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This paper studies a modified human immunodeficiency virus (HIV) infection differential equation model with a saturated
infection rate. It is proved that if the basic virus reproductive number 𝑅

0
of the model is less than one, then the infection-free

equilibrium point of the model is globally asymptotically stable; if 𝑅
0
of the model is more than one, then the endemic infection

equilibrium point of the model is globally asymptotically stable. Based on the clinical data from HIV drug resistance database of
Stanford University, using the proposed model simulates the dynamics of the two groups of patients’ anti-HIV infection treatment.
The numerical simulation results are in agreement with the evolutions of the patients’ HIV RNA levels. It can be assumed that if an
HIV infected individual’s basic virus reproductive number 𝑅

0
< 1 then this person will recover automatically; if an antiretroviral

therapymakes an HIV infected individual’s 𝑅
0
< 1, this person will be cured eventually; if an antiretroviral therapy fails to suppress

an HIV infected individual’s HIV RNA load to be of unpredictable level, the time that the patient’s HIV RNA level has achieved the
minimum value may be the starting time that drug resistance has appeared.

1. Introduction

The human immunodeficiency virus (HIV) mainly targets a
host’s CD4

+ T cells. Chronic HIV infection causes gradual
depletion of the CD4

+ T cell pool and thus progressively
compromises the hosts immune response to opportunistic
infections, leading toAcquired Immunodeficiency Syndrome
(AIDS) [1].

In recent years, there is much work done on HIV
infection from different points of view, such as pathology
[2], microbiology [3], and mathematics [4–7]. Mathematical
models have become essential tools to make assumptions,
suggest new experiments, or help easily explain complex
processes [8]. The basic mathematical model widely used for
studying the dynamics of HIV infection has the following
form [4, 9]:

𝑥̇ = 𝜆 − 𝑑
1
𝑥 − 𝑘
1
𝑥V,

̇𝑦 = 𝑘
1
𝑥V − 𝑑

2
𝑦,

V̇ = 𝑎𝑦 − 𝑑
3
V,

(1)

where 𝑥(𝑡), 𝑦(𝑡), and V(𝑡) are the number of uninfected cells,
infected cells, and free virus, respectively. Uninfected cells are
produced at a constant rate 𝜆, die at rate 𝑑

1
𝑥, and become

infected at rate 𝑘
1
𝑥V. Infected cells are produced at rate 𝑘

1
𝑥V

and die at rate 𝑑
2
𝑦. Free virus is produced from infected cells

at rate 𝑎𝑦 and dies at rate 𝑑
3
V.

Equation (1) has a basic virus reproductive number 𝑅
0
=

𝑎𝑘
1
𝜆/(𝑑
1
𝑑
2
𝑑
3
). According to Nowak and Bangham [4], 𝑅

0
is

defined as the number of newly infected cells arising from any
one infected cell; if 𝑅

0
is smaller than 1, then in the beginning

of the infection, each virus infected cell produces on average
less than one newly infected cell. Thus, the infection cannot
spread, and the system returns to the uninfected state; if 𝑅

0
is

larger than 1, then initially each virus infected cell produces
on average more than one newly infected cell. The infected
cell populationwill increase, whereas the uninfected cell pop-
ulationwill decline and therefore provide less opportunity for
the virus to infect new cells.

There is a discussion about the process of the HIV RNA
transcribing intoDNA: when anHIV enters a resting CD4

+ T
cell, the HIV RNAmay not be completely reverse transcribed
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into DNA [10]. A proportion of resting infected cells can
revert to the uninfected state before the viral genome is
integrated into the genome of the lymphocyte [11].

Recently, some mathematical models of HIV infection
have been proposed based on the assumption that a fraction
of infected CD4

+ T cells return to the uninfected class [12–
14]. Srivastava and Chandra [13] have considered a model
with three populations: uninfected CD4

+ T cells (𝑥), infected
CD4
+ T cells (𝑦), and HIV population (V). Themodel has the

following form:

𝑥̇ = 𝜆 − 𝑑
1
𝑥 − 𝑘
1
𝑥V + 𝑝𝑦,

̇𝑦 = 𝑘
1
𝑥V − (𝑑

2
+ 𝑝) 𝑦,

V̇ = 𝑎𝑦 − 𝑑
3
V,

(2)

where the meanings of the variables 𝑥(𝑡), 𝑦(𝑡), and V(𝑡) and
the parameters 𝜆, 𝑑

1
, 𝑘
1
, 𝑑
2
, 𝑎, and 𝑑

3
are the same as those

given in (1). The term 𝑝𝑦 is the rate of infected cells in the
latent stage reverting to the uninfected class. Equation (2) also
has a basic virus reproductive number 𝑅

0
= 𝑎𝑘
1
𝜆/(𝑑
3
𝑑
1
(𝑝 +

𝑑
2
)).They have proved that if𝑅

0
≤ 1, the infection-free steady

state of (2) is globally asymptotically stable; if 𝑅
0

> 1, the
endemic steady state of (2) is globally asymptotically stable
[13].

In (2), the mass action term 𝑘
1
𝑥V used to model infection

of CD4
+ T cells by free virions is biologically problematic

for several reasons. Firstly, since 𝜆/𝑑
1
represents the total

number of CD4
+ T cells in the basic virus reproductive

number 𝑅
0
= 𝑎𝑘
1
𝜆/(𝑑
3
𝑑
1
(𝑝 + 𝑑

2
)), this causes 𝑅

0
to depend

upon the total number of CD4
+ T cells in vivo. This implies

the dubious prediction that individuals with more CD4
+ T

cells will be more easily infected than individuals with less
CD4
+ T cells. Secondly, the rate of HIV infection is assumed

to be bilinear by the mass action term 𝑘
1
𝑥V. However, the

actual incidence rate is probably not linear over the entire
range of virus V(𝑡) and uninfected CD4

+ T cells 𝑥(𝑡) [15–17].
On biological grounds, during primary HIV infection,

the rate of virus infection should be approximately propor-
tionate to the virus load 𝑘

1
V because of a small amount of

viral load with respect to a large number of CD4
+ T cells.

However,since the total number of healthy CD4
+ T cells in

vivo is limited, the HIV infection will approach saturation
with more and more virus produced. In this case, it is more
reasonable to assume that the rate of virus infection should be
approximately proportionate to the number of healthy CD4

+

T cells 𝑘
1
𝑥.

Based on the argument above, this paper describes an
amended model. In this model, we use a saturated infection
rate 𝑘

1
𝑥V/(𝑥 + V) to replace the mass action term 𝑘

1
𝑥V in

(2). Under the formulation of this saturated infection rate,
the basic virus reproductive number 𝑅

0
is independent of the

total number of CD4
+ T cells. Meanwhile, the actual inci-

dence rate is not linear over the entire range of virus V(𝑡) and
uninfected CD4

+ T cells 𝑥(𝑡) any more. The global stabilities
of the infection-free state and the endemic infection state
of the modified HIV infection model have been discussed.
Based on the clinical data fromHIV drug resistance database
of Stanford University, using the proposed model simulates

the dynamics of two groups of patients’ anti-HIV infection
treatment, and then make long-term predictions for the two
groups’ anti-HIV infection treatment, respectively.

The rest of this paper is organized as follows. Section 2
introduces a modified model and discusses the boundedness
of the solutions of the model. Sections 3 and 4 discuss the
global stability of the infection-free state and the endemic
infection state of the modified HIV infection model, respec-
tively. Section 5 simulates the dynamics of two groups of
patients’ anti-HIV infection treatment. Section 6 summarizes
this paper.

2. Modified HIV Infection Model

2.1. The Modified HIV Infection Model. Based on (2), our
modified HIV infection model has the following form:

𝑥̇ = 𝜆 − 𝑑
1
𝑥 −

𝑘
1
𝑥V

𝑥 + V
+ 𝑝𝑦,

̇𝑦 =
𝑘
1
𝑥V

𝑥 + V
− (𝑑
2
+ 𝑝) 𝑦,

V̇ = 𝑎𝑦 − 𝑑
3
V,

(3)

where the meanings of the variables 𝑥(𝑡), 𝑦(𝑡), and V(𝑡) and
the parameters 𝜆, 𝑑

1
, 𝑘
1
, 𝑑
2
, 𝑝, 𝑎, and 𝑑

3
are the same as

those given in (2). Equation (3) has two steady states:

(1) The infection-free steady state

𝑄
1
= (𝑥
0
, 0, 0) (4)

represents the virus infection free. 𝑄
1

is called
infection-free equilibrium point. Here,

𝑥
0
=

𝜆

𝑑
1

. (5)

(2) The endemic infected steady state

𝑄
2
= (𝑥, 𝑦, V) (6)

represents persistent virus infection. 𝑄
2
is called

endemic infection equilibrium point. Here,

𝑥 =
𝜆𝑅
0

𝑘
1
(𝑅
0
− 1) + 𝑑

1
𝑅
0
− 𝑝 (𝑅

0
− 1) 𝑅

0
(𝑑
3
/𝑎)

,

𝑦 =
𝑑
3

𝑎
(𝑅
0
− 1) 𝑥, V =

𝑎𝑦

𝑑
3

= (𝑅
0
− 1) 𝑥.

(7)

Here,

𝑅
0
=

𝑎𝑘
1

𝑑
3
(𝑑
2
+ 𝑝)

. (8)

Since the total rate of disappearance of infected cells is 𝑑
2
+𝑝,

infected cells live on average for time 1/(𝑑
2
+𝑝). Each infected

cell produces virus at rate 𝑎.Thus, each infected cell produces
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on average a total of 𝑎/(𝑑
2
+ 𝑝) viruses. Since virus dies at

rate 𝑑
3
per virion, each virus survives on average for time

1/𝑑
3
. During the time 1/𝑑

3
, each virus infects on average

𝑘
1
𝑥
0
/(𝑥
0
+ V
0
)𝑑
3
cells, where 𝑥

0
and V
0
are the preinfection

target cells’ density and viruses’ density, respectively. Thus,
the total number of cells infected by the 𝑎/(𝑑

2
+ 𝑝) viruses is

𝑎𝑘
1
𝑥
0
/(𝑥
0
+V
0
)𝑑
3
(𝑑
2
+𝑝). According to (4) and (5), 𝑥

0
= 𝜆/𝑑

1

and V
0

= 0 at the preinfection steady state. Then one can
obtain that the total number of cells infected by each infected
cell is 𝑎𝑘

1
/𝑑
3
(𝑑
2
+𝑝). Hence,𝑅

0
is the basic virus reproductive

number of (3) which is independent of the total number of
the uninfected CD4

+ T cells.
According to (4), (6), and (7), if 𝑅

0
≤ 1, then 𝑄

1
is the

unique infection-free equilibrium point; if 𝑅
0

> 1, then,
in addition to the infection-free equilibrium point, (3) has
another equilibrium point 𝑄

2
.

2.2. Boundedness of Solutions. It is easy to show that the
solutions of (3) with initial conditions 𝑥(0) > 0, 𝑦(0) > 0,
and V(0) > 0 have all positive components for 𝑡 > 0. Hence,
one begins the analysis of (3) by observing the nonnegative
octant

𝐷 = {(𝑥, 𝑦, V) ∈ 𝑅
3

+
: 𝑥 ≥ 0, 𝑦 ≥ 0, V ≥ 0} . (9)

According to the first two equations of (3), one can get

𝑥̇ + ̇𝑦 = 𝜆 − 𝑑
1
𝑥 − 𝑑
2
𝑦 ≤ 𝜆 − 𝑑 (𝑥 + 𝑦) ,

𝑑 = min (𝑑
1
, 𝑑
2
) ,

(10)

and then

𝑥 + 𝑦 ≤
𝜆

𝑑
. (11)

So 𝑥(𝑡) and 𝑦(𝑡) are bounded. From the last equation of (3),
it follows that

V̇ = 𝑎𝑦 − 𝑑
3
V ≤

𝑎𝜆

𝑑
− 𝑑
3
V, (12)

and then

V ≤
𝑎𝜆

𝑑𝑑
3

. (13)

So V(𝑡) are bounded. Hence there is a bounded subset of 𝐷:

Ω = {(𝑥, 𝑦, V) ∈ 𝑅
3

+
: 0 ≤ 𝑥 + 𝑦 ≤

𝜆

𝑑
, 0 ≤ V ≤

𝑎𝜆

𝑑𝑑
3

} (14)

such that any solution trajectory (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) of (3) with
initial value (𝑥(0), 𝑦(0), V(0)) in Ω will keep in the subset Ω.

According to (7), 𝑥 > 0, 𝑦 > 0, and V > 0. One can get
that the endemic infection equilibrium point 𝑄

2
exists in the

interior of Ω:

Ω
0
={ (𝑥, 𝑦, V) ∈ Ω : 0 < 𝑥, 0 < 𝑦, 0 < 𝑥 + 𝑦 <

𝜆

𝑑
,

0 < V <
𝑎𝜆

𝑑𝑑
3

} .

(15)

Therefore, the stability of the endemic infection equilibrium
point 𝑄

2
only needs to be discussed in Ω

0.

3. Stability of the Infection-Free Equilibrium
Point 𝑄

1

In this section, we discuss locally asymptotical stability and
globally asymptotical stability of the infection-free equilib-
rium point 𝑄

1
of (3).

3.1. Locally Asymptotical Stability of the Infection-Free
Equilibrium Point 𝑄

1

Theorem 1. If 𝑅
0
= 𝑎𝑘
1
/(𝑑
3
(𝑑
2
+ 𝑝)) < 1, then the infection-

free equilibrium point 𝑄
1
of (3) is locally asymptotically

stable. If 𝑅
0
> 1, then the infection-free equilibrium point𝑄

1
is

unstable.

Proof. The Jacobi matrix of (3) at an arbitrary point is given
by

𝐽 (𝑥, 𝑦, V) = [

[

−𝑑
1
− 𝑎
1

𝑝 −𝑎
2

𝑎
1

−𝑝 − 𝑑
2

𝑎
2

0 𝑎 −𝑑
3

]

]

, (16)

where 𝑎
1
= 𝑘
1
V2/(𝑥 + V)2 and 𝑎

2
= 𝑘
1
𝑥
2
/(𝑥 + V)2.

Substituting the equilibrium point 𝑄
1
into matrix (16)

gives

𝐽
𝑄
1

= [

[

−𝑑
1

𝑝 −𝑘
1

0 −𝑝 − 𝑑
2

𝑘
1

0 𝑎 −𝑑
3

]

]

. (17)

The corresponding eigenequation is

󵄨󵄨󵄨󵄨󵄨
𝜆𝐸 − 𝐽

𝑄
1

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆 + 𝑑
1

−𝑝 𝑘
1

0 𝜆 + 𝑝 + 𝑑
2

−𝑘
1

0 −𝑎 𝜆 + 𝑑
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (18)

Solving

󵄨󵄨󵄨󵄨󵄨
𝜆𝐸 − 𝐽

𝑄
1

󵄨󵄨󵄨󵄨󵄨
= (𝜆 + 𝑑

1
) [(𝜆 + 𝑝 + 𝑑

2
) (𝜆 + 𝑑

3
) − 𝑎𝑘

1
] = 0

(19)

gives

𝜆
1
= −𝑑
1
< 0, (20)

(𝜆 + 𝑑
2
+ 𝑝) (𝜆 + 𝑑

3
) − 𝑎𝑘

1
𝑘
3
= 0. (21)

Equation (21) can be written as

𝜆
2
+ (𝑑
2
+ 𝑝 + 𝑑

3
) 𝜆 + 𝑑

3
(𝑝 + 𝑑

2
) − 𝑎𝑘

1
= 0. (22)



4 Computational and Mathematical Methods in Medicine

Solving equation (22) gives

𝜆
2

=

− (𝑑
2
+ 𝑝 + 𝑑

3
) − √(𝑑

2
+ 𝑝 + 𝑑

3
)
2

− 4 [𝑑
3
(𝑝 + 𝑑

2
) − 𝑎𝑘

1
]

2

=

− (𝑑
2
+ 𝑝 + 𝑑

3
) − √(𝑑

2
+ 𝑝 + 𝑑

3
)
2

− 4𝑑
3
(𝑝 + 𝑑

2
) (1 − 𝑅

0
)

2
,

𝜆
3

=

− (𝑑
2
+ 𝑝 + 𝑑

3
) + √(𝑑

2
+ 𝑝 + 𝑑

3
)
2

− 4 [𝑑
3
(𝑝 + 𝑑

2
) − 𝑎𝑘

1
]

2

=

− (𝑑
2
+ 𝑝 + 𝑑

3
) + √(𝑑

2
+ 𝑝 + 𝑑

3
)
2

− 4𝑑
3
(𝑝 + 𝑑

2
) (1 − 𝑅

0
)

2
.

(23)

If 𝑅
0

< 1, then 𝜆
2

< 0 and 𝜆
3

< 0. Hence the infection-
free equilibrium point 𝑄

1
is locally asymptotically stable. If

𝑅
0
> 1, then 𝜆

3
> 0 such that the infection-free equilibrium

point 𝑄
1
is unstable.

3.2. Globally Asymptotical Stability of the Infection-Free
Equilibrium Point 𝑄

1

Theorem 2. If 𝑅
0

< 1, then the infection-free equilibrium
point 𝑄

1
of (3) is globally asymptotically stable in Ω.

Proof. Define a global Lyapunov function by

𝑉
1
(𝑥, 𝑦, V) = 𝑦 +

(𝑑
2
+ 𝑝) V
𝑎

. (24)

The derivative of 𝑉
1
(𝑥, 𝑦, V) along the positive solutions of

(3) is

𝑉̇
1
= ̇𝑦 +

(𝑑
2
+ 𝑝) V̇
𝑎

=
𝑘
1
𝑥V

𝑥 + V
− 𝑑
2
𝑦 − 𝑝𝑦 + (𝑑

2
+ 𝑝) 𝑦

−
𝑑
3
(𝑑
2
+ 𝑝) V

𝑎

≤ 𝑘
1
V −

𝑑
3
(𝑑
2
+ 𝑝) V

𝑎

= [
𝑎𝑘
1

𝑑
3
(𝑑
2
+ 𝑝)

− 1]
𝑑
3
(𝑑
2
+ 𝑝)

𝑎
V

= (𝑅
0
− 1)

𝑑
3
(𝑑
2
+ 𝑝)

𝑎
V.

(25)

If 𝑅
0
< 1, then 𝑉̇

1
≤ 0 holds inΩ. Moreover, 𝑉̇

1
= 0 if and

only if V = 0. Hence, the largest compact invariant set in Ω is

𝐸
1
= {(𝑥, 𝑦, V) ∈ Ω | 𝑉̇

1
= 0} = {(𝑥, 𝑦, V) ∈ Ω | V = 0} .

(26)

According to the LaSalle’s invariance principle,
lim
𝑡→+∞

V(𝑡) = 0. Then one can get limit equations:

𝑥̇ = 𝜆 − 𝑑
1
𝑥 + 𝑝𝑦,

̇𝑦 = −𝑑
2
𝑦 − 𝑝𝑦.

(27)

Define a global Lyapunov function by

𝑉
2
(𝑥, 𝑦) = 𝑥 − 𝑥

0
− 𝑥
0
ln 𝑥

𝑥
0

+ 𝑦, (28)

where

𝜆 = 𝑑
1
𝑥
0
, 𝑄

1
= (𝑥
0
, 0, 0) . (29)

The derivative of 𝑉
2
(𝑥, 𝑦) along the positive solutions of (27)

is

𝑉̇
2
= 𝑥̇ + ̇𝑦 −

𝑥
0

𝑥
𝑥̇

= 𝜆 − 𝑑
1
𝑥 + 𝑝𝑦 − 𝑑

2
𝑦 − 𝑝𝑦 −

𝑥
0

𝑥
(𝜆 − 𝑑

1
𝑥 + 𝑝𝑦) .

(30)

Since 𝜆 = 𝑑
1
𝑥
0
,

𝑉̇
2
= 𝑑
1
𝑥
0
− 𝑑
1
𝑥 −

𝑥
0

𝑥
𝑑
1
𝑥
0
+ 𝑑
1
𝑥
0
−

𝑥
0

𝑥
𝑝𝑦 − 𝑑

2
𝑦

= 𝑑
1
𝑥
0
[2 −

𝑥

𝑥
0

−
𝑥
0

𝑥
] − (

𝑥
0

𝑥
𝑝 + 𝑑
2
)𝑦.

(31)

Since the arithmetic mean is greater than or equal to the
geometric mean, we obtain 2 − (𝑥/𝑥

0
) − (𝑥

0
/𝑥) ≤ 0.

Therefore, 𝑉̇
2

≤ 0 holds in 𝐸
1
, and 𝑉̇

2
= 0 if and only if

𝑥 = 𝑥
0
and 𝑦 = 0. There is the largest compact invariant set

in 𝐸
1
:

𝐸
2
= {(𝑥, 𝑦, V) ∈ 𝐸

1
| 𝑉̇
2
= 0}

= {(𝑥, 𝑦, V) ∈ 𝐸
1
| 𝑥 = 𝑥

0
, 𝑦 = 0}

= {𝑄
1
} .

(32)

Hence if 𝑅
0

< 1, all solution paths in Ω approach the
infection-free equilibrium point 𝑄

1
.

4. Stability of the Endemic Infection
Equilibrium Point 𝑄

2

In this section, we analyze local asymptotical stability and
global asymptotical stability of the endemic infection equi-
librium point 𝑄

2
of (3).

4.1. Locally Asymptotical Stability of the Endemic Infection
Equilibrium Point 𝑄

2

Theorem 3. If 𝑅
0
> 1, then the endemic infection equilibrium

point 𝑄
2
of (3) is locally asymptotically stable.
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Proof. Put the equilibriumpoint𝑄
2
intomatrix (16); then one

obtains

𝐽
𝑄
2

=

[
[
[
[
[
[
[

[

−𝑑
1
−

𝑘
1
V2

(𝑥 + V)2
𝑝 −

𝑘
1
𝑥
2

(𝑥 + V)2

𝑘
1
V2

(𝑥 + V)2
−𝑝 − 𝑑

2

𝑘
1
𝑥
2

(𝑥 + V)2

0 𝑎 −𝑑
3

]
]
]
]
]
]
]

]

,

󵄨󵄨󵄨󵄨󵄨
𝜆𝐸 − 𝐽

𝑄
2

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆 + 𝑑
1
+

𝑘
1
V2

(𝑥 + V)2
−𝑝

𝑘
1
𝑥
2

(𝑥 + V)2

−
𝑘
1
V2

(𝑥 + V)2
𝜆 + 𝑝 + 𝑑

2
−

𝑘
1
𝑥
2

(𝑥 + V)2

0 −𝑎 𝜆 + 𝑑
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(33)

Solving the eigenequation of the matrix above, here is

𝜆
3

+ [𝑑
1
+ 𝑑
2
+ 𝑑
3
+ 𝑝 +

𝑘
1
V2

(𝑥 + V)2
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎
1

𝜆
2

+ [𝑑
3
(𝑑
2
+ 𝑝) + (𝑑

1
+

𝑘
1
V2

(𝑥 + V)2
) (𝑑
2
+ 𝑝 + 𝑑

3
) −

𝑝𝑘
1
V2

(𝑥 + V)2
−

𝑎𝑘
1
𝑥
2

(𝑥 + V)2
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎
2

𝜆

+ 𝑑
3
(𝑑
2
+ 𝑝)(𝑑

1
+

𝑘
1
V2

(𝑥 + V)2
) +

𝑎𝑘
2

1
𝑥
2V2

(𝑥 + V)2
−

𝑝𝑑
3
𝑘
1
V2

(𝑥 + V)2
− (𝑑
1
+

𝑘
1
V2

(𝑥 + V)2
)

𝑎𝑘
1
𝑥
2

(𝑥 + V)2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎
3

= 0.

(34)

If 𝑅
0
> 1, one obtains that

𝑎
1
= 𝑑
1
+ 𝑑
2
+ 𝑑
3
+ 𝑝 +

𝑘
1
V2

(𝑥 + V)2
> 0,

𝑎
2
= 𝑑
3
(𝑑
2
+ 𝑝) + (𝑑

1
+

𝑘
1
V2

(𝑥 + V)2
) (𝑑
2
+ 𝑝 + 𝑑

3
)

−
𝑝𝑘
1
V2

(𝑥 + V)2
−

𝑎𝑘
1
𝑥
2

(𝑥 + V)2

=
𝑎𝑘
1

𝑅
0

+ 𝑑
1
(𝑑
2
+ 𝑑
3
+ 𝑝)

+
𝑘
1
V2

(𝑥 + V)2
(𝑑
2
+ 𝑑
3
) −

𝑎𝑘
1
𝑥
2

(𝑥 + V)2

=
𝑎𝑘
1

𝑅
0

−
𝑎𝑘
1
𝑥
2

𝑅
2

0
𝑥
2

+ 𝑑
1
(𝑑
2
+ 𝑑
3
+ 𝑝)

+
𝑘
1
V2

(𝑥 + V)2
(𝑑
2
+ 𝑑
3
)

=
𝑎𝑘
1
(𝑅
0
− 1)

𝑅
2

0

+ 𝑑
1
(𝑑
2
+ 𝑑
3
+ 𝑝)

+
𝑘
1
V2

(𝑥 + V)2
(𝑑
2
+ 𝑑
3
) > 0,

𝑎
3
= 𝑑
3
(𝑑
2
+ 𝑝)(𝑑

1
+

𝑘
1
V2

(𝑥 + V)2
)

+
𝑎𝑘
2

1
𝑥
2V2

(𝑥 + V)2
−

𝑝𝑑
3
𝑘
1
V2

(𝑥 + V)2

− (𝑑
1
+

𝑘
1
V2

(𝑥 + V)2
)

𝑎𝑘
1
𝑥
2

(𝑥 + V)2

= 𝑑
1
𝑑
3
(𝑑
2
+ 𝑝) −

𝑎𝑑
1
𝑘
1
𝑥
2

(𝑥 + V)2
+

𝑑
2
𝑑
3
𝑘
1
V2

(𝑥 + V)2

= 𝑑
1

𝑎𝑘
1
(𝑅
0
− 1)

𝑅
2

0

+
𝑑
2
𝑑
3
𝑘
1
V2

(𝑥 + V)2
> 0,

𝑎
1
𝑎
2
− 𝑎
3
= (𝑑
2
+ 𝑑
3
+ 𝑝 +

𝑘
1
V2

(𝑥 + V)2
)

×
𝑎𝑘
1
(𝑅
0
− 1)

𝑅
2

0

+ 𝑑
1
(𝑑
2
+ 𝑑
3
+ 𝑝)

× (𝑑
2
+ 𝑑
3
+ 𝑝 + 𝑑

1
+

𝑘
1
V2

(𝑥 + V)2
)

+
𝑑
2
𝑘
1
V2

(𝑥 + V)2
(𝑑
2
+ 𝑑
3
+ 𝑝 + 𝑑

1
+

𝑘
1
V2

(𝑥 + V)2
)

+
𝑑
3
𝑘
1
V2

(𝑥 + V)2
(𝑑
3
+ 𝑝 + 𝑑

1
+

𝑘
1
V2

(𝑥 + V)2
) > 0.

(35)

Hence all inequalities of the Routh-Hurwitz criterion are
satisfied. Therefore, the endemic infection equilibrium point
𝑄
2
is locally asymptotically stable.

4.2. Globally Asymptotical Stability of the Endemic Infection
Equilibrium Point𝑄

2
. In this subsection, we firstly introduce

a lemma outlined by Li and Wang [18], and then using this
lemma discusses the globally asymptotical stability of the
endemic infection equilibrium point 𝑄

2
of (3).

The lemma is briefly summarized as follows.
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Let 𝑥 󳨃→ 𝑓(𝑥) ∈ 𝑅
𝑛 be a 𝐶

1 function for 𝑥 in an open set
Γ ⊂ 𝑅

𝑛. Consider the differential system

𝑥̇ = 𝑓 (𝑥) . (36)

Denote by𝑥(𝑡, 𝑥
0
) the solution to (36) such that𝑥(0, 𝑥

0
) = 𝑥
0.

Let 𝑥 be an equilibrium point of (36). Li andWang [18] made
the following two basic assumptions:

(𝐻
1
) there exists a compact absorbing set 𝐾 ⊂ Γ;

(𝐻
2
) equation (36) has a unique equilibrium 𝑥 in Γ.

Li and Wang (see Theorem 2.5 in [18]) have given the
following lemma.

Lemma 4 (see [18]). Assume that

(1) assumptions (𝐻
1
) and (𝐻

2
) hold;

(2) equation (36) satisfies the Poincaré-Bendixson Prop-
erty;

(3) for each periodic solution 𝑥 = 𝑝(𝑡) to (36) with 𝑝(0) ∈

Γ, the linear system (the second additive compound
system)

𝑤̇ (𝑡) =
𝜕𝑓
[2]

𝜕𝑥
(𝑃 (𝑡)) 𝑤 (𝑡) (37)

is asymptotically stable, where 𝜕𝑓
[2]

/𝜕𝑥 is the second
additive compound matrix of the Jacobian matrix
𝜕𝑓/𝜕𝑥;

(4) (−1)
𝑛 det ((𝜕𝑓/𝜕𝑥)(𝑥)) > 0.

Then the unique equilibrium 𝑥 is globally asymptoti-
cally stable in Γ.

Now one uses Lemma 4 to show the following.

Theorem 5. If 𝑅
0
> 1, then the endemic infection equilibrium

point 𝑄
2
of (3) is globally asymptotically stable in Ω

0, where
Ω
0 is defined by (15).

Proof. Based on Lemma 4, the proof of Theorem 5 has been
implemented via the following four steps.

(1) For epidemic models and many other biological
models where the feasible region is a bounded cone, (𝐻

1
)

is equivalent to the uniform persistence of the system [19].
By (15), Ω

0 is bounded, so it only needs to show the
uniform persistence of (3). According to Proposition 3.3 in

[20], the necessary and sufficient condition for the uniform
persistence of (3) is equivalent to the equilibrium point 𝑄

1

being unstable. Theorem 1 has shown that 𝑄
1
is unstable if

𝑅
0
> 1. Therefore, (3) is uniformly persistent if 𝑅

0
> 1 so that

(𝐻
1
) holds if 𝑅

0
> 1.

Meanwhile, 𝑄
1
= (𝑥
0
, 0, 0) by (4), so 𝑄

1
does not exist in

Ω
0. Hence,𝑄

2
is the unique equilibrium point of (3) inΩ

0 so
that (𝐻

2
) holds.

The results above verify the condition (1) of Lemma 4.
(2) The Jacobian matrix of (3) is

𝐽 (𝑥, 𝑦, V) = [

[

−𝑑
1
− 𝑎
1

𝑝 −𝑎
2

𝑎
1

−𝑝 − 𝑑
2

𝑎
2

0 𝑎 −𝑑
3

]

]

, (38)

where 𝑎
1
= (𝑘
1
V2/(𝑥 + V)2) and 𝑎

2
= (𝑘
1
𝑥
2
/(𝑥 + V)2).

If 𝐻 = diag(1, −1, 1), then

𝐻𝐽𝐻 =

[
[
[
[
[

[

−𝑑
1
−

𝑘
1
V2

𝑥 + V
−𝑝 −

𝑘
1
𝑥
2

(𝑥 + V)2

−
𝑘
1
V2

(𝑥 + V)2
−𝑝 − 𝑑

2
−

𝑘
1
𝑥
2

(𝑥 + V)2
0 −𝑎 −𝑑

3

]
]
]
]
]

]

, (39)

and one can obtain that 𝐻𝐽𝐻 has nonpositive off-diagonal
elements inΩ

0.Therefore (3) is competitive inΩ
0. It is known

that 3-dimensional competitive systems have the Poincaré-
Bendixson Property [21]. Hence, (3) satisfies the Poincaré-
Bendixson Property. This verifies condition (2) of Lemma 4.

(3) Let 𝑃(𝑡) = (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) be a periodic solution in
Ω
0.
According to [22], if 𝐵 = (𝑏

𝑖𝑗
) is a 3 × 3 matrix, then the

second additive compound 𝐵
[2] of 𝐵 is

𝐵
[2]

= [

[

𝑏
11

+ 𝑏
22

𝑏
23

−𝑏
13

𝑏
32

𝑏
11

+ 𝑏
33

𝑏
12

−𝑏
31

𝑏
21

𝑏
22

+ 𝑏
33

]

]

. (40)

The Jacobian matrix of (3) is

𝐽 (𝑥, 𝑦, V) = [

[

−𝑑
1
− 𝑎
1

𝑝 −𝑎
2

𝑎
1

−𝑝 − 𝑑
2

𝑎
2

0 𝑎 −𝑑
3

]

]

, (41)

where 𝑎
1
= 𝑘
1
V2/(𝑥 + V)2 and 𝑎

2
= 𝑘
1
𝑥
2
/(𝑥 + V)2.

And then the second additive compound matrix of the
Jacobian matrix of (3) is given by

𝐽
[2]

=

[
[
[
[
[
[
[
[
[
[
[

[

−𝑑
1
−

𝑘
1
V2

(𝑥 + V)2
− 𝑝 − 𝑑

2

𝑘
1
𝑥
2

(𝑥 + V)2
𝑘
1
𝑥
2

(𝑥 + V)2

𝑎 −𝑑
1
−

𝑘
1
V2

(𝑥 + V)2
− 𝑑
3

𝑝

0
𝑘
1
V2

(𝑥 + V)2
−𝑝 − 𝑑

2
− 𝑑
3

]
]
]
]
]
]
]
]
]
]
]

]

, (42)
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and the second additive compound system of (3) along the
periodic solution 𝑃(𝑡) = (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) is

𝑤̇
1
= (−𝑑

1
−

𝑘
1
V2

(𝑥 + V)2
− 𝑝 − 𝑑

2
)𝑤
1

+
𝑘
1
𝑥
2

(𝑥 + V)2
𝑤
2
+

𝑘
1
𝑥
2

(𝑥 + V)2
𝑤
3
,

𝑤̇
2
= 𝑎𝑤
1
+ (−𝑑

1
−

𝑘
1
V2

(𝑥 + V)2
− 𝑑
3
)𝑤
2
+ 𝑝𝑤
3
,

𝑤̇
3
=

𝑘
1
V2

(𝑥 + V)2
𝑤
2
+ (−𝑝 − 𝑑

2
− 𝑑
3
) 𝑤
3
.

(43)

Define a global Lyapunov function by

𝑉 (𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑃) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑤
1
,
𝑦 (𝑡)

V (𝑡)
𝑤
2
,
𝑦 (𝑡)

V (𝑡)
𝑤
3
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

, (44)

where ‖ ⋅ ‖ is the norm in set 𝐷 defined by

󵄩󵄩󵄩󵄩(𝑤1, 𝑤2, 𝑤3)
󵄩󵄩󵄩󵄩 = sup {

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑤2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑤3
󵄨󵄨󵄨󵄨} . (45)

Suppose that the solution𝑃(𝑡) is periodic of least period𝜔 > 0

and that 𝑃(0) ∈ Ω
0. According to [23], (3) is uniformly

persistent, if there exists a positive constant 𝜇 such that

lim inf
𝑡→∞

𝑥 (𝑡) ≥ 𝜇, lim inf
𝑡→∞

𝑦 (𝑡) ≥ 𝜇,

lim inf
𝑡→∞

V (𝑡) ≥ 𝜇.

(46)

Step (1) has shown that (3) is uniformly persistent if 𝑅
0
> 1.

Hence, there always exists a positive constant𝜇which satisfies
(46). The orbit of 𝑃(𝑡) remains at a positive distance from
the boundary of Ω by the uniform persistence, and one can
obtain that

𝑦 (𝑡) ≥ 𝜇, V (𝑡) ≥ 𝜇 for large enough 𝑡. (47)

Since V < 𝑎𝜆/(𝑑𝑑
3
) by (15),

𝑉 (𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑃) ≥

𝜇𝑑𝑑
3

a𝜆
󵄩󵄩󵄩󵄩(𝑤1, 𝑤2, 𝑤3)

󵄩󵄩󵄩󵄩 , (48)

for all (𝑤
1
, 𝑤
2
, 𝑤
3
) ∈ 𝑅
3.

Along a solution (𝑤
1
, 𝑤
2
, 𝑤
3
) of (43), 𝑉(𝑤

1
, 𝑤
2
, 𝑤
3
, 𝑃)

becomes

𝑉 (𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑃) = sup{

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨 ,

𝑦 (𝑡)

V (𝑡)
(
󵄨󵄨󵄨󵄨𝑤2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑤3

󵄨󵄨󵄨󵄨)} . (49)

The right-hand derivative of 𝑉(𝑡) along the positive solution
of (43) is

𝐷
+

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨 ≤ (−𝑑

1
−

𝑘
1
V2

(𝑥 + V)2
− 𝑝 − 𝑑

2
)

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨

+
𝑘
1
𝑥
2

(𝑥 + V)2
(
󵄨󵄨󵄨󵄨𝑤2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑤3

󵄨󵄨󵄨󵄨) ,

𝐷
+

󵄨󵄨󵄨󵄨𝑤2
󵄨󵄨󵄨󵄨 ≤ 𝑎

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨 + (−𝑑

1
−

𝑘
1
V2

(𝑥 + V)2
− 𝑑
3
)

󵄨󵄨󵄨󵄨𝑤2
󵄨󵄨󵄨󵄨 + 𝑝

󵄨󵄨󵄨󵄨𝑤3
󵄨󵄨󵄨󵄨

𝐷
+

󵄨󵄨󵄨󵄨𝑤3
󵄨󵄨󵄨󵄨 ≤

𝑘
1
V2

(𝑥 + V)2
󵄨󵄨󵄨󵄨𝑤2

󵄨󵄨󵄨󵄨 + (−𝑝 − 𝑑
2
− 𝑑
3
)
󵄨󵄨󵄨󵄨𝑤3

󵄨󵄨󵄨󵄨 .

(50)

Therefore

𝐷
+

𝑦

V
(
󵄨󵄨󵄨󵄨𝑤2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑤3

󵄨󵄨󵄨󵄨)

=
̇𝑦V − 𝑦V̇
V2

(
󵄨󵄨󵄨󵄨𝑤2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑤3

󵄨󵄨󵄨󵄨) +
𝑦

V
𝐷
+
(
󵄨󵄨󵄨󵄨𝑤2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑤3

󵄨󵄨󵄨󵄨)

≤
𝑦

V
(

̇𝑦

𝑦
−
V̇
V
) (

󵄨󵄨󵄨󵄨𝑤2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑤3
󵄨󵄨󵄨󵄨)

+
𝑦

V
(𝑎

󵄨󵄨󵄨󵄨𝑤1
󵄨󵄨󵄨󵄨 + (−𝑑

1
− 𝑑
3
)
󵄨󵄨󵄨󵄨𝑤2

󵄨󵄨󵄨󵄨 + (−𝑑
2
− 𝑑
3
)
󵄨󵄨󵄨󵄨𝑤3

󵄨󵄨󵄨󵄨)

≤
𝑎𝑦

V
󵄨󵄨󵄨󵄨𝑤1

󵄨󵄨󵄨󵄨 +
𝑦

V
(
󵄨󵄨󵄨󵄨𝑤2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑤3

󵄨󵄨󵄨󵄨)

× (
̇𝑦

𝑦
−
V̇
V

− 𝑑
3
− min (𝑑

1
, 𝑑
2
)) ,

(51)

𝐷
+
𝑉 (𝑡) ≤ sup {𝑔

1
(𝑡) , 𝑔
2
(𝑡)} 𝑉 (𝑡) , (52)

where

𝑔
1
(𝑡) = −𝑑

1
− 𝑝 − 𝑑

2
−

𝑘
1
V2

(𝑥 + V)2
+

𝑘
1
V𝑥2

𝑦(𝑥 + V)2
≤

̇𝑦

𝑦
− 𝑑
1
,

𝑔
2 (𝑡) =

𝑎𝑦

V
+

̇𝑦

𝑦
−
V̇
V

− 𝑑
3
− min (𝑑

1
, 𝑑
2
)

=
̇𝑦

𝑦
− min (𝑑

1
, 𝑑
2
) .

(53)

Denote 𝑑 = min(𝑑
1
, 𝑑
2
), and then

sup {𝑔
1 (𝑡) , 𝑔2 (𝑡)} ≤

̇𝑦

𝑦
− 𝑑. (54)

By (52) and Gronwall’s inequality, one obtains

𝑉 (𝑡) ≤ 𝑉 (0) 𝑦 (𝑡) 𝑒
−𝑑𝑡

≤
𝑉 (0) 𝑒

−𝑑𝑡
𝜆

𝑑
. (55)

𝑉(𝑡) → 0 when 𝑡 → ∞, and then (𝑤
1
, 𝑤
2
, 𝑤
3
) → 0

when 𝑡 → ∞ by (48). The second additive compound
system is asymptotically stable.This verifies the condition (3)

of Lemma 4.
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(4) The Jacobi matrix of (3) at the endemic infection
equilibrium 𝑄

2
is

𝐽
𝑄
2

=

[
[
[
[
[
[
[
[

[

−𝑑
1
−

𝑘
1
V2

(𝑥 + V)2
𝑝 −

𝑘
1
𝑥
2

(𝑥 + V)2

𝑘
1
V2

(𝑥 + V)2
−𝑝 − 𝑑

2

𝑘
1
𝑥
2

(𝑥 + V)2

0 𝑎 −𝑑
3

]
]
]
]
]
]
]
]

]

, (56)

and then

det (𝐽
𝑄
2

) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑑
1
−

𝑘
1
V2

(𝑥 + V)2
𝑝 −

𝑘
1
𝑥
2

(𝑥 + V)2

𝑘
1
V2

(𝑥 + V)2
−𝑝 − 𝑑

2

𝑘
1
𝑥
2

(𝑥 + V)2

0 𝑎 −𝑑
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= − [𝑑
1
+

𝑘
1
V2

(𝑥 + V)2
] (𝑑
2
+ 𝑝) 𝑑

3
−

𝑎𝑘
2

1
𝑥
2V2

(𝑥 + V)4

+ 𝑑
3
𝑝

𝑘
1
V2

(𝑥 + V)2
+

𝑎𝑘
1
𝑥
2

(𝑥 + V)2
[𝑑
1
+

𝑘
1
V2

(𝑥 + V)2
]

= −𝑑
1
(𝑑
2
+ 𝑝) 𝑑

3
−

𝑘
1
V2

(𝑥 + V)2
(𝑑
2
+ 𝑝) 𝑑

3

−
𝑎𝑘
2

1
𝑥
2V2

(𝑥 + V)4
+ 𝑑
3
𝑝

𝑘
1
V2

(𝑥 + V)2
+

𝑎𝑑
1
𝑘
1
𝑥
2

(𝑥 + V)2
+

𝑎𝑘
2

1
𝑥
2V2

(𝑥 + V)4

= 𝑑
1
[

𝑎𝑘
1
𝑥
2

(𝑥 + V)2
− (𝑑
2
+ 𝑝) 𝑑

3
] −

𝑑
2
𝑑
3
𝑘
1
V2

(𝑥 + V)2

−
𝑝𝑑
3
𝑘
1
V2

(𝑥 + V)2
+ 𝑑
3
𝑝

𝑘
1
V2

(𝑥 + V)2

= 𝑎𝑑
1
𝑘
1
[(

𝑥

𝑥 + V
)

2

−
1

𝑅
0

] −
𝑑
2
𝑑
3
𝑘
1
V2

(𝑥 + V)2
.

(57)

According to (7), V = (𝑅
0
− 1)𝑥, and then one can obtain

det (𝐽
𝑄
2

) = 𝑎𝑑
1
𝑘
1
[

1

𝑅
2

0

−
1

𝑅
0

] −
𝑑
2
𝑑
3
𝑘
1
V2

(𝑥 + V)2

=
𝑎𝑑
1
𝑘
1
(1 − 𝑅

0
)

𝑅
2

0

−
𝑑
2
𝑑
3
𝑘
1
V2

(𝑥 + V)2
.

(58)

Since 𝐽
𝑄
2

is a 3 × 3 matrix, one gets 𝑛 = 3. Then

(−1)
3 det (𝐽

𝑄
2

) = −
𝑎𝑑
1
𝑘
1
(1 − 𝑅

0
)

𝑅
2

0

+
𝑑
2
𝑑
3
𝑘
1
V2

(𝑥 + V)2
. (59)

If 𝑅
0

> 1, then (−1)
3 det(𝐽

𝑄
2

) > 0 holds in Ω
0. This verifies

condition (4) of Lemma 4.
Hence, if 𝑅

0
> 1, then the endemic infection equilibrium

point 𝑄
2
is globally asymptotically stable in Ω

0 by Lemma 4.

5. Numerical Simulation

In the first subsection, we determine some parameter values
of an anti-HIV infection treatmentmodel based on (3). In the
second subsection, using the anti-HIV infection treatment
model simulates the dynamics of the Group I’s anti-HIV
infection treatment. In the third subsection, using the anti-
HIV infection treatment model simulates the dynamics of
the Group II’s anti-HIV infection treatment. In the fourth
subsection, we make long-term predictions for the two
groups’ anti-HIV infection treatment, respectively.

5.1. Modeling. Baxter et al. [24] have reported a random-
ized study of antiretroviral management based on plasma
genotypic antiretroviral resistance testing in HIV patients
failing therapy, which was enrolled from 14 units of the
Terry Beirn Community Programs for Clinical Research on
AIDS and the Walter Reed Army Medical Center (see the
HIV drug resistance database of Stanford University [25]).
These patients were failing virologically on a combination
antiretroviral regimen containing protease inhibitors (PI)
and nucleoside reverse transcriptase inhibitors (NRTI) [24].
The patients were seen at 4, 8, and 12 weeks. At each follow-
up visit, changes in antiretroviral treatment were recorded
and the tested items included patients’ plasma CD4

+ T cells
counts and plasmaHIV-1 RNA levels by theChiron 2.0 bDNA
assay [24].

In the following subsections, we select, from [24, 25],
two group patients’ mean uninfected CD4

+ T cells counts
and mean HIV RNA levels to simulate and make long-term
predictions for the patients’ treatment outcomes. Group I
consists of 15 patients. Group II consists of 13 patients. The
two groups of patients received the same PI: ritonavir (RTV)
and saquinavir (SQV). Additionally, Group I received NRTI:
strvudine (D4T). Group II received NRTI: strvudine (D4T)
and dideoxyinosine (DDI) [24, 25].

Based on (3), the anti-HIV infection treatmentmodel has
the form

𝑥̇ = 𝜆 − 𝑑
1
𝑥 −

(1 − 𝑚) 𝑘
1
V𝑥

𝑥 + V
+ 𝑝𝑦,

̇𝑦 =
(1 − 𝑚) 𝑘1V𝑥

𝑥 + V
− 𝑑
2
𝑦 − 𝑝𝑦,

V̇ = (1 − 𝑛) 𝑎𝑦 − 𝑑
3
V,

(60)

where 𝑚, 𝑛 (0 ≤ 𝑚, 𝑛 ≤ 1) are the efficacy variables of the
treatment.

The infection-free equilibrium point 𝑄
1
of (60) is the

same as that defined by (4):

𝑄
1
= (

𝜆

𝑑
1

, 0, 0) . (61)
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Figure 1: Outcomes of the treatment efficacy of Group I. Circles: the clinical data; solid line: the numerical simulation of (60). (a) Mean
uninfected CD4

+ T cells counts. (b) Mean HIV RNA levels.

The endemic infection equilibrium point 𝑄
2
of (60) is

given by

𝑄
2
= (𝑥, 𝑦, V) , (62)

where,

𝑥 =
𝜆𝑅
0

(1 − 𝑚) 𝑘
1
(𝑅
0
−1)+𝑑

1
𝑅
0
−𝑝 (𝑅

0
−1) 𝑅

0
(𝑑
3
/ (1−𝑛) 𝑎)

,

𝑦=
𝑑
3

(1 − 𝑛) 𝑎
(𝑅
0
− 1) 𝑥, V=

(1 − 𝑛) 𝑎𝑦

𝑑
3

=(𝑅
0
− 1) 𝑥,

(63)

and 𝑅
0
is the basic virus reproductive number of (60):

𝑅
0
=

(1 − 𝑛) (1 − 𝑚) 𝑎𝑘
1

𝑑
3
(𝑑
2
+ 𝑝)

. (64)

Determine the parameter value ranges of (60).

(1) Naive CD4
+ T cells decayed with an average half-life

of 50 days [26]. Therefore, one obtains

𝑑
1
=

− ln (0.5)

50
. (65)

Hence 𝑑
1
≈ 0.0139. Because the apoptosis of CD4

+ T
cells is raised by HIV infection [27, 28], 𝑑

1
should be

more than 0.0139 during the simulation.
(2) Since healthy individuals have an average of 830/𝜇L

CD4
+ T cells [29],

𝜆 = 𝑑
1
× 830 ≈ 0.0139 × 830 = 11.5370. (66)

(3) Since the cells that produce the virus are also short-
lived, with a half-life of approximately 1.2 days [30],
one obtains

𝑑
2
=

− ln (0.5)

1.2
≈ 0.5776. (67)

(4) Since the half-life of HIV-1 in the plasma appears to
be only 1 to 2 days [30], one selects

𝑑
3
=

− ln (0.5)

1.5
≈ 0.4621. (68)

Table 1: Parameter values and 𝑅
0
at different weeks.

Weeks 𝑑
1

𝑚 𝑛 𝑅
0

0∼4 0.033 0.53 0.84 0.6148
4∼12 0.038 0.45 0.76 1.0792

(5) Because only a small fraction of cells in the eclipse
phase will revert to the uninfected state, it assumes
that 𝑝 = 0.01 [12]. Hence one obtains

𝑝 = 0.01. (69)

(6) According to reference [31], one can determine the
other parameter value ranges as follows:

𝑘
1
∈ [2.5 × 10

−5
, 0.5] , 𝑎 ∈ [2, 1250] ,

𝑚 ∈ [0, 1] , 𝑛 ∈ [0, 1] .

(70)

In each group, there was one patient whose clinical data
was not complete. Therefore we do not conclude the two
patients’ clinical data in the following simulations.

5.2. The Mean Dynamics Simulation of Group I’s Anti-HIV
Infection Treatment. Using the other 14 patients’ clinical data
determines the equation parameter values as follows:

𝑘
1
= 6 × 10

−2
, 𝑎 = 37. (71)

The value changes of the parameters 𝑑
1
,𝑚, and 𝑛 and the

basic virus reproductive number 𝑅
0
are listed in Table 1.

The simulation results of the mean dynamics of anti-
HIV infection treatment of Group I are shown in Figure 1.
During the first 4weeks, the treatment reduced the basic virus
reproductive number 𝑅

0
from 8.1759 to 0.6148. Hence the

patients’meanHIVRNA levels decreased rapidly to approach
infection-free steady state 𝑄

1
defined by (4) as Theorem 2

predicts.
However, after the 4th week, the resistance to antiretrovi-

ral drugs appeared. It made the therapy efficacy parameters𝑚
and 𝑛 decrease from 0.53 to 0.45 and 0.84 to 0.76, respectively.
Meanwhile the apoptosis of CD4

+ T cells was raised by
HIV more strongly. Hence 𝑑

1
rose from 0.033 to 0.038. The
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Table 2: Parameter values and 𝑅
0
at different weeks.

Weeks 𝑑
1

𝑚 𝑛 𝑅
0

0∼4 0.041 0.65 0.68 0.6435
4∼12 0.0428 0.55 0.59 1.0600

suboptimal treatment increased 𝑅
0
value of Group I from

0.6148 to 1.0792. As a result, the patients’ mean HIV RNA
levels increased slowly to converge to a new infected steady
state 𝑄

2
defined by (62) and (63) as Theorem 5 predicts. On

the other hand, observe that themean uninfectedCD4
+ T cell

counts of Group I increased rapidly in the first 4 weeks and
decreased slowly in the following 8 weeks.

5.3. The Mean Dynamics Simulation of Group II’s Anti-
HIV Infection Treatment. Using 12 patients’ clinical data
determines the equation parameter values as follows:

𝑘
1
= 6 × 10

−2
, 𝑎 = 26. (72)

The value changes of the parameters 𝑑
1
, 𝑚, and 𝑛 and

the basic virus reproductive number 𝑅
0
are listed are listed

in Table 2.
The simulation results of the mean dynamics of anti-

HIV infection treatment of Group II are shown in Figure 2.
During the first 4weeks, the treatment reduced the basic virus
reproductive number 𝑅

0
from 5.7452 to 0.6435. Hence the

patients’meanHIVRNA levels decreased rapidly to approach
to infection-free steady state 𝑄

1
defined by (4) as Theorem 2

predicts.
However, after the 4th week, the resistance to antiretrovi-

ral drugs appeared. It made the therapy efficacy parameters
𝑚 and 𝑛 decrease from 0.65 to 0.55 and 0.68 to 0.59,
respectively. Meanwhile the apoptosis of CD4

+ T cells was
raised by HIV more strongly. Hence 𝑑

1
rose from 0.041 to

0.0428. The suboptimal treatment made 𝑅
0
value of Group

II increase from 0.6435 to 1.0600. As a result, the patients’
mean HIV RNA levels increased slowly to converge to a
new infected steady state 𝑄

2
defined by (62) and (63) as

Theorem5predicts.On the other hand, observe that themean
uninfected CD4

+ T cell counts of Group II increased rapidly
in the first 4 weeks but rose slowly in the following 8 weeks.

5.4. The Long-Term Predictions for the Two Groups’ Anti-
HIV Infection Treatment. According to 2013 HIV therapy
guidelines published by World Health Organization (WHO)
[32], viral load is recommended as the preferred monitoring
approach to diagnose and confirm antiretroviral treatment
failure; treatment failure is defined by a persistently detectable
viral load exceeding 1000 copies/mL after at least six months
of using antiretroviral drugs. However, HIV RNA levels of
the two groups of patients were only tested at 4, 8, and 12
weeks in the study [24]. Therefore, it is necessary to make
long-term predictions to detect whether the treatments for
the two groups are failure.

Assume that after ending the 12 weeks’ antiretroviral
treatment testing, the two groups keep receiving the anti-HIV
infection treatment for 2 years. During the 2 years, the drug

resistance does not become worse and all parameter values
do not change. Using the numerical simulation of Equation
(60) makes the long-term predictions for the two groups’
anti-HIV infection treatment. The long-term prediction for
Group I’ anti-HIV infection treatment is shown in Figure 3.
Two years’ outcomes of the therapy for Group II are shown
in Figure 4. Observe that after finishing the 12 weeks’
antiretroviral treatment testing, themean uninfected CD4

+ T
cells counts of the two groups both decline a little and finally
keep at a level larger than the mean baseline values; the mean
HIV RNA levels of the two groups both rise a lot to a level
less than the mean baseline values but keep exceeding 1000

copies/mL all the time. The long-term predictions suggest
that the treatments for the two groups are failure and better
anti-HIV infection therapies should be considered.

6. Conclusion

This paper introduces a modified HIV infection differential
equation model with a saturated infection rate 𝑘

1
𝑥V/(𝑥 +

V) and the proportion of infected cells reverting to the
uninfected state.

The basic virus reproductive number 𝑅
0
of the model is

independent of a patient’s plasma total CD4
+ T cell counts

𝜆/𝑑
1
, and the actual incidence rate is not linear over the entire

range of virus V(𝑡) and uninfectedCD4
+ T cells𝑥(𝑡) anymore.

This suggests that our model is more reasonable than the
model proposed by [13].

The modified model has two equilibrium points:
infection-free equilibrium point 𝑄

1
and endemic infection

equilibrium point 𝑄
2
. This paper discusses the locally

asymptotical stabilities and globally asymptotical stabilities
of the two equilibrium points, simulates the dynamics of two
group patients’ anti-HIV infection treatment, and makes
long-term predictions for the two groups’ anti-HIV infection
treatment.

The theoretical results suggest the following.

(1) If the basic virus reproductive number 𝑅
0

< 1,
then the infection-free equilibrium point 𝑄

1
of (3) is

globally asymptotically stable in Ω. This means that
if a person with 𝑅

0
< 1, the person can recover

automatically even if infected with a large amount of
HIV; if a treatment makes a patient’s 𝑅

0
< 1, the

patient will be cured eventually even if infected with
a large amount of HIV.
The recent reports on three HIV infected patients
have shown that some HIV infected patients may
be cured via bone marrow transplants. The Berlin
Patient was the first person cured of HIV [33]. After
the Berlin Man, two cases reported cured of HIV in
Kenya [34].These reports canmake one postulate that
most individuals who connect HIV virus will not be
infected by it and are not infecting other people.They
will recover automatically without any treatment.The
fact has not beenwell recognized sinceAIDS has been
discovered in 1983. Mathematically, such phenomena
can be described also via (3) where 𝑘

1
= 𝑎 = 0, and

thus 𝑅
0
= 0.
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Figure 2: Outcomes of the treatment efficacy of Group II. Circles: the clinical data; solid line: the numerical simulation of (60). (a) Mean
uninfected CD4

+ T cells counts. (b) Mean HIV RNA levels.
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Figure 3: The long-term prediction for the treatment efficacy of Group I. Circles: the clinical data; solid line: the numerical simulation of
(60). (a) Mean uninfected CD4

+ T cells counts. (b) Mean HIV RNA levels.

(2) If the basic virus reproductive number 𝑅
0

> 1, then
the endemic infection equilibrium point 𝑄

2
of (3) is

globally asymptotically stable in the interior ofΩ.This
means that a person with 𝑅

0
> 1 will have endemic

infection even if infected with only one HIV; if a
treatment cannotmake a patient’s𝑅

0
< 1, the patient’s

HIV RNA in vivo cannot be cleared up eventually.

Based on the simulation results, one can propose the
following hypotheses.

(1) For a poor HIV treatment response patient, the drug
resistance appears when the patient’s HIV RNA level
reduces to the first lowest level.
This hypothesis may interpret why the two group
patients’ mean CD4

+ T cells counts rose and mean
HIV RNA levels declined rapidly in the first 4 weeks
but contrary in the following weeks (see Tables 1 and
2 and Figures 1 and 2).

(2) Once a patient’s drug resistance appears, the patient’s
HIV in vivo promotes the apoptosis of CD4

+ T cells
more strongly.
This hypothesis may interpret why between 4th week
and 8th week the mean HIV RNA levels of the two
groups kept a lower level than the first 4 weeks,
but Group I’s mean CD4

+ T cells counts started to
decrease slowly and Group II’s mean CD4

+ T cells
counts rose more slowly than before (see Tables 1 and
2 and Figures 1 and 2).

(3) According to the 2013 HIV therapy guidelines pub-
lished by WHO [32], treatment failure is defined
by a persistently detectable viral load exceeding
1000 copies/mL after at least six months of using
antiretroviral drugs. Our long-term numerical sim-
ulation predictions suggest that after ending the 12
weeks’ antiretroviral treatment [24], the two group
patients’ mean HIV RNA levels keep exceeding
1000 copies/mL during the additional 2 years’ anti-
HIV infection treatment. The treatments for the
two groups are failure and better anti-HIV infection
therapies should be considered. This means that the
additional 2 years’ treatments are not able to make
patients obtain better outcomes. This may interpret
why WHO defines that half a year’s treatment cannot
suppress a patient’s HIV level below 1000 copies/mL
to be treatment failure.

Highlights

(1) This paper introduces amodifiedHIV infection (anti-
HIV infection therapy) differential equation model
with a saturated infection rate. The basic virus repro-
ductive number 𝑅

0
of the model is independent of a

patient’s plasma total CD4
+ T cell counts 𝜆/𝑑

1
. This

suggests that our model is more reasonable than the
model proposed by Srivastava and Chandra in 2010
[13] whose basic virus reproductive number 𝑅

0
is

dependent on 𝜆/𝑑
1
which follows that themoreCD4

+
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Figure 4: The long-term prediction for the treatment efficacy of Group II. Circles: the clinical data; solid line: the numerical simulation of
(60). (a) Mean uninfected CD4

+ T cells counts. (b) Mean HIV RNA levels.

T cell counts an individual has, the more easily the
individual is infected by HIV.

(2) This paper proposes and proves two theorems (Theo-
rems 2 and 5) on the globally asymptotical stabilities
of the infection-free equilibrium point 𝑄

1
and the

endemic infection equilibrium point 𝑄
2
of the modi-

fied model.
(3) This paper points out the implications of the two the-

orems which are ignored by other similar researches
onmodellingHIV infection (anti-HIV infection ther-
apy):

(a) A person with the basic virus reproductive
number 𝑅

0
< 1 will recover automatically even

if the person is infected with a large amount of
HIV. If a treatmentmakes a patient’s𝑅

0
< 1, this

patient will be cured eventually even if infected
with a large amount of HIV.

(b) A person with 𝑅
0

> 1 will have endemic
infection even if the person is infected with only
one HIV. If a treatment cannot make a patient’s
𝑅
0
< 1, the patient’s HIV RNA in vivo cannot be

cleared up eventually.

The recent reports on three HIV infected patients show
that HIV infected patients may be cured via bone marrow
transplants (e.g., see: Berlin Patient, first person cured ofHIV,
may soon have company, Los Angeles Times, July 27, 2012;
after BerlinMan, two reported cured of HIV in Kenya, Africa
Review, May 6, 2013).

These reports can make one postulate that most individ-
uals who connect HIV virus will not be infected by it and
are not infecting other people, whowill recover automatically
without any treatment. In this case, 𝑅

0
= 0 where 𝑘

1
= 𝑎 =

0. The fact has not been recognized since AIDS has been
discovered in 1983.

In the report [35], a small proportion of human immun-
odeficiency virus type 1 (HIV-1) infected individuals, called
elite and viremic controllers, spontaneously control plasma
HIV RNA levels to undetectable (elite controller) or <2000
copies/mL (viremic controller) in the absence of antiretrovi-
ral therapy.

These phenomena can be interpreted by our Theorem 2:
HIV infected people’s basic virus reproductive number 𝑅

0
<

1.

(4) Based on the simulation results, we can propose the
following hypotheses:

(a) for a poor HIV treatment response patient, the
drug resistance appears when the patient’s HIV
RNA level reduces to the first lowest level;

(b) Once a patient’s drug resistance appears, the
patient’s HIV promotes the apoptosis of CD4

+

T cells more strongly;
(c) According to the 2013 HIV therapy guidelines

published by WHO [32], treatment failure is
defined by a persistently detectable viral load
exceeding 1000 copies/mL after at least six
months of using antiretroviral drugs. Our long-
term numerical simulation predictions suggest
that after ending the 12 weeks’ antiretroviral
treatment [24], the two group patients’ mean
HIVRNA levels keep exceeding 1000 copies/mL
during the additional 2 years’ anti-HIV infec-
tion treatment. The treatments for the two
groups are failure and better anti-HIV infection
therapies should be considered.This means that
the additional 2 years’ treatments are not able to
make patients obtain better outcomes.This may
interpret why WHO defines that half a year’s
treatment cannot suppress a patient’s HIV level
below 1000 copies/mL to be treatment failure.
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