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Question classification is an important component of the question answering system (QA system), which is designed to restrict the
answer types and accurately locate the answers. Therefore, the classification results of the questions affect the quality and
performance of the QA system. Most question classification methods in the past have relied on a large amount of manually labeled
training data. However, in real situations, especially in new domains, it is very difficult to obtain a large amount of labeled data.
Transfer learning is an effective approach to solve the problem with the scarcity of annotated data in new domains. We compare
the effects of different deep transfer learning methods on cross-domain question classification. On the basis of the ALBERT fine-
tuning model, we extract the category labels of the source domain, the question text, and the predicted category labels of the target
domain as input to extract the category labels. Additionally, the semantic information of the category labels is extracted to achieve
cross-domain question classification. Furthermore, WordNet is used to expand the question, which further improves the
classification accuracy of the target domain. Experimental results show that the above methods can further improve the

classification accuracy in new domains based on deep transfer learning.

1. Introduction

Question classification plays a vital role in the quality and
performance of the QA system, which can restrict answer
types, accurately locate and verify answers, and provide
information and conditions for the answer selection strat-
egy. For example, question “what differentiate between force
and momentum” is mainly about getting an answer about
science, rather than searching for social, economic, educa-
tional information. The answer should be consistent with the
category of the question, so it is only necessary to focus on
the “science” domain in the answer extraction stage. Early
question classification uses a rule-based method [1, 2],
attempting to match the question with manually defined
rules and high labor costs. Sangodiah et al. [3] proposed a
novel feature type based on taxonomy with a support vector
machine (SVM) to improve the accuracy of question clas-
sification for data sets having questions from various fields.
Silva et al. [4] combined a rule-based method with a machine
learning-based method.

The main problems with traditional classification
methods are as follows: the text representation having a high
latitude and a high sparseness, weak feature expression
ability, requirement of manual feature engineering, and high
cost. Deep learning automatically obtains features by using
CNN [5, 6], RNN [7, 8], LSTM [9, 10], and other network
structures, subtracts complicated artificial feature engi-
neering, and realizes an end-to-end solution. However, due
to the strong dependence of deep learning on manually
labeled data, it brings problems, such as insufficient training
data and a weak interpretability of the model. Moreover,
when deep learning models are used during NLP tasks, they
are all based on the fact that the training data and the test
data have a common feature space and the same data dis-
tribution and cannot meet the question classification in
different domains. Therefore, the question classification
model is constructed by the existing related source domains
to extract relevant shared knowledge, and it is applied in the
new domain to reduce the dependence on artificially labeled
data when constructing the question classification model in
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the new domain. Li et al. [11] proposed a novel approach
named topic correlation analysis (TCA), which extracts both
the shared and the domain-specific latent features to facil-
itate effective knowledge transfer.

Transfer learning is an effective solution for a scarcity of
labeled data, which entails transferring the related tasks and
knowledge of other scenes that have been mastered to new
scenes to adapt to new tasks and learn new knowledge. In
recent years, transfer learning has achieved substantial
growth in QA systems, such as question classification, se-
mantic analysis, and question-answer matching. In the
question classification scenario, we only consider domain
adaptation [12] with different domains, but it is still the same
task. Transferred component analysis (TCA) [13] attempts to
map the data of the source domain and the target domain in
reproducing kernel Hilbert space (RKHS) [14]. Then,
maximum mean discrepancy (MMD) is used to minimize
the distance between the two domains with an average
accuracy in the text classification experiment of 0.6865. Joint
distribution adaptation (JDA) [15] adapts the marginal
distribution and the conditional distribution of the source
and target domains at the same time, though the classifi-
cation effect is better than TCA.

Yosinski et al. [16] studied whether deep neural networks
can be transferred. They proposed a method to measure the
versatility and specificity of different layers of deep learning
networks to determine the degree of which the features of
the layer can transfer from one task to another. Howard and
Ruder proposed an efficient transfer learning method for any
task in NLP, which is the Universal Language Model Fine-
Tuning (ULMFIT) [17]. ULMFIT first pretrains the language
model (LM) and then fine-tunes the language model and
finally the classification task. Although ULMFIT can learn
the relationship between contexts, it cannot be parallelized,
which makes model training and inference difficult. A
transformer [18] models the context by self-attention, in-
creasing the speed of training and inference. Devlin et al.
[19] proposed a transformer encoder-based pretrained
model, BERT, which directly learns the contextual infor-
mation of the text. Additionally, it is more efficient and
captures longer-distance dependencies than RNN in 11
natural language processing tasks. In 2020, Zhen et al. [20]
proposed the ALBERT model to reduce memory con-
sumption and improve training speed.

The above transfer learning method extracts features
from the training text, ignoring the semantic information
provided by the text label. For example, the source domain
question set contains labels such as “sport” and “family,” and
these labels themselves carry semantic information [21-23].
Therefore, if we use the semantic information of these labels
for training the classifiers, we compare the semantic simi-
larity of the labels and the ask statements, before obtaining
an association of the two. Then, when extending the classifier
to the target domain where the classes are “culture” and
“society,” we can predict the association between the
questions and the labels while obtaining the semantic in-
formation of the target labels. This improves the accuracy of
the classification predictions for new categories in different
domains.
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Therefore, this study proposes inputting the question
text and the prediction category label containing semantic
information into ALBERT for fine-tuning and decomposing
the classification problems into general bi-classification
(true/false) to output true/false prediction results. We refer
to this as L-ALBERT-FiT (a question classification method
based on deep transfer learning and semantic information
features of category labels). Experimental results show that
the classification accuracy of L-ALBERT-FiT is improved by
approximately 3.73% compared to the BERT fine-tuning
model and approximately 5.92% compared to the ALBERT
fine-tuning model. Furthermore, we expand the synonyms
of the question dataset, increase the feature extraction and
further improve the classification accuracy of the question.
The accuracy of question classification is very important to
the overall performance of the question answering system.

Section 2 introduces the basics required for this study,
including deep transfer learning and labeling semantic in-
formation. Section 3 describes the question classification
method based on deep transfer learning and semantic in-
formation features of category labels. Section 4 verifies the
validity of the proposed model using comparative experi-
ments. Finally, a summary of the full text is presented.

2. Related Work

Pan et al. [13] applied TCA to domain adaptation (DA) and
implemented cross-domain text classification. TCA uses
MMD learning transfer components, making the data dis-
tribution similar in different domains in these transfer
components according to the distribution measure of RKHS
[14]. Subsequently, Long et al. [15] proposed JDA, which
gradually improves the accuracy of pseudo-labels by sam-
pling repeated iterations. Howard and Ruder [17] used the
language model AWD-LSTM [24] for transfer learning in
text classification. ULMFIT considerably outperforms CoVe,
oh-LSTM, Virtual, CNN, and DPCNN on six text classifi-
cation tasks, and the test error rate is the smallest. Akbik
et al. proposed Flair [25], a sequence tagging architecture
based on neural language modeling, which implemented a
series of classic NLP tasks (such as named entity recognition
(NER) and partial entities) and set up state-of-the-art
technology to score speech (POS tagging). Flair’s method of
extracting contextual string embedding from character-level
language models can be used to build text classifiers.
BERT [19], as a deep transfer model, uses a transformer as
the main framework to substitute word2vec for 11 NLP tasks,
such as text classification. The two steps of BERT’s work are
first to initialize the pretrained parameters and then to fine-
tune the parameters based on the data from the downstream
task. Different downstream tasks have their own fine-tuning
models. Chi Sun et al. [26] compared the performance of
different fine-tuning methods of BERT on text classification.
BERT’s pretraining objectives are autoencoding (AE), and in
the fine-tuning stage, without the MASK, it causes incon-
sistent pretraining and fine-tuning data, thus introducing
some human error. XLNet [27] uses the AR model to replace
the AE model, which solves the negative effects of the MASK.
Since the AR model is unidirectional and cannot predict
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targets based on context relationships, XLNet [27] uses all
possible permutations to maximize the expected log likeli-
hood of the factorization order of all possible sequences. For
noise reduction and automatic encoding preprocessing, BERT
performs better than XLNet. However, BERT ignores the
dependence between masked positions and has problems,
such as pre-fine-tuning differences, which XLNet can address
and overcome the limitations of BERT. In the experiments, it
was found that XLNet is more effective when reading com-
prehension tasks of long texts. BERT tends to expand the
model size when processing downstream tasks, and the
training time is lengthened due to processor memory limi-
tations. To solve these problems, Lan et al. proposed a
technology that reduces memory consumption and improves
BERT’s training speed-ALBERT [20]. ALBERT uses factor-
ization to reduce the number of parameters of the embedding
mapping module and shares the parameters between layers.
On the pretraining task, ALBERT strengthens the continuity
of the network learning sentences while removing dropout
layers. Dropout has a notable effect in preventing overfitting.
However, MLM is difficult to overfit. Removing dropout
layers can free up much memory occupied by temporary
variables, which improves the memory. Overall, ALBERT’s
contributions include improving parameter efficiency, im-
proving self-supervised learning tasks, increasing the capacity
of the model, and increasing the scale of the training data.

Traditional question classification methods ignore the
semantic information provided by natural language labels.
The class labels carry semantic information itself [21-23]. If
we want to extend the classifier to another class with only a
few training examples, we can use the semantics provided by
the category labels. Puri and Bryan [22] took the natural
language describing the classification task as an input and
the natural language answer was obtained after the model
was trained. Halder et al. [23] proposed a zero-shot learning
method, task-aware representation of sentences (TARS).
TARS factorizes any classification problem into a general
binary classification problem and injects the concept of the
task itself into the transformer model to preserve the two
abovementioned pieces of information and then improve the
classification effect. TARS has a higher classification accu-
racy rate in the domain of sentiment analysis but a lower
classification accuracy rate in question and topic types.
Zhang et al. [28] proposed a universal domain adaptation
method for fault diagnosis. The proposed method achieves
cross-domain fault diagnostics prediction without explicit
assumptions made on the target label set.

3. Methods

Given the strong generalization and feature extraction ca-
pabilities of deep transfer learning, this study proposes a
question classification method based on deep transfer
learning and semantic information features of category la-
bels, which consists of 3 parts.

3.1. Model Transfer. As shown in Figure 1, we first compose
all of the labels of the source domain and the target domain

into a label dictionary. The source domain question is used
to train the model and all of the labels in the label dictionary
are generated as one-to-one corresponding input tuples
<label, question>, and the tuples are input into the
L-ALBERT-FiT model. Second, the model extracts the se-
mantic information of the category label and compares the
semantic similarity of the label and the question to obtain the
relevance of the two. Then, when this classifier is extended to
the target domain for classification, we obtain the target
domain label’s semantic information under the premise, and
the relevance of the question and label can be predicted.
Finally, the L-ALBERT-FiT is fine-tuned with a small
amount of target domain data and the linear output layer of
the ALBERT is replaced with a TRUE/FALSE selection to
predict the question classification results. As a result, the
scarcity of the annotated questions for new domain cate-
gories could be solved.

As shown in Figure 1, L-ALBERT-FiT is trained on the
source domain and is fine-tuned in the target domain. We
input a few target domain samples into the pretrained model
and fine-tune part of the parameters of the model in the
process of retraining the model. Finally, the target domain
question was inputted to test the transferability of
L-ALBERT-FiT.

We generate a label dictionary with the class labels of the
source domain and the target domain to provide the label
dictionary to L-ALBERT-FiT as an additional input. This
means that we add the semantic information of the class
label to the question sentence while extracting the features of
questions and labels, before discovering the connection
between the labels and sentences. For example, as shown in
Figure 2, the label dictionary generated by the source and the
target domain contains the labels “sports”, “relationships”,
“computer”, and “finance”, and we enter the question “who
is the best football player in Europe to date?” into the model.
Then, the input data includes the questions and possible
labels, while the tuples are entered as follows: <“sports”,
“who is the best football player in Europe to date”> <“re-
lationships”, “who is the best football player in Europe to
date”> <“computer”, “who is the best football player in
Europe to date”> <“finance”, “who is the best football player
in Europe to date”>

For model training, we input one-to-one tuples that
correspond to the text and label dictionary and output
predictions labeled TRUE/FALSE.

We provide ALBERT with additional class label text
input. This requires ALBERT to understand the connection
between class labels and questions. We use sentence frag-
ments [29] to represent class labels and questions; we use
ALBERT’s special separator token [SEP] to add class labels
to the text. Since the input of ALBERT can be a single
sentence or a set of sentence pairs, as seen in Figure 2, to
preset the class label to the question, we treat the class label
as a sentence. The input text is in the format “[CLS] x1 [SEP]
x2 [SEP]”, where x1 represents the class label, x2 represents
the question, and [SEP] is used to separate the two inputs.
The [CLS] token is placed at the top of the first sentence, and
it can be used as a representation of the text classification for
subsequent classification tasks. Therefore, the input
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FIGURE 1: A macro flow chart of the training, transferring, and testing processes of the L-ALBERT-FiT model.

sequence is composed of the [CLS], the class label, [SEP], the
question, [SEP], and some tokens in the random MASK
questions.

L-ALBERT-FiT maps question (¢) to an M-dimensional
word embedding vector, where each dimension (i) corre-
sponds to label (y;). A tuple composed of text input is
provided, and the class label name corresponds to the (1)
function [23] as follows:

fitext — {0, 1}"ie, f(t) = P(y;|t)Vie {1...M}. (1)

In other words, we provide a tuple of <class labels,
question> as the input of L-ALBERT-FiT. The core model
architecture of L-ALBERT-FiT is a transformer encoder [18],
which includes a multihead attention layer for encoding text,
feed-forward layers for calculating nonlinear interlayer
features, and layer norms and residuals for deepening the
network depth, reducing training difficulty, and performing
positional encoding.

3.2. Training and Prediction. The backbone of the ALBERT’s
architecture is the multiheaded, multilayer transformer en-
coder. The encoder of each layer is composed of a mutihead-
attention mechanism and a feed-forward network.

In a transformer, the attention module repeats multiple
calculations in parallel. Each of these is called the head
attention. Then, this input sequence is passed through all of
the head attentions in the ALBERT. The [CLS] token
summarizes information from other tokens via the head
attention, which facilitates the intrinsic task of pretraining
and enabling the [CLS] token to be further optimized while
fine-tuning downstream tasks. The representation of the

[CLS] token in the final layer is used as a label-dependent
representation of the input question.

In Figure 3(a), the transformer encoder converts the
inputs into embeddings, and positional encoding obtain the
vector X from embeddings, input the X to the multi-head
attention layer. In the multihead attention layer, self-at-
tention helps the current node not only focus on the current
word but also obtain the semantics of the context. For the
input question, we need to enhance the semantic vector
representation for each word separately; therefore, we used
each word as a query and weighted the semantic information
of all the words to get the enhanced semantic vector for each
word. In this case, the vector representations of query, key,
and value all come from the same input question, so the
attention mechanism of multihead attention layer is also
called self-attention. First, self-attention learns a weight for
each word of the input vector X, maps it to the query (Q), key
(K), and value (V) vector, and then calculates a weighted
feature matrix by scaled dot-product attention in
Figure 3(b), as follows [18]:

T
Attention (Q, K, V) = softmax(g )V, (2)

Vi

where the input dimensions of key and value are dgand d,.
In order to stabilize the gradient, the transformer uses score
normalization, which is divided by +/d), and the softmax
activation function to obtain the weight of the value. As
shown in Figure 3(b), the multihead attention means that the
self-attention is repeatedly calculated h times in parallel.
Finally, h heads can obtain h attention pooling outputs,
concat them together, and pass a linear mapping (W©) again
to obtain the final output [18] as follows:
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FiGURE 2: L-ALBERT-FiT architecture.

MultiHead (Q, K, V) = Concat( head |, ..., head h)WO,
wherehead; = Attention(QWlQ, KWK, VWY)
(3)

Parameter matrices are W € Rtmoaer*dx WK € Rmoaaxds,
W/ € RtmoaerXdv and WO € Rhv>dmoae - All sublayers in the
model and the embedding layer produce a dimensionality
output as d, 4. Then, the refined vector obtained by
multihead attention is projected to a higher-dimensional

space through the feed-forward layer, making it easier to
extract the desired information.

As seen in the previous description, when many em-
beddings are input, the output has the same number of
embeddings; then, we can call the output a hidden vector.
When performing a specific NLP task, we only need to take
the corresponding hidden vector as the output. The ad-
vantage of this is that multiple groups can be calculated in
parallel, and different groups can capture information in
different subspaces.
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FiGure 3: (a) Transformer-encoder architecture. (b) Multihead attention architecture.

Finally, we use the softmax function to form a proba-
bility distribution divided into two categories, namely,
TRUE/FALSE. We use TRUE/FALSE to replace ALBERT’s
linear layer, assuming that the ith label y; is the true value of
the jth question ¢; label, then the output is (<label (y;), t;>,
TRUE), otherwise, the output is (<label (y;), t;>, FALSE) to
train the predictability of the model. Assuming that there are
M class labels in the class label dictionary, we fill in all of the
possible tuples and obtain the TRUE/FALSE prediction of M
groups through the L-ALBERT-FiT model as follows:

7 = argmax (label (y;), x). (4)
kel..M

If the label matches the question, the output is true;

otherwise, the output is false. Each output corresponds to a

label, and the prediction result is as follows: < “sports”, “who

is the best football player in Europe to date” > -> TRUE. <

“relationships”, “who is the best football player in Europe to

SIS

date”> -> FALSE. < “computer”, “who is the best football
player in Europe to date”> -> FALSE. < “finance”, “who is
the best football player in Europe to date”> -> FALSE.

The model obtains the semantic information of all of the
category labels in the label dictionary, compares the weights of
the labels and questions, and calculates the semantic similarity
of the two to obtain the relevance of the two. Then, when this
classifier is extended to the target domain for classification, on
the premise that we know the semantic information of the
labels in the target domain, we can predict the similarity based
on the weight of the question and the label.

4. Experiment Results and Discussion

4.1. Experimental Setup. Our model adopts the Flair
framework with 12 repeated layers, the initial word em-
bedding dimension is 128, the hidden dimension is 768, the
attention-head is 12, and the parameter size is 11 M. The
mini batch size is 1, the maximum number of epochs is 15,
and each batch is performed for 110 iterations. We use a
maximum batch size of 4 to update the parameters. We used
the Adam optimizer to optimize the objective function with
an initial learning rate of 0.001.

4.2. Experimental Data. The dataset is the Yahoo! Answers
dataset [30]. The fields of this dataset include question title,
question content, and best answer. The title has 10 categories
(Society and Culture, Science and Mathematics, Health,
Education and Reference, Computers and Internet, Sports,
Business and Finance, Entertainment and Music, Family and
Relationships, Politics and Government), each category
contains 140,000 training samples and 5,000 test samples,
and the dataset itself contains more than 4 million Q&A
pairs. We divide the dataset into 5 different domains by
different category labels, each containing two categories of
questions.

We artificially set the source domain and the target
domain. The source domain is used to train models and the
target domain is used for testing and evaluation. We ex-
periment with different models on different domains,
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including employing A as the source domain and B as the
target domain for cross-domain question classification. Each
model performs 5 sets of classification experiments. We
randomly select 5000 source domain data points as the
training set, 500 source domain data points as the devel-
opment set (used by some models), and 2000 target domain
data points as the test set.

4.3. Evaluation Index. The effectiveness of the proposed
method is measured by calculating the following metrics:
accuracy, which are the most common metrics measurement
in question classification. We measure the question classi-
fication performance by the accuracy values defined as
follows:

# Correctly classifie d questions

(5)

accuracy =
Y ¥ Total number of questions

4.4. Method and Results

4.4.1. Traditional Nontransfer Machine Learning for Cross-
Domain Question Classification. In 1998, support vector
machines (SVM) [31] were a binary classification model that
was a discriminant classifier formally defined by the sepa-
rated hyperplane. In other words, given labeled training data
(supervised learning), the algorithm output an optimal
hyperplane to classify new examples. Its basic model was
defined as the linear classifier with the largest interval in the
feature space, and its learning strategy was to maximize the
interval, which could eventually be converted into the so-
lution of a convex quadratic programming problem.

In 1967, Cover and Hart formally introduced the
K-nearest neighbor (KNN) algorithm [32], and KNN was a
nonparametric supervised classification model. It could
assign labels based on calculating the distance from k
training samples to the query point. In the classification
stage, k was a user-defined constant. A vector without
category labels (query or test point) would be classified as the
most frequently used class of the k sample points closest to
the point.

Thomas Bayes proposed Bayes’ theorem [33], which
describes the probability of an event based on prior
knowledge of the event. This can be calculated as follows:

P(ANB) P(A)-P(B|A)

P(A]B) = P(B) P(B)

(6)

It is assumed that the occurrence of each word in the text
is independent. The text classification problem based on
such assumptions can be solved by the naive Bayes method.

Table 1lists the accuracy of three traditional machine
learning classifiers that directly perform question classifi-
cation in the target domain after the source domain training
is completed (%, keep 2 digits after the decimal point).
Among these, AVG-T represents the average classification
accuracy%. We took 5,000 questions from each domain and
performed the experiments as the training set (source do-
main) and the test set (target domain).

TaBLE 1: The accuracy of the traditional nontransfer machine
learning classifier in the target domain question classification (%).

Model A->B  A->C A->D B->E B->A AVG
SVM 49.94 50.62 53.92 76.88 60.32 58.34
KNN 50.52 51.60 45.36 77.48 50.26 55.04
Bayes 53.02 54.94 48.22 78.44  57.08 58.34
AVG-T 51.16 52.39 49.17 77.60 55.89 57.24

TaBLE 2: The domain division of the experimental dataset.

Domain Category 1 Category 2
A Society Science

B Computers Business

C Health Politics

D Education Entertainment
E Sports Relationships

Traditional question classification methods do not use
transfer learning and directly use the source domain-trained
classifier to classify the target domain questions. As seen
from Table 2, SVM, Bayes, and KNN have poor classification
effects on the target domain, and the average accuracy is only
57.24%, far from meeting the requirements of cross-domain
question classification.

4.4.2.  Transfer  Learning  Cross-Domain  Question
Classification. To assess the ability of nontransfer versus
transfer learning in different domains, we perform the
following experiments. We report the classification accuracy
of different transfer schemes on target domains. Under the
above experimental conditions, we perform cross-domain
question classification experiments on several common
traditional transfer learning models and deep transfer
learning models, while the model parameters restore the
settings in their baseline articles when the number of JDA
iterations is set to 15.

Table 3 lists the accuracies of the 2 traditional and 5 deep
transfer models on cross-domain question classification
(retaining the top 2 after the decimal point). Among them,
AVG-T represents the average classification accuracy rate of
the traditional classifier. AVG-TT represents the average
classification accuracy rate of the traditional transfer clas-
sifier. AVG-DT represents the average classification accuracy
rate of the deep transfer classifier.

As seen in Figure 4, the nontransfer machine learning
classifier performs the worst in the 4 sets of classification
experiments, and the traditional transfer classifier is slightly
better. In the experiment with source domain B and target
domain E, the opposite is true, indicating that the im-
provement of question classification accuracy in a traditional
transfer is limited. When the semantic distances of the
source domain and the target domain are close, a traditional
transfer cannot continue to bring better improvement effects
to question classification. Compared with the traditional
transfer model, the deep transfer classifier has an average
increase of 13.39 percentage points, and the experimental
results are stable, which has a considerable improvement
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Model A->B A->C A->D B->E B->A AVG
AVG-T 51.16 52.39 49.17 77.60 55.89 57.24
Traditional transfer TCA 55.02 51.42 49.02 75.36 57.14 57.59
JDA 55.44 55.00 49.28 73.60 63.76 59.42
AVG-TT 55.23 53.21 49.15 74.48 60.45 58.50
ULMFIT 63.68 63.66 52.50 83.58 66.14 65.91
Flair 64.74 58.81 56.52 87.44 61.63 65.83
Deep transfer XLNet 74.80 71.90 64.20 87.30 70.90 73.82
BERT 77.30 77.20 68.40 92.40 74.90 78.04
ALBERT 73.64 77.08 65.62 90.70 72.21 75.85
AVG-DT 70.83 69.73 61.45 88.28 69.16 71.89
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FIGURE 4: The average classification accuracy of multiple non-
transfer machine learning, transfer learning, and deep transfer
learning classification models in the above 5 sets of cross-domain
question classification experiments.

effect in different group experiments. Therefore, we can
conclude that the application of transfer learning effectively
improves the accuracy of cross-domain question
classification.

Figure 5 visually reflects the question classification effect
of different deep transfer learning classification models on
our dataset. According to Figure 5, the BERT and ALBERT
models have the highest accuracy in question classification
and similar results, while BERT’s effect is slightly better than
ALBERT’s. However, Lan et al. [20] compared the perfor-
mance of the BERT and ALBERT models of different scales
in different NLP downstream tasks. Even though the pa-
rameter amount of the ALBERT-xxlarge is much smaller
than that of the BERT-large, and ALBERT’s F-score grad-
ually increases as the scale increases. As the BERT model
increases, this causes the return of NLP to degrade. It is
concluded that ALBERT is faster and more effective than
BERT when using fewer parameters.

4.5. L-ALBERT-FiT. The experiments use the Flair frame-
work with 12 repeat layers, embedding dimensions of 128,
hidden dimensions of 768, attention heads of 12, and 11 M

Figure 5: The classification accuracy of multiple deep transfer
learning classification models in the above 5 sets of cross-domain
question classification experiments.

parameters. The maximum number of epochs is 20, and each
batch performs 110 iterations. We use the max batch size of 4
to update the parameters to optimize the objective function.

We compare L-ALBERT-FiT with the following two
baselines:

(i) BERT-BASE-V2: we pretrain and fine-tune the
pretrained BERT model according to the above
datasets and test the model in the target domain.

(ii) ALBERT-BASE-V2: it is a BERT variant, which we
similarly pretrain and fine-tune, before testing the
model in the target domain.

To compare the performance of the model itself, we
select the average of 10 experiments.

The classification performance of L-ALBERT-FiT fluctu-
ates in different domains, which may be related to the simi-
larity between different domains and the number of features
extracted, but the overall experimental results are improved. In
Table 4, we can see that compared with the ALBERT-fine-tune
model, the accuracy rate of L-ALBERT-FiT is improved by
approximately 6%, which is approximately 3.7% higher than
that of BERT-fine-tune. Intuitively, L-ALBERT-FiT improves
cross-domain question classifications.
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TaBLE 4: The accuracy of L-ALBERT-FiT, ALBERT-fine-tune, and BERT-fine-tune in cross-domain question classification (%).
Model A->B A->C A->D B->E B->A AVG
BERT-FiT 77.30 77.20 68.40 92.40 74.90 78.04
ALBERT-FiT 73.64 77.08 65.62 90.70 72.21 75.85
L-ALBERT-FiT 80.76 81.68 72.08 95.56 78.77 81.77

Learning rates (Ir) are perhaps the most important
hyper-parameters to tune for training neural networks. We
also experimented the classification effect of L-ALBERT-FiT
transferred from source domain A to target domain B with
different learning rates and then detailed the impact of Ir on
model performance. The experiment was performed for 15
epochs, and the experimental results are listed in Table 5.

Figure 6 shows the convergence of the loss function
whenIr = 0.001 and Ir = 0.01. Figure 6(b) represents that the
loss converges quickly and drops to a very low value when
Ir > 0.01, so it is speculated that the model may be in a state
of overfitting. However, the loss converges tend to be
smooth when the learning rate is 0.001.

It shows that when the initial learning rate is lower than
0.001, the training accuracy of the model is low, indicating
that the model has not been trained and the model is
underfitting. When the learning rate is greater than 0.001, the
learning rate is too large, the loss convergence speed is fast and
decreases very low, and the test accuracy rate is reduced. At
this time, the model may be overfitting. Therefore, we chose
Ir = 0.001 as the learning rate of the model.

4.6. Text Expansion. As a short text, questions contain fewer
keywords, and the extracted features are limited, which is
not conducive to NLP downstream tasks. Traditional NLP
data augmentation [34-36] techniques include synonym
substitution, back translation, text surface conversion, noise
addition, and cross-expansion methods, which are dedicated
to allowing machines to automatically generate text data and
obtain more training data. Zhang and Li [37] introduced a
federal initialization stage to keep similar data structures in
distributed feature extractions, and a federated communi-
cation stage is further implemented using deep adversarial
learning. In the data feature extraction stage, the word
volume of each question in the dataset is expanded without
changing the meaning of the question, enabling the model to
extract more text features, thereby improving the classifi-
cation accuracy.

Considering the characteristics of short text, increasing
the number of data items does not meet the training ob-
jective, so we expand each piece of data. We randomly select
50% of the words except stop words in the question as the
core words, then randomly select a synonym [38] corre-
sponding to the core word from WordNet [39], and insert
random positions in the original sentence with the aug-
mented sentence.

As seen in Table 6, the meaning of the expanded question
does not change, but the length of each question is increased.
We use the above preprocessed dataset to train on the
L-ALBERT-FiT model, and the experimental results are
obtained.

TaBLE 5: The accuracy of L-ALBERT-FiT, ALBERT-fine-tune, and
BERT-fine-tune in cross-domain question classification (%).

Learning rate Train acc. (%) Test acc. (%)

0.0001 93.73 67.18
0.0003 92.23 80.16
0.0005 87.11 84.7
0.0007 93.05 81.26
0.001 94.68 80.76
0.005 94.1 74.88
0.01 93.66 77.76
0.02 91.82 68.84

It can be seen in the above table that text expansion in the
4 experimental groups makes a considerable improvement
in the classification effect of the target domain, indicating
that inserting synonyms in the question can effectively
expand the length of the text and extract more features, thus
achieving a better classification effect.

The principle of L-ALBERT-FiT is to compare the
similarity between the word embedding of the input
question and the word embedding of the category label. The
core words and question categories are highly related, but
the importance of the same word is different for different
categories of questions. Therefore, the synonym expansion
of questions can increase the similarity between questions
and labels.

For example, the core word of the question “what makes
friendship click does spark keep going” before expansion is
“friendship,” and the category label of the question is “re-
lationship.” After the text is expanded, the question becomes
“what makes friendship click make how does perish make
the die spark keep friendly relationship going,” core words
such as “relationship” and “friendly” are added. At this time,
the core words of the question are closer to the label, and the
similarity is higher, so the classification accuracy is higher in
Table 7.

Beyond that, this method introduces a certain amount of
noise to prevent overfitting, and expanding the synonym to
the source domain, the model can be well extended to ar-
bitrary unseen target domains.

However, in the experiment with source domain B and
target domain E, the accuracy does not increase; it decreases
probably because the model has achieved an extremely high
accuracy in the experimental group and may introduce some
interference if the text is extended. For example, the possible
polysemy problem of the core word, which causes the
question to introduce ambiguous information, or the noise
of WordNet itself when the question inserts the near sense
word, interferes with the prediction of the model.

Due to the polysemy problem of the core word, for long
text, core words undertake contextual context as high-
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FIGURE 6: Convergence of loss as epoch increases under different learning rates. (a) Learning rate=0.001. (b) Learning rate =0.01.

TaBLE 6: Contrast before and after expansion of the question text.

Category label Before text expansion

After text expansion

What makes friendship click does spark keep What makes friendship click make how does perish make the die spark

lationshi - : . o
Relationships going keep friendly relationship going
Reciprocal comprise how do unregenerate i download road runner

Computer How download road runner custom browser hoosier state incorporate custom browser software my father

P software father stubborn call support unregenerate in law is stubborn he begetter won t incorporate call

comprise support
. What best old school song ever created must What is the mustiness best old school strike rap mustiness song ever

Entertainment

1994 earlier

created strike civilize must be chance on strike and earlier

TABLE 7: Accuracy (%) for cross-domain question classification on
the L-ALBERT-FiT model before and after dataset expansion.

Model A>B A>C A->D B->E B->A
Before expansion ~ 80.76 81.68 72.08 9556  78.77
After expansion 87.95 90.50 80.25 94.55  80.11

frequency words, which can greatly avoid interference due to
ambiguity. However, long texts are not better for predicting
than short texts. In this experiment, we extract the label
information as input, which makes the core word of each
question only belong to one category in theory, but in the
real environment under these circumstances, noise inter-
ference is inevitable.

Therefore, we conclude that when the classification
accuracy rate is relatively low, the introduction of synonyms
has a considerable improvement effect on the cross-domain
classification accuracy, and if the accuracy has reached a
high value, the noise caused by text expansion will instead
reduce the classification accuracy.

5. Conclusions

In this article, we verify the effect of transfer learning on cross-
domain question classification and propose a deep transfer
learning cross-domain question classification method that
extracts the semantic information of class labels, which
achieves strong classification results. Entering one-to-one
tuples of all labels and questions when training their similarity

to labels causes a problem; the model greatly increases the
amount of input data and increases the computational cost.
When the target domain categories are unevenly distributed,
the experimental recall is low, and the model performs poorly,
which may be caused by ALBERT due to internal parameter
sharing. Moreover, due to environmental conditions, we use
the ALBERT-base-v2 version in the experiment, and cur-
rently, there is a larger ALBERT model version, as well as a
version for the Chinese NLP task. Future work will begin to
solve the problem with computational load and model in-
stability to further improve the experiment. In addition, we
will use a larger-scale ALBERT model to further improve the
model’s reasoning ability and classification effect.
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