggest that LPP
may have a stronger effect on GD compared to HT, and that
CCR6 may be an undetected HT locus, the small sample size
for HT prevents us from drawing this conclusion with any
confidence.

There is a pressing need for more widespread use of formal
colocalisation testing. Researchers are turning to eQTL data
to interpret GWAS results by simply considering whether
an eQTL SNP is associated with any disease [Nicolae et al.,
2010], visually [Trynka et al., 2011], by conditional testing
[Nica et al., 2010], by naive application of a proportional
colocalisation test [Plagnol et al., 2009; Wallace et al., 2012]
or by attempting to integrate disease and gene expression
association signals in networks [Hao et al., 2012]. Where
colocalisation tests have been naively applied, we expect the
null hypothesis of colocalisation has been rejected too readily,
although this will affect loci with small and moderate effects
to a greater degree than those with large effects. Thus, for our
earlier analysis of colocalisation between T1D and monocyte
gene expression signals [Wallace et al., 2012], the list of loci
compatible with colocalisation are likely correct, but some
loci were probably erroneously rejected, and re-analysis of
these data will be required.

In the case of network analysis, results can be difficult to
reconcile with simple representations of the data. For exam-
ple, integration of lung expression and asthma genetic asso-
ciation data led to the identification of GSDMA as the most
likely causal gene for asthma in the 17q21 region [Hao et al.,
2012], despite a graphical representation of the data showing
that the SNPs most strongly associated with GSDMA expres-
sion were relatively weakly associated with asthma, and, vice
versa, that the SNPs most strongly associated with asthma
showed relatively weaker levels of association with GSDMA
expression compared to the strongest signals. The asthma as-
sociation on the 17q21 region was one of the first cases of
explicitly using expression data to interpret disease associa-
tion, with the association with asthma initially attributed to
ORMDL3 based on expression data from EBV transformed
cell lines [Moffatt et al., 2007] and subsequently to GSDMB
from a reanalysis of the same data [Moffatt et al., 2010]. Can-
didate gene hypotheses have been constructed for all three
genes. The lung expression data have greater potential for re-
vealing the underlying gene, but, to hold confidence in results
of analyses, particularly when the results contrast with simple
visual inspection of the data, requires careful examination of
the properties of the statistical method used.

Given the tissue-specific nature of many eQTLs identified
to date [Dimas et al., 2009; Fairfax et al., 2012], there is a need
for more large, publicly available eQTL datasets in a variety
of disease relevant tissues and purified cell subsets to support
the interpretation of existing GWAS data. Although expres-
sion data is typically shared after the publication of an eQTL
study, we note that the genetic data must also be made avail-

able to allow full integration of eQTL and disease signals at
shared loci. The increasing abundance of substantial GWAS
datasets and the increasing availability of large eQTL datasets
[Fairfax et al., 2012; Fu et al., 2012; Hao et al., 2012], together
with our reassurance that it is possible to conduct these tests
whilst maintaining type 1 error rates and the availability of
software in our R package will facilitate more widespread for-
mal colocalisation testing. Integration of genetic association
data has the potential to refine understanding of underly-
ing genetic mechanisms and aid in the design of follow-up
studies already underway.
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