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Abstract: The relationship between antibiotic use and Clostridioides difficile (C. difficile) has been
well established in adults and older children but remains unclear and is yet to be fully examined
in infant populations. This study aimed to determine the separate and cumulative impact from
antibiotics and household cleaning products on C. difficile colonization in infants. This study included
1429 infants at 3–4 months of age and 1728 infants at 12 months of age from the Canadian Healthy
Infant Longitudinal Development (CHILD) birth cohort. The levels of infant antimicrobial exposure
were obtained from hospital birth charts and standardized questionnaires. Infant gut microbiota
was characterized by Illumina 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Analysis of
C. difficile was performed using a quantitative polymerase chain reaction (qPCR). Overall, C. difficile
colonized 31% and 46% of infants at 3–4 months and 12 months, respectively. At 3–4 months, C. difficile
colonization was significantly higher in infants exposed to both antibiotics and higher (above average)
usage of household cleaning products (adjusted odds ratio (aOR) 1.50, 95% CI 1.03–2.17; p = 0.032)
than in infants who had the least antimicrobial exposure. This higher colonization persisted up to
12 months of age. Our study suggests that cumulative exposure to systemic antibiotics and higher
usage of household cleaning products facilitates C. difficile colonization in infants. Further research is
needed to understand the future health impacts.

Keywords: antibiotics; cleaning products; antimicrobials; Clostridioides difficile; C. difficile; infant;
gut microbiota

1. Introduction

Global antibiotic consumption has risen substantially over the past two decades [1].
While the administration of antibiotics directly to infants has reduced by more than 50%
in Canada [2], an overlooked source of infant antibiotic exposure is the administration of
antibiotics to mothers during childbirth. The guidelines of the Society of Obstetricians
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and Gynecologists of Canada (SOGC) recommend antibiotic prophylaxis before caesarean
section or during labor (intrapartum antibiotic prophylaxis, IAP) for women who are
positive for Group B Streptococcus (GBS) or who have other risk factors [3]. In accordance
with these recommendations, up to 40% of newborns are exposed before or during delivery
to maternal IAP [4]. Furthermore, about 2% to 5% of vaginally delivered newborns receive
intravenous (IV) antibiotics after birth for treatment of suspected neonatal sepsis [4,5].
Outside of the hospital setting, household standards of cleaning have also evolved over the
years, in response to various socio-cultural factors. The commercialization of the cleaning
industry has encouraged the increased use of cleaning products in the home, contributing
to antimicrobial exposure [6].

Antimicrobial exposure during infancy is not without consequences. Epidemiological
studies have shown that early life antimicrobial exposure is associated with disruption of
gut microbiota [7–10] and influences future asthma and allergic diseases [11,12]. Multiple
courses of antibiotics have a great influence on the composition of infant gut microbiota [13];
however, cumulative antimicrobial exposure from additional sources, such as household
cleaning products, have not been studied. Clostridiodes (formerly Clostridium) difficile (C. dif-
ficile) is a gram-positive spore forming bacteria. It is a major pathogen that is responsible for
the clinical manifestations of antibiotic-induced diarrhea in adults and older children [14].
Although the colonization rate is high (over 40%) in infants below the age of 1 year, the
biological relevance of C. difficile in this age group remains uncertain, as most colonized
infants do not manifest clinical symptoms [15]. However, colonization in infancy may serve
as a reservoir for adult C. difficile infections (CDI) or a marker for reduced colonization re-
sistance and delayed gut microbiota maturation [16–18]. Disruption of the gut microbiome
early in life may be associated with conditions such as allergy and asthma, inflammatory
bowel disease (IBD), and obesity later in life [19]. Antimicrobial exposure can destroy the
diversity of the gut microbiome, limiting the number of microbes that are in competition
for growth, thereby allowing C. difficile colonization and overgrowth. Previous studies
proposed clear effects of antimicrobial exposure on the infant gut microbiota, but those
studies were limited to small samples or reporting at the genus level [7–10]. The aim of
our study was to determine the separate and cumulative impact of antibiotics and environ-
mental antimicrobials (i.e., household cleaning products) on C. difficile colonization, and to
understand how these antimicrobial exposures modify the infant gut microbiota. This area
of research is currently understudied, and the issues are not fully understood.

2. Results
2.1. Study Population

In study infants at 3 months of age, 29% of them were exposed to no antibiotics
and lower (below average) usage of cleaning products (NALC); 24% were exposed to
any antibiotics and lower (below average) usage of cleaning products (AALC); 22% were
exposed to no antibiotics and higher (above average) usage of cleaning products (NAHC);
and 25% were exposed to any antibiotics and higher (above average) usage of cleaning
products (AAHC) (Table 1). All caesarean section (CS) deliveries by participants in the
Canadian Healthy Infant Longitudinal Development (CHILD) study received antibiotic
prophylaxis, in accordance with Canadian practice guidelines. Fecal samples were collected
from 1429 infants at 3–4 months of age (mean age 3.6 ± 1.04 months) and 1728 infants at
12 months of age (mean age 12.2 ± 1.48 months). Of note, the 12-month sample was larger
because stool samples from participants were easier to collect for analyses. In general, our
sample of infants at both 3–4 months of age and 12 months of age did not differ from the
overall CHILD cohort (Supplementary Table S1).
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Table 1. Population characteristics according to antimicrobial exposure at 3 months (3–4 months-old
sample; N = 1429).

Row Percentages Total a NALC *
n = 406

AALC *
n = 346

NAHC *
n = 318

AAHC *
n = 359 p Value

29% 24% 22% 25%
Maternal age

18–29 503 148 (29%) 105 (21%) 137 (27%) 113 (22%) <0.001
30–39 874 241 (26%) 220 (25%) 177 (20%) 236 (27%)
≥40 52 17 (33%) 21 (40%) 4 (8%) 10 (19%)

Maternal race
Caucasian 1072 270 (25%) 271 (25%) 246 (23%) 285 (27%) <0.001

Asian 203 108 (53%) 38 (18%) 33 (16%) 24 (12%)
Other 141 27 (19%) 34 (24%) 35 (25%) 45 (32%)

Family income
<50,000 199 34 (17%) 31 (16%) 54 (27%) 80 (40%) <0.001

50,000–99,999 487 134 (27%) 121 (25%) 111 (23%) 121 (25%)
≥100,000 516 207 (40%) 158 (31%) 105 (20%) 46 (9%)

Prefer not to answer 130 26 (20%) 25 (19%) 33 (26%) 46 (35%)
Birth method

Vaginal 1096 406 (37%) 211 (19%) 317 (29%) 162 (15%) <0.001
CS-elective 134 0 52 (39%) 0 82 (61%)

CS-emergency 194 0 82 (42%) 0 112 (58%)
Gestational age

<39 weeks 372 73 (20%) 107 (29%) 73 (20%) 119 (32%) <0.001
≥39 weeks 1052 333 (32%) 238 (23%) 245 (23%) 236 (22%)
Infant Sex

Male 766 206 (27%) 196 (26%) 161 (21%) 203 (27%) 0.172
Female 663 200 (30%) 150 (23%) 157 (24%) 156 (24%)

Breastfeeding at
3 Months
Exclusive 791 262 (33%) 209 (26%) 153 (19%) 167 (21%) <0.001

Mixed 384 98 (26%) 88 (23%) 85 (22%) 113 (29%)
Formula 251 45 (18%) 48 (19%) 80 (32%) 78 (31%)
Furry pet

No 777 258 (33%) 205 (26%) 258 (20%) 205 (21%) <0.001
Yes 648 146 (23%) 141 (22%) 166 (26%) 195 (30%)

Older sibling
No 712 189 (27%) 194 (27%) 125 (18%) 204 (29%) <0.001
Yes 712 216 (30%) 150 (21%) 193 (27%) 153 (21%)

Smoke exposure
No 1160 352 (30%) 290 (25%) 251 (22%) 267 (23%) <0.001
Yes 248 51 (21%) 50 (20%) 62 (25%) 85 (34%)

* Antimicrobial exposure (NALC: no antibiotics and lower usage of cleaning products; AALC: any antibiotics
and lower usage of cleaning products; NAHC: no antibiotics and higher usage of cleaning products; AAHC:
any antibiotics and higher usage of cleaning products). a Total may not add up due to missing data; IAP:
intrapartum antibiotic prophylaxis; p-value calculated using Pearson chi-square test and displayed in bold when
statistically significant.

2.2. Study Population and C. difficile Colonization
2.2.1. C. difficile Colonization at 3–4 Months of Age

In our study, the prevalence of C. difficile colonization in infants at 3–4 months of
age was 31% (445/1429). The C. difficile colonization of infants differed according to
antimicrobial exposure: 24% for NALC, 30% for AALC, 32% for NAHC, and 39% for AAHC
(p < 0.001; Figure 1). Before adjusting for covariates, the odds of C. difficile colonization were
38% higher (odds ratio (OR): 1.38, 95% confidence interval (CI) 1.00–1.91; p = 0.047) in the
AALC infants, 52% higher (OR: 1.52, 95% CI 1.10–2.11; p = 0.011) in the NAHC infants, and
103% higher (OR: 2.03, 95% CI 1.49–2.78; p < 0.001) in the AAHC infants, compared with the
NALC infants (Table 2). The initial selection of covariates for model testing is shown in the
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directed acyclic graph (DAG; Supplementary Figure S1). After adjusting for covariates in
the final model (i.e., maternal age, birth method, and breastfeeding), C. difficile colonization
remained significantly higher only for infants in the cumulative exposure (AAHC) group
(adjusted odds ratio (aOR): 1.50, 95% CI 1.03–2.17; p = 0.032), compared with those infants
with no antibiotics and lower usage of cleaning products (NALC). C. difficile colonization
was also higher in the AALC and NAHC infants, compared with the NALC infants, but
did not attain statistical significance at p < 0.05 (Table 2).
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Figure 1. C. difficile colonization according to antimicrobial exposure (NALC: no antibiotics and lower
usage of cleaning products; AALC: any antibiotics and lower usage of cleaning products; NAHC:
no antibiotics and higher usage of cleaning products; AAHC: any antibiotics and higher usage of
cleaning products).

Table 2. Univariable and multivariable logistic regression for antimicrobial exposure and C. difficile
colonization at 3–4 months of age.

Crude (Unadjusted)
Model 1 (Adjusted for

Maternal and Birth
Characteristics)

Model 2 (Adjusted for
Postnatal

Characteristics)

Model 3 (Adjusted for
Maternal Age, Birth

Method, Breastfeeding,
Furry Pet, Older
Siblingship, and
Smoke Exposure)

Final Model (Adjusted
for Maternal Age, Birth

Method, and
Breastfeeding)

OR
(95% CI) p Value aOR

(95% CI) p Value aOR
(95% CI) p Value aOR

(95% CI) p value aOR
(95% CI) p Value

Antimicrobial
Exposure *

(ref = NALC)

AALC 1.38
(1.00–1.91) 0.047 1.23

(0.86–1.76) 0.238 1.29
(0.92–1.80) 0.136 1.17

(0.81–1.69) 0.376 1.21
(0.84–1.73) 0.293

NAHC 1.52
(1.10–2.11) 0.011 1.48

(1.06–2.06) 0.020 1.22
(0.86–1.72) 0.252 1.19

(0.84–1.69) 0.304 1.27
(0.90–1.78) 0.166

AAHC 2.03
(1.49–2.78) <0.001 1.67

(1.16–2.41) 0.006 1.53
(1.10–2.14) 0.010 1.33

(0.90–1.95) 0.141 1.50
(1.03–2.17) 0.032

Block 1: Maternal and
birth characteristics

Maternal age
(ref = 30–39)

18–29 1.60
(1.34–2.13) <0.001 1.79

(1.41–2.27) <0.001 1.66
(1.29–2.14) <0.001 1.71

(1.34–2.18) <0.001

≥40 0.80
(0.41–1.55) 0.513 0.79

(0.40–1.55) 0.505 0.90
(0.45–1.79) 0.768 0.86

(0.43–1.71) 0.688

Birth method
(ref = Vaginal)

CS-elective 1.42
(1.02–2.15) 0.039 1.44

(0.93–2.22) 0.095 1.29
(0.82–2.03) 0.260 1.28

(0.83–1.99) 0.251

CS-emergency 1.63
(1.19–2.24) 0.002 1.54

(1.06–2.24) 0.022 1.50
(1.02–2.22) 0.038 1.49

(1.02–2.18) 0.038

Gestational age
(ref ≤ 39weeks)
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Table 2. Cont.

Crude (Unadjusted)
Model 1 (Adjusted for

Maternal and Birth
Characteristics)

Model 2 (Adjusted for
Postnatal

Characteristics)

Model 3 (Adjusted for
Maternal Age, Birth

Method, Breastfeeding,
Furry Pet, Older
Siblingship, and
Smoke Exposure)

Final Model (Adjusted
for Maternal Age, Birth

Method, and
Breastfeeding)

OR
(95% CI) p Value aOR

(95% CI) p Value aOR
(95% CI) p Value aOR

(95% CI) p value aOR
(95% CI) p Value

≥39 weeks 1.00
(0.77–1.29) 0.979 1.08

(0.83–1.41) 0.550

Block 2: Postnatal
characteristics

Breastfeeding a

(ref = Exclusive)

Mixed 1.96
(1.50–2.55) <0.001 1.88

(1.43–2.47) <0.001 1.89
(1.43–2.49) <0.001 1.88

(1.43–2.46) <0.001

Formula 3.11
(2.31–4.19) <0.001 2.78

(2.03–3.80) <0.001 2.65
(1.93–3.63) <0.001 2.71

(1.99–3.69) <0.001

Furry pet (ref=No)

Yes 1.38
(1.10–1.73) 0.005 1.17

(0.92–1.50) 0.180 1.19
(0.93–1.52) 0.148

Older sibling
(ref = No)

Yes 0.77
(0.62–0.97) 0.030 0.80

(0.63–1.02) 0.073 0.87
(0.68–1.13) 0.316

Smoke exposure
(ref = No)

Yes 1.77
(1.33–2.35) <0.001 1.43

(1.06–1.93) 0.018 1.31
(0.97–1.78) 0.075

* Antimicrobial exposure in infants by 3 months of age (NALC: no antibiotics and lower usage of cleaning products;
AALC: any antibiotics and lower usage of cleaning products, NAHC: no antibiotics and higher usage of cleaning
products; AAHC: any antibiotics and higher usage of cleaning products). a Breastfeeding at 3 months of age; OR:
odds ratio, aOR: adjusted odds ratio; CI: confidence interval; statistically significant p-values displayed in bold.

2.2.2. C. difficile Colonization at 12 Months of Age

In our study, the prevalence of C. difficile colonization in infants at 12 months of age
was 46% (797/1728). C. difficile colonization rates in infants were different, depending on
antimicrobial exposure: 41% for the NALC infants, 50% for the AALC infants, 44% for
the NAHC infants, and 50% for the AAHC infants (p = 0.009; Figure 1). Before adjusting
for covariates, the odds of colonization with C. difficile were 46% higher for both the
AALC infants (OR: 1.46, 95% CI 1.12–1.88; p = 0.004) and the AAHC infants (OR: 1.46,
95% CI 1.12–1.90; p = 0.004), but not different for the NAHC infants (OR: 1.17, 95% CI
0.87–1.54; p = 0.256), compared with the NALC infants (Table 3). The covariates that
were initially selected for testing in the models are shown in the directed acyclic graph
(DAG; Supplementary Figure S2). After adjusting for covariates in the final model (i.e.,
birth method, breastfeeding, and older siblingship), C. difficile colonization remained
significantly higher in both the AALC infants (aOR: 1.36, 95% CI 1.02–1.83; p = 0.035)
and the AAHC infants (aOR: 1.37, 95% CI 1.00–1.86; p = 0.043), compared with the
NALC infants (Table 3). To account for antibiotic administration between 3 months
and 12 months of age, we performed sensitivity analysis that adjusted models for oral
antibiotic treatment during the 3 to 12 month period, as well as excluded infants with
this usage. Similar results were obtained (Supplementary Table S2).

Table 3. Univariable and multivariable logistic regression for antimicrobial exposure and C. difficile
colonization at 12 months of age.

Crude (Unadjusted) Model 1 (Adjusted for Birth
Characteristics)

Model 2 (Adjusted for
Postnatal Characteristics)

Final Model (Adjusted for
Birth Method, Breastfeeding,

and Older Siblingship)
OR

(95% CI) p Value aOR
(95% CI) p Value aOR

(95% CI) p Value aOR
(95% CI) p Value

Antimicrobial
Exposure *

(ref = NALC)

AALC 1.46
(1.12–1.88) 0.004 1.44

(1.08–1.92) 0.012 1.34
(1.02–1.75) 0.030 1.36

(1.02–1.83) 0.035
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Table 3. Cont.

Crude (Unadjusted) Model 1 (Adjusted for Birth
Characteristics)

Model 2 (Adjusted for
Postnatal Characteristics)

Final Model (Adjusted for
Birth Method, Breastfeeding,

and Older Siblingship)
OR

(95% CI) p Value aOR
(95% CI) p Value aOR

(95% CI) p Value aOR
(95% CI) p Value

NAHC 1.17
(0.89–1.54) 0.256 1.16

(0.88–1.53) 0.272 1.13
(0.85–1.51) 0.371 1.11

(0.84–1.48) 0.442

AAHC 1.46
(1.12–1.90) 0.004 1.47

(1.09–1.99) 0.012 1.37
(1.04–1.80) 0.023 1.37

(1.00–1.86) 0.043

Block 1:
Birth characteristics

Birth method
(ref = Vaginal)

CS-elective 1.17
(0.86–1.61) 0.305 0.90

(0.63–1.28) 0.575 1.13
(0.78–1.63) 0.511

CS-emergency 1.22
(0.93–1.59) 0.148 0.97

(1.71–1.33) 0.892 0.86
(0.63–1.18) 0.374

Gestational age
(ref ≤ 39weeks)

≥39 weeks 0.81
(0.66–1.01) 0.067 0.85

(0.68–1.06) 0.170

Block 2: Postnatal
characteristics

Breastfeeding a

(ref = Yes)

No 1.10
(0.91–1.34) 0.297 1.09

(0.89–1.33) 0.369 1.08
(0.89–1.32) 0.399

Furry pet
(ref = No)

Yes 0.89
(0.73–1.07) 0.236 0.84

(0.68–1.02) 0.091

Older sibling (ref = No)

Yes 0.60
(0.49–0.72) <0.001 0.60

(0.49–0.73) <0.001 0.59
(0.48–0.73) <0.001

Smoke Exposure
(ref = No)

Yes 0.94
(0.73–1.22) 0.690 0.91

(0.70–1.19) 0.533

Notes: * Antimicrobial exposure in infants by 3 months of age (NALC: no antibiotics and lower usage of cleaning
products; AALC: any antibiotics and lower usage of cleaning products; NAHC: no antibiotics and higher usage of
cleaning products; AAHC: any antibiotics and higher usage of cleaning products); a Breastfeeding at 12 months;
OR: odds ratio, aOR: adjusted odds ratio; CI: confidence interval; statistically significant p-values displayed
in bold.

2.2.3. Persistent C. difficile Colonization

In a smaller subset of 653 infants, 28% (184/653) were colonized with C. difficile at both
3–4 of age and 12 months of age. We classified this process as “persistent colonization”.
Persistent C. difficile colonization was present in 18% of the NALC infants, 28% of the AALC
infants, 26% of the NAHC infants, and 42% of the AAHC infants. Overall, antimicrobial
exposure influenced persistent C. difficile colonization (p < 0.001). After adjusting for
covariates in the final model (i.e., birth method, breastfeeding, and older siblingship),
persistent C. difficile colonization remained significantly higher only in the AAHC infants
(aOR: 2.40, 95% CI 1.33–4.35; p = 0.004), compared with the NALC infants (Table 4).

Table 4. Univariable and multivariable logistic regression for antimicrobial exposure and persistent
C. difficile colonization.

Crude (Unadjusted)
Model 1 (Adjusted for

Maternal and Birth
Characteristics)

Model 2 (Adjusted for
Postnatal

Characteristics)

Model 3 (Adjusted for
Maternal Age, Birth

Method, Breastfeeding,
Older Siblingship, and

Smoke Exposure)

Final Model (Adjusted
for Birth Method,

Breastfeeding, and
Older Siblingship)

OR
(95% CI) p Value aOR

(95% CI) p Value aOR
(95% CI) p Value aOR

(95% CI) p Value aOR
(95% CI) p Value

Antimicrobial
Exposure *

(ref = NALC)

AALC 1.75
(1.06–2.89) 0.028 1.57

(0.91–2.71) 0.104 1.38
(0.81–2.35) 0.235 1.33

(0.75–2.37) 0.322 1.31
(0.74–2.13) 0.337

NAHC 1.59
(0.95–2.67) 0.075 1.61

(0.96–2.71) 0.071 1.36
(0.77–2.39) 0.481 1.39

(0.79–2.44) 0.241 1.50
(0.87–2.57) 0.142
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Table 4. Cont.

Crude (Unadjusted)
Model 1 (Adjusted for

Maternal and Birth
Characteristics)

Model 2 (Adjusted for
Postnatal

Characteristics)

Model 3 (Adjusted for
Maternal Age, Birth

Method, Breastfeeding,
Older Siblingship, and

Smoke Exposure)

Final Model (Adjusted
for Birth Method,

Breastfeeding, and
Older Siblingship)

OR
(95% CI) p Value aOR

(95% CI) p Value aOR
(95% CI) p Value aOR

(95% CI) p Value aOR
(95% CI) p Value

AAHC 3.20
(1.96–5.23) <0.001 2.77

(1.55–4.92) 0.001 2.55
(1.51–4.33) <0.001 2.42

(1.32–4.44) 0.004 2.40
(1.33–4.35) 0.004

Block 1: Maternal and
birth characteristics

Maternal age
(ref = 30–39)

18–29 1.48
(1.04–2.13) <0.030 1.61

(1.11–2.34) 0.011 1.24
(0.82–1.85) 0.294

≥40 0.76
(0.27–2.09) 0.598 0.74

(0.26–2.11) 0.584 0.99
(0.34–2.92) 0.998

Birth method
(ref = Vaginal)

CS-elective 1.66
(0.94–2.94) 0.079 1.03

(0.53–2.01) 0.921 1.21
(0.60–2.45) 0.579 1.19

(0.59–2.39) 0.609

CS-emergency 2.10
(1.32–3.35) 0.002 1.51

(0.87–2.61) 0.141 1.18
(0.65–2.12) 0.574 1.16

(0.65–2.06) 0.601

Gestational age
(ref ≤ 39 weeks)

≥39 weeks 0.75
(0.51–1.10) 0.151 0.77

(0.52–1.15) 0.217

Block 2: Postnatal
characteristics

Breastfeeding a

(ref = Exclusive)

Mixed 2.30
(1.53–3.44) <0.001 2.42

(1.58–3.72) <0.001 2.35
(1.53–3.62) <0.001 2.22

(1.45–3.39) <0.001

Formula 3.34
(2.11–5.28) <0.001 2.55

(1.55–4.21) <0.001 2.44
(1.48–4.03) <0.001 2.83

(1.74–4.58) <0.001

Furry pet (ref = No)

Yes 1.26
(0.89–1.77) 0.180 0.93

(0.63–1.37) 0.749

Older sibling
(ref = No)

Yes 0.38
(0.26–0.54) <0.001 0.36

(0.24–0.54) <0.001 0.38
(0.25–0.58) <0.001 0.40

(0.27–0.59) <0.001

Smoke exposure
(ref = No)

Yes 1.63
(1.05–2.54) 0.029 1.58

(0.97–2.59) 0.064 1.50
(0.92–2.45) 0.103

* Antimicrobial exposure in infants by 3 months of age. (NALC: no antibiotics and lower usage of cleaning
products; AALC: any antibiotics and lower usage of cleaning products; NAHC: no antibiotics and higher usage of
cleaning products; AAHC: any antibiotics and higher usage of cleaning products); a Breastfeeding at 3 months of
age; OR: odds ratio, aOR: adjusted odds ratio; CI: confidence interval; statistically significant p-values displayed
in bold.

2.2.4. Stratified Analysis of Antimicrobial Effects on C. difficile Colonization

In a subset of vaginally-delivered infants, C. difficile colonization was higher for the
AAHC infants compared with the NALC infants at both 3–4 months of age and 12 months
of age (aOR: 1.59, 95% CI 1.06–2.38; p = 0.025 and aOR: 1.62, 95% CI 1.15–2.29; p = 0.005,
respectively). This association was not observed in caesarean-delivered infants, for whom
there was already a greater risk of C. difficile colonization (Figures 2 and 3; Supplementary
Table S3). All caesarean-delivered infants were exposed to maternal IAP, so the reference
group (NALC) for the vaginal-birth subanalysis consisted of infants who did not receive
any direct antibiotics (Figures 2 and 3). In a stratified analysis by sex, no difference was
observed between boys and girls with respect to the impact of antimicrobial exposure
on C. difficile colonization (Supplementary Figure S3). In infants without an older sibling,
C. difficile colonization at 12 months of age was higher for the AALC infants (aOR: 1.58,
95% CI 1.07–2.35; p = 0.021) and the AAHC infants (aOR: 1.77, 95% CI 1.16–2.70; p = 0.008),
compared with the NALC infants. This association was not observed in infants who had
an older sibling (Supplementary Figure S4). Individual adjustments for each covariate
showed that none were strong enough alone to remove the statistical significance from
antimicrobial exposure on C. difficile colonization (Supplementary Table S4).
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Figure 3. Stratified analysis by birth method for antimicrobial exposure and C. difficile colonization at
12 months of age. (NALC: no antibiotics and lower usage of cleaning products; AALC: any antibiotics
and lower usage of cleaning products; NAHC: no antibiotics and higher usage of cleaning products;
AAHC: any antibiotics and higher usage of cleaning products).

2.2.5. Antimicrobial Exposure, C. difficile Colonization and Other Gut Microbes

Infant gut microbiota composition differed across groups of antimicrobial exposure at
3–4 months of age and to a lesser extent at 12 months of age. Of note, most changes occurred
in the cumulative exposure group (AAHC), where the highest C. difficile colonization
was observed. At 3–4 months of age, the relative abundance of Bifidobacteriaceae and
Bacteroidaceae decreased, while the relative abundance of Clostridaceae, Lachnospiraceae,
Veillonellaceae, and Enterobacteriaceae increased in the AALC and AAHC infants, compared
with the NALC infants. In the NAHC infants, the relative abundance of Lachnospiraceae and
Ruminococcaceae increased and the relative abundance of Bifidobacteriaceae and Clostridaceae
decreased, compared with the NALC infants (Figure 4). At 12 months of age, the most
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obvious changes were a lower abundance of Bacteroidaceae in the AALC and AAHC infants,
compared with the NALC infants, although Clostridaceae, Lachnospiraceae, Veillonellaceae,
and Enterobacteriaceae were still higher. In the NAHC infants, the relative abundance of
Bifidobacteriaceae and Clostridaceae decreased, compared with the NALC infants (Figure 4).
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3. Discussion
3.1. Main Findings

In a general population of 1429 infants, C. difficile colonization of infant gut microbiota
was affected by antimicrobial exposure. At 3–4 months of age, colonization rates were
1.5 times greater (95% CI 1.03–2.17; p = 0.032) following cumulative infant exposure to
systemic and household antimicrobials (AAHC) than the colonization rates after minimal
antimicrobial exposure (NALC). C. difficile colonization in infants aged 3–4 months persisted
until the age of 12 months. Further, stratification by birth mode showed that in vaginally
delivered infants, the colonization rates were 1.59 times greater (95% CI 1.06–2.38; p = 0.025)
and 1.62 times greater (95% CI 1.15–2.29; p = 0.005) in the cumulative exposure group,
compared with the rates in those with minimal antimicrobial exposure at 3–4 months of
age and 12 months of age, respectively. This association was not observed in infants born
via caesarean section, indicating that post-caesarean antimicrobial exposure did not further
increase the risk of C. difficile colonization. At the older infant age, the association with
antimicrobials was strongest from perinatal (maternal IAP and newborn IV) antibiotic
exposure (odds ratio (OR):1.33, 95% confidence interval (CI) 1.10–1.62; p = 0.003). Although
C. difficile colonization of infants is asymptomatic [15], its presence in gut microbiota at this
early age is associated with future asthma and allergic diseases [20,21]. Our study is the
first to evaluate both the systemic antibiotic exposure and the environmental antimicrobial
exposure of infants, with separate consideration of infants delivered vaginally and by
caesarean section.

3.2. Interpretation

Importantly, the cumulative effect of antimicrobial exposure on C. difficile colonization
remained in vaginally-delivered infants, even after adjusting for covariates, showing that
the vulnerability of full-term newborns to antibiotic exposure is not related to caesarean
delivery. Consistent with what others have reported [15], we found that up to 31% of
infants were colonized with C. difficile at a time when gut microbiota are being established.
Antimicrobial exposure significantly increased C. difficile colonization at both 3–4 months
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of age and 12 months of age. The biological or clinical relevance of C. difficile colonization
in infants is yet to be fully understood. In a small group of infants (n = 65), C. difficile was
associated with an increased risk of allergic diseases in early childhood [20]. An earlier
study of 957 infants linked the presence of C. difficile in infants at 1 month of age with
atopic manifestations at 2 years of age [21]. Further, colonization with C. difficile in infancy
may promote a dysbiotic gut environment by modifying the composition of the microbial
ecosystem [18], or serve as a reservoir for adult C. difficile infection [16,17]. Early microbial
dysbiosis may also be associated with inflammatory bowel disease (IBD), allergy and
asthma, obesity, and other metabolic disorders [19].

Several studies have evaluated the impact of maternal IAP or postnatal antibiotics on
infant gut microbiota [7,8,22]. Similar to our results, Tapiainen et al. [8] reported changes in
infant gut microbiota from both IAP exposure and IV antibiotics that were still observed at
6 months of age, including the enrichment of Clostridium and the depletion of Bacteroides
species. Consistent with what others have reported [8,23–26], we found a reduction of
Bifidobacteriaceae and Bacteroidaceae in gut microbiota following antibiotic exposure, as well
as an increase in Clostridaceae, Lachnospiraceae, Veillonellaceae, and Enterobacteriaceae at both
3–4 months of age and 12 months of age. Colonization of more Proteobacteria (phylum to
which Enterobacteriaceae belongs) may be a signal for gut dysbiosis and inflammation [27],
while a reduction in important gut microbes may provide room for C. difficile colonization
and overgrowth. We observed the most significant changes in infants with the highest
antimicrobial exposure (the AAHC group), who were also identified as having the highest
C. difficile colonization.

While many household cleaning products contain antimicrobials that can give rise
to resistant bacteria [28], the evidence of their impact on infant gut microbiota is limited.
Consistent with a previous report on frequent use of household disinfectants in a smaller
sample of CHILD study infants [9], this study found a higher abundance of Lachnospiraceae
in infants of 3–4 months of age who were exposed to the higher usage of cleaning products.
Moreover, our results further demonstrated that the combined effect of systemic antibi-
otic exposure and additional antimicrobial exposure from household cleaning products
increases the likelihood of C. difficile colonization. This cumulative antimicrobial effect
on C. difficile colonization at 3–4 months of age persisted until at least 12 months of age,
demonstrating that the collateral damage inflicted on the gut microbiota is not rapidly
repaired [29]. This effect was even greater in infants who were persistently colonized with
C. difficile at both 3–4 months of age and 12 months of age.

We found few other early life variables that influenced C. difficile colonization at
3–4 months of age or 12 months of age. As previously reported by others [30,31], infants
born via emergency caesarean section (CS) were more likely to be colonized by C. difficile
at 3–4 months of age, compared with vaginally delivered infants. Many women who
undergo emergency CS delivery planned to give birth vaginally and are positive for
GBS [32], increasing the cumulative antimicrobial exposure of the newborn. Previous
epidemiological studies have identified breastfeeding as an important contributor to the
infant gut microbiota [22], [31,33]. In our study, exclusively breastfed infants were less
likely to be colonized with C. difficile at 3–4 months of age than were mixed-fed infants or
exclusively formula-fed infants. We found that having an older sibling seemed to strongly
influence C. difficile colonization at 12 months of age. Infants with an older sibling had lower
C. difficile colonization. This finding was similar to that of a systematic review comprising
six studies that reported a decreased abundance of Clostridium in infants with an older
sibling [34]. It is suggested that the influence of other children or siblings on the infant
gut microbiota is in line with the “hygiene hypothesis”, in that other children or siblings
increase the infant’s exposure to early gut colonizers that prime the infant’s immune system
and provide colonization resistance against pathogens and C. difficile [33,35].
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3.3. Strengths and Limitations

Our study has several strengths, including the application of high throughput se-
quencing and qPCR to profile gut microbiota and C. difficile colonization in a prospective
birth cohort with representative and large sample size. To the best of our knowledge,
this study is the first to examine the influence of household cleaning products and their
cumulative effect, together with systemic antibiotics, on C. difficile colonization and the
infant gut microbiota. Unique to our study was the capture of both perinatal (maternal IAP
and newborn IV) and postnatal antibiotic use. We also performed a sensitivity analysis for
C. difficile colonization at age 12 months to account for antibiotics given during the period
from 3 months to 12 months of age.

Our findings should be considered with some limitations. Exposure status to clean-
ing products was dependent on self-reported questionnaires, and we were not able to
determine the specifics of cleaning product brands, ingredients, or how much product
was used per application. In addition, we were not able to perform analysis based on
chemical composition. However, we assigned a score based on the frequency of use of each
product and classified all infants as either living in a home with higher (above average)
or lower (below average) usage of cleaning products. Moreover, we did not report on
the longitudinal colonization of C. difficile, as our sample collection was limited to two
time points. However, we performed analysis to examine persistent colonization at both
3–4 months of age and 12 months of age.

4. Materials and Methods
4.1. Study Design

This study included a subsample of 1429 infants at 3–4 months of age and 1728 infants
at 12 months of age from families that were enrolled in the Canadian Healthy Infant Longi-
tudinal Development (CHILD) Cohort (www.childstudy.ca; accessed on 10 January 2022).
Women were enrolled into CHILD during the second or third trimester of pregnancy be-
tween 2009 to 2012, from study sites in Vancouver, Edmonton, and Manitoba. Written
informed consent was obtained from the mothers upon enrollment. This study was ap-
proved by the Human Research Ethics Boards of the University of Alberta, the University
of Manitoba, and the University of British Columbia.

4.2. Exposures

This prospective population-based cohort study examined the effect of antimicrobial
exposures, before or at 3 months of age, on C. difficile colonization in the gut of the infants.
Data on maternal intrapartum antibiotic prophylaxis (IAP) and newborn antibiotic treat-
ment were obtained from hospital birth charts for each of the participants. At 3 months
post-partum, the mothers completed validated questionnaires regarding infant usage of
antibiotics and the frequency of use of various household cleaning products. Parents were
asked about their usage of household cleaning products from a list of 26 cleaning products
(Supplementary Figure S5). The cleaning products questionnaire was validated with visual
inspection of the products by research assistants during home visits [9]. The frequency
of use for each product was assigned a score: 0 for never (not used), 1 for less than a
month usage, 2 for monthly usage, 3 for weekly usage, and 4 for daily usage. The scores
for each respondent were added together to obtain a total score. The total scores were
split at the median into two groups of higher usage (i.e., living in a home with above
average cleaning product use) and lower usage (i.e., living in a home with below average
cleaning product use) of household cleaning products to make comparisons of the effect of
sizes during the analyses. To determine the impact of the antibiotics and the household
cleaning products, infants were assigned to one of four groups: (1) no antibiotic exposure
and lower usage of cleaning products (NALC), (2) any antibiotic exposure and lower usage
of cleaning products (AALC), (3) no antibiotic exposure and higher usage of cleaning
products (NAHC) and (4) any antibiotic exposure and higher usage of cleaning products

www.childstudy.ca
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(AAHC). The exposure to “any” antibiotics indicated exposure to maternal IAP and/or the
administration of antibiotics directly to infants from birth to 3 months of age.

4.3. Fecal Microbiota Analysis

Infant stool samples (fresh or frozen) were collected at approximately 3–4 months of
age and 12 months of age after a home assessment or in the clinic. Samples were stored
at −80 ◦C prior to analysis. Fecal samples were characterized with Illumina MiSeq us-
ing the bacterial 16S ribosomal ribonucleic acid (rRNA) gene hypervariable V4 region,
as previously described [36]. Analysis of C. difficile was performed using quantitative
polymerase chain reaction (qPCR) with appropriate primers, as previously described [7].
Primers and probe efficiency were determined by a standard curve procedure by estab-
lishing five 1:10 serial dilutions of C. difficile American Type Culture Collection (ATCC)
9689D-5 genomic DNA, starting at 1 ng/uL. For each plate, a non-template control was
used. An efficiency between 90% and 110%, and an R2 greater than or equal to 0.9 for the
primers and probes combination were used as quality control parameters for each run. A
Quantitative Insights Into Microbial Ecology (QIIME) pipeline (www.qiime.org, accessed
on 15 June 2017) was used to group microbiota into taxonomic order and to summarize
Operational Taxonomic Unit (OTU) data within infant fecal samples.

4.4. Statistical Analysis

C. difficile colonization (outcome) at 3–4 months of age and 12 months of age was ana-
lyzed as a binary variable (yes or no). Non-parametric tests were carried out as appropriate
to compare C. difficile colonization, taxon mean relative abundance, antimicrobial exposure,
and demographic variables. Statistical significance was defined as a two-sided p or q-value
≤ 0.05, after a false discovery rate (FDR) correction for multiple comparisons. Potential
confounding variables were identified from the literature [31,33,37]. They included ma-
ternal age and race, family income, birth method, gestational age, breastfeeding status
at 3 months of age, furry pet ownership, having an older sibling(s), and tobacco smoke
exposure from birth to 3 months of age. Thereafter, a reduced set of these variables was
selected using the directed acyclic graph (DAG) method; these variables were tested in
models to prevent over-adjustment [38] (See Supplementary Figures S1 and S2). Logistic
regression analysis was used to determine the association between antimicrobial exposure
and C. difficile colonization. Model 1 was adjusted for maternal and birth characteristics
(maternal age and birth method), model 2 was adjusted for postnatal characteristics (breast-
feeding, furry pet, older siblingship, and smoke exposure). Model 3 was adjusted for
variables from models 1 or 2 that had a p-value ≤ 0.05 or caused a ≥15% change in the
estimate of antimicrobial exposure. Confounding variables from model 3 were retained in
the final model if they had a p-value ≤ 0.05 or if they caused a ≥15% change in the estimate
of antimicrobial exposure. It is noteworthy that model 3 was not included for the 12-month
analysis, because most covariates were not significant at p-value ≤ 0.05 in models 1 or 2;
confounding variables retained in the final model were those from models 1 or 2 that had a
p-value ≤ 0.05 or caused a ≥15% change in estimate of antimicrobial exposure. Statistical
analysis was conducted using STATA 13.0 software (64-bit); Stata Corp 4905 Lakeway Drive
College Station, Texas 77845 USA.

5. Conclusions

In Canada, oral antibiotic treatment of young infants is not common; however, indirect
neonatal exposure to intrapartum antibiotics administered to the mother is increasing, due
to current recommendations for GBS and the growing prevalence of caesarean delivery. Our
results support ongoing efforts to reduce antimicrobial exposure during infancy, especially
in the neonatal period. These results show that cumulative exposure to antibiotics and
household cleaning products (environmental antimicrobials) is not without consequence.
Previous epidemiological studies have linked early life antimicrobial exposure to the
development of childhood asthma and allergic diseases, but the mechanisms for these

www.qiime.org
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associations are unknown. C. difficile colonization and/or gut microbiota composition may
or may not be a pathway. Further studies are required to replicate these findings in other
populations and to determine the impact on future health outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11070981/s1. Table S1: Distribution (%) of Antibiotic
Exposure, Household Cleaning Products Use and Selected Covariates at 3–4 Months, 12 Months
and Both Time Points; Compared to the Entire Canadian Healthy Infant Longitudinal Development
(CHILD) Cohort at 3 Sites (Edmonton, Winnipeg, Vancouver); Table S2: Sensitivity Analysis for
Antimicrobial Exposure and C. difficile Colonization at 12 Months; Table S3: Population Characteristics
and C. difficile colonization at 3–4 Months and 12 Months; Table S4: Individual Adjustment for
Covariates on Antimicrobial Exposure and C. difficile Colonization; Figure S1: Directed Acyclic
Graph for Antimicrobial Exposure and C. difficile Colonization at 3–4 Months (minimal sufficient
adjustment sets for estimating the total effect of exposure on outcome: Maternal age, Birth method,
Gestational age, Breastfeeding, Older sibling, Furry pet, Smoke exposure); Figure S2: Directed Acyclic
Graph for Antimicrobial Exposure and C. difficile Colonization at 12 Months (minimal sufficient
adjustment sets for estimating the total effect of exposure on outcome: Birth method, Gestational age,
Breastfeeding, Older sibling, Furry pet, Smoke exposure); Figure S3: Stratified Analysis by Infant Sex
for Antimicrobial Exposure and C. difficile Colonization at 12 Months; Figure S4: Stratified Analysis
by Older Siblingship for Antimicrobial Exposure and C. difficile Colonization at 12 Months; Figure S5:
Questionnaire on household cleaning products use (Frequency of use score: 0 for never (not used),
1 for less than a month, 2 for monthly, 3 for weekly and 4 for daily).
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