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ABSTRACT

Here we present Translocatome, the first dedicated
database of human translocating proteins (URL:
http://translocatome.linkgroup.hu). The core of the
Translocatome database is the manually curated data
set of 213 human translocating proteins listing the
source of their experimental validation, several de-
tails of their translocation mechanism, their local
compartmentalized interactome, as well as their in-
volvement in signalling pathways and disease de-
velopment. In addition, using the well-established
and widely used gradient boosting machine learn-
ing tool, XGBoost, Translocatome provides translo-
cation probability values for 13 066 human proteins
identifying 1133 and 3268 high- and low-confidence
translocating proteins, respectively. The database
has user-friendly search options with a UniProt auto-
complete quick search and advanced search for pro-
teins filtered by their localization, UniProt identifiers,
translocation likelihood or data complexity. Down-
load options of search results, manually curated and
predicted translocating protein sets are available on
its website. The update of the database is helped
by its manual curation framework and connection
to the previously published ComPPI compartmen-
talized protein–protein interaction database (http:
//comppi.linkgroup.hu). As shown by the application
examples of merlin (NF2) and tumor protein 63 (TP63)
Translocatome allows a better comprehension of pro-
tein translocation as a systems biology phenomenon
and can be used as a discovery-tool in the protein
translocation field.

INTRODUCTION

Subcellular localization of proteins is essential in spatial and
temporal organisation of biological processes such as sig-
nalling pathways enabling their separation into organelles
(1). Translocating proteins play a key role in the reconfig-
uration of cellular functions after environmental changes,
as well as in embryonic or disease development. Different
subcellular organelles have well characterized interactomes
(2,3). With the advance of imaging techniques subcellular
dynamics became a rapidly expanding research area (4,5).
Restoring or affecting the cellular localization of disease-
related proteins emerges as an efficient therapeutic method
(6,7).

Protein translocation is a process which refers to the al-
teration of a given protein’s subcellular localization. How-
ever, this phenomenon has no unified definition, and the
word ‘translocation’ may also refer to gene translocation
or RNA translocation at the ribosome. In this work we
define protein translocation as a systems biology phe-
nomenon, which refers to the regulated movement of a
protein of a given post-translational state between sub-
cellular compartments. Translocation changes the interac-
tion partners and leads to altered function(s) of translo-
cating proteins. There are certain processes (such as co-
translational, post-translational delivery-type, cell division-
induced, downregulation- or passive diffusion-related phe-
nomena; for their detailed description see Supplementary
Texts S1 and S2) that may change the localization of a pro-
tein, but to increase the focus and clarity of our database we
did not consider them as translocation.

There are widely used protein databases that contain
information on protein translocation, e.g. the MoonProt
(8) or UniProt (9) databases. However, these databases are
not dedicated collections of translocating proteins. Here
we present Translocatome, which is a manually curated
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database of 213 human translocating proteins with exten-
sive information on their translocation. Moreover, Translo-
catome contains 13 066 human proteins with predicted
likelihood of translocation. With the help of the well-
established and widely used gradient boosting machine
learning tool, XGBoost (10–12) we predicted 1133 high-
confidence translocating proteins. In addition, Translo-
catome contains 3268 and 8665 low-confidence and non-
translocating proteins, respectively. To train the XGBoost
algorithm, we also created a manually curated set of 139
non-translocating proteins as part of the database. In sum-
mary, Translocatome is a novel, dedicated database of hu-
man translocating proteins including their interaction part-
ners in the different subcellular localizations. This database
contributes to a better understanding of protein transloca-
tion as a systems biology phenomenon and facilitates fur-
ther discoveries of translocating proteins. As translocating
proteins are already targeted pharmaceutically (6,7) new
findings in this field may lead to better therapeutic options.

DESCRIPTION OF THE DATABASE

Overview of translocatome

Translocatome is the first database that collects manually
curated human translocating proteins including their in-
teracting partners in the localizations involved, translo-
cation mechanism (including protein structure details if
available), type of experimental evidence, affected sig-
nalling pathway(s) and pathological properties. The core
of the Translocatome database is the 213 manually cu-
rated human translocating proteins (http://translocatome.
linkgroup.hu/coredata) which were all collected based on
related publications containing experimental evidence. Al-
together Translocatome contains 13 066 human proteins,
which were selected from the compartmentalized protein–
protein interaction database (3; ComPPI http://comppi.
linkgroup.hu, downloaded on 20 July 2018) using the in-
clusion criterion that every protein needed to have at least
one experimentally validated subcellular localization. By
the application of the well-established gradient boosting
machine learning tool, XGBoost (10–12) we predicted 1133
high-confidence translocating proteins. All the 13 066 hu-
man proteins were characterized by their translocation like-
lihood named as Translocation Evidence Score (TES) calcu-
lated by the XGBoost machine learning algorithm (Figure
1). Various search and download options make it possible
for users to process these data according to their goals.

Database content

The core data of Translocatome is the extensively curated
set of 213 human translocating proteins (see Core Data at
the website: http://translocatome.linkgroup.hu/coredata).
With the manual curation process involving the judgement
of 3 independent experts we aimed to collect detailed and
experimentally validated information about every entry ex-
tracted from peer reviewed publications (for the details of
the manual curation process see Supplementary Text S3,

Supplementary Table S1 and Supplementary Figure S1).
For each of the 213 manually curated translocating proteins
we collected the available subset of the following data:

a) name set, gene name and UniProt (9) accession number
and link,

b) PubMed ID(s) and link(s) to peer-reviewed article(s) de-
scribing the experimental evidence of translocation,

c) initial and target localizations of the translocating pro-
tein,

d) interacting partners and biological functions (both in the
initial and target compartments),

e) translocation mechanism,
f) the used detection method,
g) protein structural information on translocation mecha-

nism,
h) disease group, exact disease involved and pathological

role,
i) signalling pathways affected.

We used the UniProt naming convention (9) for pro-
tein identification, Gene Ontology terms (13,14) for
localization/biological process identification and the
KEGG naming convention (15) for the standardization of
signalling pathways. Following the logic of our previously
published compartmentalized protein–protein interac-
tion database (ComPPI, 3) every protein was annotated
with one of six major cellular localizations (cytoplasm,
extracellular space, mitochondria, nucleus, membrane or
secretory-pathway). If there was more precise localization
information available it was included as a minor local-
ization. All 213 manually curated translocating proteins
are characterized by a Data Complexity Score (DCS) as
described later in detail, which makes it easier to assess
the amount of information associated with each protein.
53 of the manually curated proteins showed translocation
exclusively under pathological conditions (such as cancer).
Therefore, we used the remaining 160 physiologically
translocating proteins as a positive training set (Supple-
mentary Table S2) for the widely used XGBoost machine
learning algorithm (10–12).

We also collected a manually curated negative dataset
of 139 human non-translocating proteins, each one clas-
sified as a protein (a) with experimentally proved diffuse,
multi-compartmental distribution, (b) with exclusive single-
compartment localization, (c) docked to DNA/RNA, (d)
embedded in membranes or (e) attached to the cytoskeleton
(for additional details, see Supplementary Text S4). These
139 proteins were used as a negative training set (Supple-
mentary Table S3) for the application of the XGBoost ma-
chine learning algorithm (10–12). For a detailed description
of our database structure, see Figure 1A and B.

Altogether Translocatome contains 13 066 human pro-
teins having at least one experimentally validated localiza-
tion as described in our in house developed compartmen-
talized protein–protein interaction database (ComPPI, 3).
From the ComPPI database we also imported the inter-
actome of these human proteins having 151 889 interac-
tions. The translocation likelihood of all the 13 066 pro-
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Figure 1. The structure of the Translocatome database and performance of the XGBoost machine learning prediction method. (A) Schematic flowchart
of the Translocatome database construction process highlighting 6 major steps. The panel shows the main input sources of the Translocatome are manual
curation of peer reviewed articles and the ComPPI database (http://comppi.linkgroup.hu; 3). In the manual curation process we recorded the source of
experimental validation, several details of translocation mechanism, the local compartmentalized interactome, as well as the involvement in signalling
pathways and disease development (1). This extensive manual curation resulted in a set of 213 translocating and another set of 139 non-translocating
human proteins. To incorporate our data into a Protein-Protein Interaction (PPI) network we imported the PPI of 13 066 ComPPI (3) human proteins
with their 151 889 interactions (2). The Manual Curation Framework (MCF) is a user-friendly interface where the data of the Translocatome database
is stored and after registration users from all over the world can log in to modify and update its data, which is published as part of the Translocatome
database after expert cross-check (3). To enable the prediction of translocating proteins we annotated each protein in our database with Gene Ontology
(13,14) functional and ComPPI-derived interactome (3) topological properties (4). The XGBoost machine learning algorithm (10–12) classified the 13 066
human proteins into three sets: high-, low-confidence translocating proteins and non-translocating proteins (5). On the http://translocatome.linkgroup.hu
website the whole dataset is available for searching and downloading purposes freely and without registration. Translocatome can be updated by the
community-based Manual Curation Framework. Moreover, Translocatome is linked to the ComPPI database (3) so in the case of its update Translocatome
can be also updated (6). (B) Structure of the Translocatome database. As shown by a Venn-diagram the database consists of the Core Data of 213 manually
curated translocating proteins (available here: http://translocatome.linkgroup.hu/coredata), which are extended by 1133 and 3268 high- and low-confidence
translocating proteins, respectively. Green and red filled circles represent the positive and negative training sets, respectively. Core Data and positive learning
set differ, since the latter does not contain the 53 proteins showing translocation exclusively under pathological conditions (such as cancer). (C) Performance
of the widely-used XGBoost machine learning method (10–12) on the final feature set. Each of the 100 different receiver operating characteristic (ROC)
curves belong to a different 5 fold cross-validation run on the training set (containing 160 physiologically translocating and 139 non-translocating proteins).
In the runs the XGBoost machine learning method used the final feature set (see Table 1) selected earlier as described in the main text and Supplementary
Text S6. The minimal, maximal and average area under the curve (AUC) were 0.9047, 0.9333 and 0.9207 (±0.0061 standard deviation), respectively.

teins is characterized by a Translocation Evidence Score
(TES) as described later in detail. The translocation like-
lihood was calculated by the XGBoost machine learning al-
gorithm (10–12) as detailed in the next Section.

The XGBoost machine learning algorithm-based prediction
of translocating proteins

The machine learning procedure followed the general
methodology of supervised machine learning workflow:
data collection, feature extraction, feature selection, clas-
sification, training, testing and interpretation. For each
step we applied an existing, well-characterized approach.

Data collection and feature extraction were based on es-
tablished procedures as described below. For all additional
steps we applied the well-established, widely used gradient
boosting-type (10) machine learning tool, XGBoost (11).
XGBoost was successfully applied in hundreds of recent
studies to predict, e.g. host-pathogen protein–protein inter-
actions (16), microRNA disease association (17) and DNA
methylation (18). Several studies including our own previ-
ous paper showed that XGBoost gives the best performance
if compared with a number of known machine learning
methods (see e.g. Refs. 12, 16 and 18).

To train the XGBoost method first we annotated each
of the 13 066 proteins of the Translocatome database with
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their relevant Gene Ontology (GO, 13,14) cellular compo-
nent, biological process and molecular function terms also
including their ancestors. This resulted in 21 020 annotated
GO terms total (all details of the methodology are avail-
able here: https://github.com/kerepesi/translocatome ml).
The process was based on our previous work (12), for its
details please see Supplementary Text S5.

Next, each of the 13 066 proteins were annotated with
their degree and bridgeness in the compartmentalized
protein–protein interaction database (ComPPI, 3) derived
human interactome containing 151 889 interactions. De-
gree (the number of human interactome neighbours) was
included, since the 213 manually curated translocating pro-
teins showed a significantly higher degree than that of the
139 manually curated non-translocating proteins or the av-
erage (Supplementary Figure S2). This is not surprising
since translocating proteins often have a central role in reg-
ulation behaving as interactome hubs. Similarly, translocat-
ing proteins often connect interactome modules (large pro-
tein mega-complexes), thus act as bridges. Indeed, the 213
manually curated translocating proteins had significantly
higher bridgeness values than that of the 139 manually cu-
rated non-translocating proteins or the average (Supple-
mentary Figure S2). Degree and bridgeness values were cal-
culated using the CytoScape network analyser program (19)
and its ModuLand plug-in (20), respectively. GO terms, de-
gree and bridgeness formed the feature sets selected by the
XGBoost machine learning method.

Since the human interactome (3) we used for the calcula-
tion of degree and bridgeness did not contain interactions
observed in pathological conditions, we excluded those 53
of the manually curated proteins from the positive training
set of the XGBoost algorithm, which showed translocation
exclusively under pathological conditions (such as cancer).
The remaining 160 manually curated proteins were used as
the positive training set (Supplementary Table S2).

Following the methodology of several XGBoost studies
(11,16–18) including our previously published work (12) we
evaluated the XGBoost-selected feature sets by 5-fold cross-
validation, and we evaluated their predictive power by the
area under the curve of the receiver operating character-
istic curve (ROC AUC or shortly AUC, 21). 5-fold cross-
validation is a widely used method where the training data
is split into five random parts and four parts are used to
train the XGBoost machine learning tool and the predic-
tion of the fifth part is evaluated. For every feature set, we
repeated this process 100 times. We selected those GO fea-
tures which had a feature important value (produced by the
XGBoost program) greater than 0.02. With this generally
applied XGBoost procedure we reached an average AUC of
0.916 (±0.0046 standard deviation) with only 15 GO fea-
tures left from the initial 21 020 (see Table 1). We contin-
ued feature selection by adding the two interactome-derived
features degree and bridgeness using the giant component
of the ComPPI-derived human protein–protein interaction
network (3). In these calculations the giant component of
the interactome was used which did not contain 9 proteins
of the total. The inclusion of the two network-related fea-
tures produced an average AUC of 0.9207 (±0.0056 stan-
dard deviation), showing a further increase from the average
AUC of 0.916 and implying a high performance. We show

the ROC curves of 100 five-fold cross-validation runs of the
final feature set on Figure 1C having a minimal, average and
maximal AUC of 0.9047, 0.9207 and 0.9333, respectively. As
shown on Supplementary Figure S3 both precision-recall
and Matthews correlation coefficient curves also showed a
high performance of the learning process. For more details
of the generally applied machine learning procedure, see
Supplementary Text S6. All data of the procedure are avail-
able at https://github.com/kerepesi/translocatome ml along
with codes to reproduce the results.

The feature set of the XGBoost model with the best AUC
value is shown on Table 1. Features with positive impor-
tance values increase the probability of translocation. These
are Gene Ontology features from each main GO category
(cellular components, biological processes and molecular
functions), which are often associated with protein translo-
cation as described in Table 1 in detail. If a feature has a
negative importance value, then it decreases the probabil-
ity of translocation. Two categories of low degree and low
bridgeness values each, as well as six GO-terms negatively
associated with protein translocation are listed among these
negative features. Using the feature set shown on Table 1 we
calculated the Translocation Evidence Score characterizing
the translocation probability of each of the 13 066 proteins
in the Translocatome database as described in the next sec-
tion.

Data complexity and translocation evidence scores

Data complexity score. To provide an easy assessment of
the information available of a manually curated protein we
developed the Data Complexity Score (DCS). DCS varies
between 0 and 1, having increasing values if the protein has
more curated data. The score is calculated and normalized
after weighting all the available data, where those related to
translocation have a higher weight (please find the detailed
calculation process in Supplementary Text S7). Therefore,
DCS is not only shows the quantity but also the relevance of
the available data. In addition DCS indicates which entries
may require further curation.

Translocation evidence score. The XGBoost machine
learning method gave every protein of the Translocatome
database a Translocation Evidence Score (TES) that is pro-
portional with the translocation probability of the given
protein. For each protein we computed TES using Equa-
tion (1)

∑n

i = 1
wi xi , (1)

where wi is the importance value of the i th feature of the
model (see ith row of Table 1). The importance value was
calculated as described in the legend of Table 1. x = 1, if
the given feature is true for that protein and x = 0, if it is
false (n is the number of features of the model; here n = 19).
TES values were rescaled to the interval [0,1] by min–max
normalization using Equation (2)

x′ = x − xmin

xmax − xmin
, (2)

The larger the TES value, the greater the probability of
translocation. As a numerical example, suppose that ‘pro-
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Table 1. The feature set identified as best predictor by the XGBoost machine learning algorithm

Gene Ontology process (GO term name) or
interactome feature Importance Short biological explanation

Parameters having a positive predictive value
animal organ morphogenesis (GO:0009887) 2.68 Morphogenesis and other developmental processes are mostly

regulated through complex networks of transcription factors, where
translocation is often involved as a regulation step (29).

regulation of carbohydrate metabolic process
(GO:0006109)

1.53 Quite some metabolic enzymes also function as protein kinases and
translocate between cellular compartments playing a role e.g. in
carcinogenesis (30).

cytoplasm (GO:0005737) 1.35 Large cellular compartments are often associated with proteins that
translocate. Nucleo-cytoplasmic translocations play a key role in the
regulation of transcription factors (29).

nuclear part (GO:0044428) 1.12
negative regulation of cellular process
(GO:0048523)

1.12 Negative regulatory mechanisms are frequently exerted by
translocating proteins such as e.g. PTEN (31) or transcription factors.

plasma membrane part (GO:0044459) 0.70 Large cellular compartments are often associated with proteins that
translocate. Cytosol-membrane translocations play a key role in the
regulation of signalling pathways (32).

extracellular region (GO:0005576) 0.65
cytosol (GO:0005829) 0.57
spliceosomal complex (GO:0005681) 0.23 The spliceosome is constituted by snRNPs translocating from the

cytoplasm. Some spliceosome components are also involved in
mRNA export (33,34).

Parameters having a negative predictive value
bridgeness value is lower than 0.000292
(bridgeness lower than 0.000292)

−0.36 Translocating proteins often bridge the two interactome modules
(large protein complexes) of their two localizations. Therefore, their
bridgeness values tend to be high (20 and Supplementary Figure S1).

degree is smaller than 62.5 (degree lower than
62.5)

−0.50 A reasonably high number of interaction partners often indicates a
role in regulation and signal transduction. Many of these proteins are
‘date-hubs’, which may undergo a translocation process.
Nevertheless, too many partners could be a characteristics of a multi
compartmental housekeeping protein (35 and Supplementary Figure
S1).

degree is smaller than 14.5 (degree lower than
14.5)

−0.54

negative regulation of intracellular signal
transduction (GO:1902532)

−0.61 If the translocation process becomes inhibited, it may often prevent
signal transduction. Inhibition often occurs via sequestration by large
protein complexes which usually have only one localization (36).

myeloid cell differentiation (GO:0030099) −0.74 Cell adhesion and membrane bound proteins play an important role
in myleoid cell differentiation (37,38). Both protein categories are
typically non-translocating proteins, which may over-compensate the
role of translocating transcription factors in this process.

intrinsic component of membrane
(GO:0031224)

−0.82 Intrinsic membrane components predominantly do not translocate to
other major localizations.

system process (GO:0003008) −0.91 A wide variety of proteins exert their system level biological functions
(e.g. secretion of molecules) in a non-translocating manner: cell
membrane channels, actin, myosin, etc.

single organismal cell-cell adhesion
(GO:0016337)

−1.06 Cell adhesion proteins usually have a strictly limited location in the
plasma membrane

bridgeness value is lower than 2.5e-06
(bridgness lower than 2.5e-06)

−1.10 Translocating proteins often bridge the two interactome modules
(large protein complexes) of their two localizations. Therefore, their
bridgeness values tend to be high (20 and Supplementary Figure S1).

protein complex (GO:0043234) −1.24 Proteins often fulfil their roles in large protein mega-complexes. These
complexes may assist for other proteins to translocate, but their own
components do not translocate.

Features selected by the XGBoost machine learning algorithm (10–12) can be human protein–protein interaction network-related (3) or GO term-related
(13,14), as listed in the first column. XGBoost assigns each feature with an importance score (as shown in the third column) which was calculated as the
leaf-scores of the one-depth trees of the best XGBoost model. In the fourth column there is a short (and most of the time, very partial) explanation to
explain why these features may become selected by the XGBoost machine learning process as best predictors of protein translocation including some key
references supporting the explanations.

tein A’ has 20 neighbours (degree) in the human interactome
and its UniProt record contains only two GO terms, ‘animal
organ morphogenesis’, and ’cytoplasm’. Then the predicted
translocation evidence score of ‘protein A’ is −0.497 + 2.675
+ 1.353 = 3.531. The value is then normalized using Equa-
tion (2). For each of the 13 066 proteins, the respective TES

scores can be found both in the search results and in the
downloadable datasets.

The Translocation Evidence Score gave the possibility to
define a cut-off value, below which proteins were considered
as non-translocating. To define this cut-off value, we used
the widely used measure of a test’s accuracy, the F1 score



D500 Nucleic Acids Research, 2019, Vol. 47, Database issue

(also called as F-measure, 22) that measures the perfor-
mance of a binary classification being a harmonic average
of precision and recall (also called as sensitivity). Supple-
mentary Figure S4 shows recall, fallout, precision and the
F1 score at different threshold values and illustrates the dis-
tribution of the TES values. The F1 score reached its max-
imum at the threshold of 0.4487, which gives a straightfor-
ward cut-off value for translocation probability. Thus pro-
teins having lower TES values than 0.4487 were considered
as non-translocating (for more details see Supplementary
Texts S6 and S8). In order to give an assessment of poten-
tial false positive predictions we also defined a higher TES
cut-off value separating low- and high-confidence translo-
cating proteins. We set this value as 0.6167, since above this
threshold there were not any negative set proteins. We as-
sume that the probability of false positive predictions is low
above this threshold value. Low-confidence translocating
proteins, which have a translocation evidence score (TES)
between the two threshold values are presumably translo-
cating but they need further validation.

The two Translocation Evidence Score cut-off values sep-
arated our original 13 066 human proteins to three classes:
(a) 1133 high-confidence translocating proteins having a
TES value higher than 0.6167; (b) 3268 low-confidence
translocating proteins having a TES value between 0.6167
and 0.4487, as well as (c) the residual 8665 proteins having
a TES value lower than 0.4487, which were considered as
non-translocating (Figure 1B).

Search, download options and output

As part of the user-friendly interface, various search func-
tions were developed. We provide an easy to use quick
search function (with UniProt AC autocompletion) which
can be used to find protein families or a given protein.
The advanced search option creates the possibility to search
for more elaborate sets of proteins filtered by their local-
ization, UniProt identifiers, Translocation Evidence Score
or Data Complexity Score. The web interface provides
eight pre-defined protein sets as download options cov-
ering (i) 213 manually curated translocating proteins, (ii)
160 physiologically translocating manually curated pro-
teins (the positive training set), (iii) manually curated non-
translocating proteins (the negative training set), (iv–vi)
high-, low-confidence and non-translocating protein sets,
as well as (vii) the whole protein set and (viii) its protein–
protein interaction network. These sets of proteins can be
downloaded in a comma separated .csv format. Besides
these pre-defined sets users can also download the results
of their search queries as a tabulator separated file (.tsv,
see the technical parameters in the ‘Design and implemen-
tation’ section). Examples and explanations of the output
formats are available in Supplementary Figures S5–S7.

Design and implementation

To allow the development of the Translocatome database as
a community effort a manual curation framework (MCF)
was designed. MCF uses the same MongoDB database
as the Translocatome site, with a user interface developed
in the Ruby on Rails 4.2 (https://rubyonrails.org) frame-

work. The MCF website follows the hierarchical model-
view-controller design pattern to ensure the separation of
the data layer from the business logic and the user inter-
face. The MCF stores all the data of the Translocatome and
provides them to the front-end of the Translocatome web-
site after expert review. To ease usability an end-user doc-
umentation is available as tutorials, detailed descriptions
and location-specific tooltips in the HELP menu on the site
(http://translocatome.linkgroup.hu/help). Further details of
design and implementation of the database are summarized
in Supplementary Text S9.

Application examples

The Translocatome database is the only current dedi-
cated collection of human translocating proteins. With its
Translocation Evidence Score (TES) for 13 066 proteins
it helps the identification and experimental validation of
novel translocating proteins. To demonstrate the prediction
efficiency of Translocatome we assessed the first 40 pro-
teins with the highest TES values. Table 2. shows the list
of the best performing 25 proteins. They fall into four cate-
gories: (A) were already included in the manually curated
213 translocating protein set (12 proteins: PTEN, PTK2,
FOXO3, GMNN, ATF2, MAPK1, GLI3, HRAS, AR,
SMAD3, SMAD2 and HSP90AB1); (B) were previously
shown to be translocating proteins but have not appeared
in our Core Data of 213 proteins collected from keyword-
based searches (11 proteins: NF2, TULP3, SNCA, FGFR2,
MTOR, GSK3B, EIF6, HDAC1, CARM1, CUL1 and
RARB; see Supplementary Table S4); (C) have not been de-
scribed as translocating proteins yet, but from the literature
we can conclude that their translocation is probable (one
protein: TP63); (D) there is no information in the literature
about their translocation (one protein: PRKRA). Proteins
of categories (C) and (D) are good candidates for further
experimental studies verifying their translocation.

The best hit of the XGBoost algorithm, the PTEN pro-
tein is a part of the manually curated 213 translocating pro-
teins. As its second best hit, the XGBoost algorithm cor-
rectly predicted NF2 (Merlin) as a translocating protein,
since NF2 in its dephosphorylated form indeed translocates
to the nucleus (23). NF2 is a hub having 48 neighbours and
was characterized by 6 out of the 15 Gene Ontology terms
that were important according to the best XGBoost model
predicting translocation.

Out of the 25 proteins listed on Table 2, the p63 protein
(tumor protein 63, TP63) is the only protein, which falls into
the category C.) containing ‘proteins having implications in
the literature that they are translocating’. p63 is not tagged
as translocating in available databases (8,9). p63 is a pro-
tein that is physiologically found in the nucleus of human
cells (Figure 2). It acts as a transcription factor either acti-
vating or repressing specific DNA sequences (24) and it is
an essential factor during embryogenesis (25). Besides these
conventional functions it is also known that p63 appears
in the cytoplasm of adenocarcinoma or prostate carcinoma
cells. Moreover, the cytoplasmic localization of p63 results
in the increased malignancy of these tumours (26,27). This
disease-altered localization of p63 is in compliance with our
definition for a translocating protein. Thus, the XGBoost

https://rubyonrails.org
http://translocatome.linkgroup.hu/help
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Table 2. List of the first 25 proteins having the highest Translocation Evidence Score

UniProt ID Gene names Protein names

Translocation
evidence
score Group Summary

P60484 PTEN Phosphatidylinositol
3,4,5-trisphosphate 3-phosphatase
and dual-specificity protein
phosphatase

1.0000 A PTEN translocates to the nucleus from the
cytoplasm in response to oxidative stress

P35240 NF2 Merlin 0.9807 B Dephosphorylated merlin translocates to
the nucleus (23)

O75386 TULP3 Tubby-related protein 3 0.9802 B Membrane association with PIP2 anchors
Tub to sequester TULP3 from transport to
the nucleus. It also translocates from the
plasma membrane to the nucleus upon
activation of guanine nucleotide-binding
protein G(q) subunit alpha (39).

Q05397 PTK2 Focal adhesion kinase 1 (FADK 1) 0.9798 A Retinoid acid induced nuclear FAK
translocation leads to a reduced cellular
adhesion

P37840 SNCA Alpha-synuclein 0.9743 B Mitochondrial translocation occurs rapidly
under as a result of pH changes during
oxidative or metabolic stress (40)

O43524 FOXO3 Forkhead box protein O3 0.9740 A Dephosphorylated cytoplasmic Foxo is
unidirectionally translocated out of the
cytoplasm by the nuclear localization signal
and Ran GTPase driven nuclear import
system.

O75496 GMNN Geminin 0.9740 A Geminin is excluded from the nucleus
during part of the G1 phase and at the
transition from G0 to G1.

P21802 FGFR2 Fibroblast growth factor receptor 2
(FGFR-2)

0.9703 B Under PGF(2alpha) stimulation, FGF-2
and FGFR2 proteins accumulate near the
nuclear envelope and co-localize in the
nucleus of Py1a cells (41).

P15336 ATF2 Cyclic AMP-dependent transcription
factor ATF-2

0.9677 A Some drugs as paclitaxel or vemurafenib are
inducers of ATF-2 translocation.

P42345 MTOR Serine/threonine-protein kinase
mTOR

0.9635 B Long-term treatment with rapamycin
triggers dephosphorylation and cytoplasmic
translocation of nuclear rictor and sin1
accompanied by inhibition of mTORC2
assembly (42).

P28482 MAPK1 Mitogen-activated protein kinase 1 0.9480 A MAPK1 (ERK2) translocates to the nucleus
and mitochondria.

P49841 GSK3B Glycogen synthase kinase-3 beta 0.9462 B GSK3 translocated to the plasma
membrane, along with AXIN, upon Wnt
stimulation (43).

O75569 PRKRA Interferon-inducible double-stranded
RNA-dependent protein kinase
activator A

0.9439 D There is no information in the literature
about the translocation of this protein

P10071 GLI3 Transcriptional activator GLI3 0.9439 A Translocates after interaction with ZIC1.
P01112 HRAS GTPase Hras 0.9224 A Several pathological conditions such as

exogenous hyperoxia induce Ras
translocation from cytosol to the membrane.

P56537 EIF6 Eukaryotic translation initiation
factor 6

0.9208 B Increase in intracellular concentration of
calcium leads to rapid translocation of eIF6
from the cytoplasm to the nucleus, an event
that can be blocked by specific calcineurin
inhibitors, such as cyclosporin A (44).

P10275 AR Androgen receptor
(Dihydrotestosterone receptor)

0.9123 A Translocation happens after ligand binding
and is mediated by filamin, which is thought
to disrupt the association between Hsp90
and the receptor in the cytoplasm.

P84022 SMAD3 Mothers against decapentaplegic
homolog 3

0.9123 A Activated TGF-beta receptor
phosphorylates Smad2 and Smad3, which
then form a complex with Smad4 and
translocate to the nucleus.
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Table 2. Continued

UniProt ID Gene names Protein names

Translocation
evidence
score Group Summary

Q13547 HDAC1 Histone deacetylase 1 0.9123 B In neuroblastoma cells translocation of
HDAC1 was reported to the cytoplasm in
response to HSV-1 viral infection (45).

Q15796 SMAD2 Mothers against decapentaplegic
homolog 2

0.9123 A After phosphorylation of receptor-regulated
SMADs (SMAD1, SMAD2, SMAD3,
SMAD5 and SMAD8) they are recognized
by SMAD 4. This complex translocates to
the nucleus.

Q86X55 CARM1 Histone-arginine methyltransferase
CARM1

0.9123 B Nucleus → cytosol translocation mainly
occurs during mitosis, but it also occurs out
of the cell cycle (46).

Q9H3D4 TP63 Tumor protein 63 (p63) 0.9123 C Nuclear localization of p63 was correlated
with nuclear accumulation of p53, whereas
the presence of nuclear p63 had no apparent
effect on patient survival (24–27). The
mechanism remains to be elucidated.

P08238 HSP90AB1 Heat shock protein HSP 90-beta 0.9053 A Hsp90 has been found in the extracellular
region, and also in the nucleus.

Q13616 CUL1 Cullin-1 0.9034 B ROC1 promotes CUL1 nuclear
accumulation to facilitate its NEDD8
modification (47).

P10826 RARB Retinoic acid receptor beta 0.8967 B This is a nucleocytoplasmic shuttling
protein, AFP may inhibit translocation of
RAR-beta into the nucleus via competitive
binding to RAR-beta with ATRA (48).

Every protein are shown in the table with their 3 indicators (UniProt ID, Gene name and Protein name) and Translocation Evidence Score (TES) as
defined in the main text. The higher the TES score the higher the probability of translocation. Proteins fall into four categories as shown in the fifth
column. (A) The protein was included in the manually curated 213 translocating protein set. (B) The protein did not appear in our keyword-based searches
but was previously shown to be a translocating protein. (C) The protein has not been described as a translocating protein yet, but from the literature we
can conclude that its translocation is probable (p63 protein, for more information, see Figure 2). (D) There is no information in the literature about the
translocation of this protein (PRKRA). Categories C and D are good candidates for further evaluation. Short summary gives a brief description of the
translocation mechanism of each protein having a representative publication cited in categories B and C (for references describing the translocation of
proteins in category A see the Translocatome database entry of the respective protein).

machine learning algorithm correctly predicted the translo-
cation of p63. As p63 is associated with poor survival of
cancer patients (26,27) its targeting may serve as a thera-
peutic option.

With the above examples we demonstrated that the XG-
Boost machine learning algorithm (10–12) is able to clas-
sify previously known proteins effectively and may also pre-
dict new translocations correctly. Out of the 25 best hits
shown on Table 2 the PRKRA protein (interferon-inducible
double-stranded RNA-dependent protein kinase activator
A) is the only one, which appears to be a completely new
translocating protein candidate. It will be an interesting
question of further experimental studies, whether this pro-
tein is indeed translocating or shuttling between the cytosol
and the nucleus as predicted by the rather equal number of
its protein interactions (3) in these two compartments.

Comparison with similar tools

The existing MoonProt (8) and UniProt (9) databases con-
tain potentially translocating proteins performing multiple
biochemical functions or data related to protein translo-
cation, respectively. Out of the 75 human proteins of the
latest, 2.0 version of the MoonProt database (accessed on

04/01/2018), 55 proteins were shown in the literature to
translocate in a regulated manner (and were included to
the Translocatome). The other 20 human moonlighting pro-
teins achieve their multiple functions in the same cellu-
lar compartment. Out of the total number of 20 239 hu-
man UniProt proteins (accessed on 17 November 2017), we
can presume a translocation in 1013 cases based on their
UniProt description or subcellular location data. As only
75 (35%) of the 213 Translocatome gold standard proteins
were included in the 1013 presumably translocating UniProt
proteins, the Translocatome database can greatly supple-
ment this aspect of the UniProt database. From the residual
938 UniProt translocation candidates 25% and 34% were
predicted in the Translocatome as high- and low-confidence
translocating proteins, respectively. 31% of the 938 UniProt
proteins was predicted as non-translocating while 10% of
them was not part of the Translocatome database.

CONCLUSIONS AND FUTURE DIRECTIONS

In summary, Translocatome offers a unique dataset of 213
specifically collected human translocating proteins listing
the source of their experimental validation, several details
of their translocation mechanism, local compartmental-
ized interactome as well as their involvement in signalling
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Figure 2. p63, a translocating protein predicted by the XGBoost machine learning algorithm. (A) In the left column the Gene Ontology (GO) terms
(13,14) that are associated with the p63 protein are summarized, showing that altogether the protein is characterized by 174 annotations. As some of these
annotations are redundant, altogether there are 12, 16 and 82 specific GO terms of cellular components, molecular functions and biological processes,
respectively. In the right column the degree and the bridgeness value of p63 in the ComPPI database-derived human interactome (3) are shown. In the
centre 6 highlighted GO terms show that p63 plays an important role in the regulation of transcription and the apoptotic process. A complete list of
associated GO terms was collected by Quick-GO (28) and is available here: https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q9H3D4. (B)
The XGBoost machine learning algorithm (10–12) selected 17 types of features as the best model when calculating the Translocation Evidence Score
(TES, see Table 1 and Supplementary Text S6). Out of the 17 features the p63 protein is characterized by 6 GO features and a large degree. For every
GO-related feature we have shown the name of the specific GO term and the respective importance value of this GO term. The high TES score shows that
the translocation of p63 is highly probable. (C) As it is also suggested by some of its major interaction partners shown, the p63 protein is a regulator of
transcription and apoptosis. Reviewing the literature, we found that besides the well-known nuclear localization of the p63 protein (24,25) in fact, it also
has a validated cytoplasmic localization, too. Moreover, cytoplasmic localization of p63 is a predictor of increased malignancy of some tumours (26,27).
This disease-altered localization of p63 is in compliance with our definition for a translocating protein. Thus p63 was correctly predicted by Translocatome
as a likely candidate of further experimental studies proving its translocation.

pathways and disease development. In addition, it pro-
vides translocation likelihood values (as Translocation Ev-
idence Scores) for 13 066 human proteins identifying 1133
and 3268 high- and low-confidence translocating proteins,
respectively. The assembly of the Translocatome database
(Figure 1) combines careful manual curation steps with a
state-of-art machine learning prediction protocol. The ap-

plication examples (Table 2 and Figure 2) show that the
Translocation Evidence Score of Translocatome is able to
highlight already experimentally verified translocating pro-
teins, which do not evidently appear by simple key word-
based search methods, as well as proteins, whose translo-
cation is already very likely from the literature, but has not
been directly verified yet. These features position Translo-

https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=Q9H3D4
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catome as a discovery-tool in the field of protein transloca-
tion.

The Translocatome database can be accessed via a user-
friendly web-interface providing a quick search function
(with UniProt AC autocompletion) and an advanced search
to find sets of proteins filtered by their localization, UniProt
identifiers, Translocation Evidence Score or Data Complex-
ity Score. The web interface provides eight pre-defined pro-
tein sets as download options and a possibility to down-
load the search results. End-user documentation is avail-
able as tutorials, detailed descriptions and location-specific
tooltips in the HELP menu of the site.

Translocatome is available at http://translocatome.
linkgroup.hu. Translocatome is a community-annotation
resource, which is helped by its manual curation framework
(MCF). MCF allows the users to build in their own exper-
imentally verified translocating proteins. Translocatome
will be updated and upgraded annually for minimum 5
years. The Translocatome database is connected to our
previously developed, compartmentalized protein–protein
interaction database (ComPPI, 3). Thus the improvement
of the subcellular localization and interactome data can be
easily translated to regular updates of the Translocatome
database giving improved protein translocation likelihood
values.

We plan to resolve current Translocatome limitations,
such as extending the database to other species than hu-
mans. Future plans include the extension of positive and
negative datasets and localization-based network visualiza-
tion. Translocating RNAs play a key role in subcellular reg-
ulation as well, but their role is even more complex and mys-
terious. We plan to extend our database and add translo-
cating RNAs, to fill out this gap. The improvement of the
data not only means, that Translocatome will have more
proteins or more detailed information. In this process the
whole database will be updated meaning that the XGBoost
machine learning will reappraise the data and provide more
even accurate predictions based on the updated data.

In conclusion, the Translocatome database introduced
here provides the first dedicated collection of 213 translo-
cating human proteins including their interaction part-
ners in the different subcellular localizations. Importantly,
Translocatome gives a Translocation Evidence Score to
more than 13 thousand human proteins allowing the assess-
ment of their translocation probability. All these features
are accessible in a user-friendly manner. The Translocatome
database allows a better comprehension of protein translo-
cation as a systems biology phenomenon, and can be used
as a discovery-tool of the field. Since translocating proteins
become more and more important therapeutic targets (6,7)
Translocatome may contribute to the development of better
future therapeutic options.
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Oğuz Karapinar, Dániel Kisvárday-Papp and Virág Lakner
in the collection of manually curated data.

FUNDING

Hungarian National Research Development and Innova-
tion Office [OTKA K115378]; New National Excellence
Program of the Hungarian Ministry of Human Capacities
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Korcsmáros,T. and Csermely,P. (2015) ComPPI: a cellular
compartment-specific database for protein–protein interaction
network analysis. Nucleic Acids Res., 43, D485–D493.

4. Liu,T.L., Upadhyayula,S., Milkie,D.E., Singh,V., Wang,K.,
Swinburne,I.A., Mosaliganti,K.R., Collins,Z.M., Hiscock,T.W.,
Shea,J. et al. (2018) Observing the cell in its native state: Imaging
subcellular dynamics in multicellular organisms. Science, 360,
eaaq1392.

5. Gut,G., Herrmann,M.D. and Pelkmans,L. (2018) Multiplexed
protein maps link subcellular organization to cellular states. Science,
361, eaar7042.

6. Serrels,A., Lund,T., Serrels,B., Byron,A., McPherson,R.C., von
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