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A rise in adiposity in the United States has resulted in more than 70% of adults being
overweight or obese, and global obesity rates have tripled since 1975. Following the 2009
H1N1 pandemic, obesity was characterized as a risk factor that could predict severe
infection outcomes to viral infection. Amidst the SARS-CoV-2 pandemic, obesity has
remained a significant risk factor for severe viral disease as obese patients have a higher
likelihood for developing severe symptoms and requiring hospitalization. However, the
mechanism by which obesity enhances viral disease is unknown. In this study, we utilized
a diet-induced obesity mouse model of West Nile virus (WNV) infection, a flavivirus that
cycles between birds and mosquitoes and incidentally infects both humans and mice.
Likelihood for severeWNV disease is associated with risk factors such as diabetes that are
comorbidities also linked to obesity. Utilizing this model, we showed that obesity-
associated chronic inflammation increased viral disease severity as obese female mice
displayed higher mortality rates and elevated viral titers in the central nervous system. In
addition, our studies highlighted that obesity also dysregulates host acute adaptive
immune responses, as obese female mice displayed significant dysfunction in
neutralizing antibody function. These studies highlight that obesity-induced
immunological dysfunction begins at early time points post infection and is sustained
through memory phase, thus illuminating a potential for obesity to alter the differentiation
landscape of adaptive immune cells.

Keywords: obesity, chronic inflammation, viral infection, West Nile virus, neutralizing antibody, vaccination,
sex difference
INTRODUCTION

Following the 2009 H1N1 pandemic, a link between obesity and enhanced viral infection severity
first came to light. Similarly, amidst the SARS-CoV-2 pandemic, obesity has been cited as a risk
factor for SARS-CoV-2 patients to develop coronavirus disease 2019 (COVID-19) (1, 2). Obese
COVID-19 patients also have a higher likelihood for requiring hospitalization due to severe
symptoms, in addition to a higher mortality rate when compared to healthy weight patients (3, 4).
While multiple studies have begun to address the link between obesity and severe disease (5–8), the
mechanism by which obesity heightens the likelihood of severe disease outcome is still unclear.
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Within the United States, ~72% of adults are overweight,
while ~40% are characterized as obese based upon a body mass
index greater than or equal to 30 kg/m2 (9). Half of United States
adults are predicted to be obese by 2030 (10). Globally, obesity
rates have tripled since 1975 resulting in 1 out of 3 people being
currently classified as overweight or obese (11, 12). Rising obesity
rates are problematic due to obesity being linked to numerous
comorbidities including nonalcoholic fatty liver disease, type 2
diabetes and respiratory distress, as well as being a risk factor for
metabolic syndrome (13–15). Further, within the obese state,
energy intake often exceeds energy expenditure, resulting in a
positive energy balance that can result in fat accumulation. This
accumulation can cause adipocyte enlargement, thus interfering
with blood supply to adipocytes and inducing a hypoxic state.
Hypoxia within adipose tissue can incite necrosis and result in
macrophage infiltration, leading to the production of pro-
inflammatory cytokines like interleukin-1b (IL-1b) and tumor
necrosis factor-a (TNF-a) that contribute to a state of chronic
inflammation seen in obese subjects (16, 17).

Retrospective analyses following the 2009 H1N1 pandemic
classified obesity as an independent risk factor of severe H1N1
infection outcomes, as a large proportion of hospitalized patients
who succumbed to H1N1 infection were obese (18–23). Since the
2009 H1N1 pandemic highlighted the susceptibility of the obese
population to severe infection outcomes, numerous laboratories
sought to determine if increasing vaccination rates of this high-
risk population could mitigate the risk for severe disease. Such
studies, predominately done utilizing respiratory viruses, have
revealed that obese humans and mice displayed impaired
immune responses to vaccination (8, 24–27) and classified
obesity as a comorbidity that exacerbates viral disease severity
(6, 7, 24, 25, 28–30). To explore the impact of obesity on immune
responses over time, we utilized West Nile virus (WNV).

WNV is a positive-sense, single-stranded RNA member of
the Flaviviridae family (31). WNV cycles between birds and
mosquitoes with other infections, including those of humans and
mice, being incidental. In humans, WNV infections are
commonly asymptomatic but can cause severe illness resulting
in encephalitis and meningitis (32). Protection against WNV
infection is mediated by humoral and cellular immune
responses (33–37). Elevated risk of severe WNV disease is
associated with age, diabetes, hypertension, kidney disease
and immune deficiencies. As WNV is a neurovirulent virus,
severe disease in both humans and mice is associated with
dissemination of the virus into the central nervous system
(CNS) (33, 38–43).

Here, we show that obesity-associated chronic inflammation
dysregulates host immune responses, increasing host susceptibility
to severe WNV infection. We identified an early impact of obesity
on viral control, where obese female mice have significantly higher
viral loads in the CNS and die at a higher rate when compared to
non-obese controls. Additionally, this study demonstrates that the
impact of obesity on immune cell dysfunction is exacerbated in
obese female mice when compared to obese male mice, as
highlighted by significant defects in the ability of neutralizing
antibodies primed in obese female mice to limit WNV infection.
Overall, our data reveal that obesity has an impact early during the
Frontiers in Immunology | www.frontiersin.org 2
course of infection in inducing dysfunctional immunological
responses to WNV infection.
MATERIALS AND METHODS

Ethics Statement
All animal studies were conducted in accordance with the National
Institutes of Health Guide for Care and Use of Laboratory Animals
and approved by the Saint Louis University Animal Care and Use
Committee (IACUC protocol 2771).

Virus and Cells
WNV (strain New York 99) was passaged once in Vero cells
(African green monkey kidney epithelial cells) purchased from
American Type Culture Collection (ATCC CCL-81). Virus was
titered via focus forming assay (FFA) on Vero cells as previously
described (44).

Mice and Viral Infections
Wild type C57BL/6J mice were purchased commercially from
Jackson Laboratories and housed in a pathogen-free mouse facility
at the Saint Louis University School of Medicine. 3- to 12-week-
old mice were fed either a control (wt) or high fat diet (HFD) (40%
kcal fat, 20% kcal fructose and 2% cholesterol, Research Diets Inc.)
for approximately 12 weeks. Once mice on the HFD weighed 25%
more than wild type counterparts, they were considered to be
obese (ob). 15- to 30-week-old male and female C57BL/6J mice
were infected subcutaneously (SC) via footpad injection with 100
FFU of WNV.

Measurement of Liver Enzyme Levels
Serum was collected from naïve wild type and obese mice that
had been fed their respective diets for 12 weeks. Serum was
diluted 1:2 in PBS and loaded into a sample collection cup for
analysis via an IDEXX Catalyst One Chemistry Analyzer. An
NSAID clip was loaded into the analyzer to measure liver
damage based on serum levels of alkaline phosphatase, alanine
aminotransferase and aspartate aminotransferase.

Measurement of Circulating Inflammatory
Cytokine Levels
Blood from naïve wild type and obese female and male mice that
had been fed their respective diets for 12 weeks was collected into
RNAzol BD (Molecular Research Center, Inc.: RB 192) and RNA
was isolated according to the manufacturer’s instructions. mRNA
expression of TNF-a, IL-1b and IL-6 was determined through qRT-
PCR using Taqman primer probe sets purchased from Integrated
DNA Technologies (IDT) based on the following assay identifiers:
Mm.PT.58.12575861 (TNF-a), Mm.PT.58.41616450 (IL-1b) and
Mm.PT.58.10005566 (IL-6). Relative expression of each cytokine
was determined by 2DDCT with fold induction being relative to
GAPDH (assay identifier: Mm.PT.39a.1) levels of the same samples.

Measurement of Viral Burden
15- to 17-week-old male and female C57BL/6J mice were infected
SC via footpad injection with 100 FFU of WNV. At 3, 8 and
August 2021 | Volume 12 | Article 739025
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15 days-post-infection (DPI), intracardiac perfusion with 20 ml of
PBS was performed and brains, kidneys, spleens, livers and fat were
snap frozen in Sarstedt tubes. Organs were homogenized in DMEM
supplemented with 5% FBS using a BeadMill 24 (Fisher Scientific).
Infectious viral load was determined by incubating ten-fold serial
dilutions of organ homogenate on Vero WHO cell monolayers in
96-well plates. Cells and organ homogenates were incubated for 1
hour at 37°C, then overlaid with 2% methylcellulose diluted in 5%
DMEM to prevent indiscriminate viral spread. Cells were then
incubated for 24 hours at 37°C prior to being fixed with 5%
paraformaldehyde in PBS for 30 minutes at room temperature.
Cells were then washed 3x with PBS and permeabilized for 10
minutes in focus forming assay permeability (FFA perm) wash (PBS,
0.05% Triton-X). Foci formed from infected cells were identified by
incubating plates with anti-mouse 4G2 (D1-4G2-4-15) (BioXCell),
a flavivirus group antibody that binds to the fusion loop of domain
II on the envelope protein, at 1 µg/ml for 2 hours at room
temperature. Cells were washed 3x with FFA perm wash and
incubated for 1 hour at room temperature with a goat anti-mouse
horseradish peroxidase-conjugated (HRP) secondary antibody
(Sigma) at 5µg/ml. Cells were again washed 3x with FFA perm
wash and TrueBlue detection reagent (KPL) was added for
visualization of foci of infection. Foci were counted using a CTL
Elispot as described in (45). For quantification of viral genome copies,
RNA was extracted from organ homogenates using TriReagent RT
(Molecular Research Center Inc.: RT111). Viral genome copies were
quantified via qRT-PCR using Prime-Time primer-probe sets
purchased from IDT with the following sequences: Forward:
TCAGCGATCTCTCCACCAAAG, Reverse: GGGTCAGC
ACGTTTGTCATTG, Probe: TGCCCGACCATGGGAGAAGCTC.
Viral genome copies/µl were quantified based on a standard curve
generated through dilutions of a flavivirus copy control.

Focus Reduction Neutralization Tests
Mouse serum was diluted 1:10 in PBS, serially diluted 3-fold and
mixedwith~100FFUofWNV.Serum:virusdilutionswere incubated
for 1 hr at 37°C to allow for immune complex formation. Complexes
were then added toVeroWHOcellmonolayers in 96-well plates and
incubated for 1 hr at 37°C to allow for viral entry into cells. Cells were
then overlaid with 2% methylcellulose, and plates were incubated
24 hr at 37°C. Plates were fixed with 5% paraformaldehyde for 30
minutes at room temperature. Plates were then rinsed with PBS and
permeabilized for10minuteswithFFApermwash.Foci formed from
infected cells were detected by incubating cells with a-mouse 4G2
(D1-4G2-4-15) at 1µg/ml for 2 hours at room temperature. Plates
were washed 3 times with FFA perm wash and incubated for 1 hr at
room temperature with goat a-mouse HRP-conjugated secondary
(Sigma) at 5µg/ml. Plates were then washed 3 times with FFA perm
wash and foci were visualized through the addition of TrueBlue
detection reagent (KPL). Foci were counted using a CTL Elispot.
Neutralization curves and FRNT90 and FRNT50 values were
generated in GraphPad Prism 8 though x-axis logarithmic
transformation followed by a non-linear curve fit regression analysis.

Statistical Analyses
All statistical analyses were performed using GraphPad Prism 8.
Survival curve statistical differences were determined using
Frontiers in Immunology | www.frontiersin.org 3
Mantel-Cox tests. Statistical differences in weight gain, liver
enzyme levels, viral burden and neutralizing antibody FRNT90

and FRNT50 values were determined by Mann-Whitney tests.
RESULTS

Diet-Induced Obese Mice Display Liver
Damage and Elevated Inflammatory
Cytokine Levels
To determine the impact of obesity on immune responses to WNV,
we developed a mouse model of high fat diet induced obesity based
on previously published studies (46, 47). Female and male 3-5-
week-old C57BL/6J mice were fed either a regular chow diet (wild
type) or high fat diet. Mice were considered obese (ob) when they
weighed 25% more than wild type (wt) mice, which occurred
approximately 12 weeks after initial high fat diet feeding
(p<0.0001) (Figure 1A). As wild type and ob female mice
weighed significantly less than their male counterparts (p <0.0001
for wild type mice and p=0.0018 for obese mice), we separated the
mice based on sex. The significant elevation in weight observed in
ob female and ob male mice compared to the wild type controls has
been shown to be a reasonable surrogate for obesity as determined
by elevated BMI in humans (48, 49).

Due to diet-induced obesity being linked to nonalcoholic fatty
liver disease (50, 51), we sought to determine if liver-resident
enzyme levels were increased in serum of obese mice. When
wild type and obese mice had been fed their respective diets
for 12 weeks, serum was collected to measure circulating levels
of alkaline phosphatase, alanine aminotransferase and aspartate
aminotransferase (Figures 1B–D). Obese mice displayed
significantly increased alkaline phosphatase (female p=0.0079 and
male p=0.0127), alanine aminotransferase (female p=0.0079 and
male p=0.0007) and aspartate aminotransferase (female p=0.0079
and male p=0.0080) levels when compared to wild type mice. The
elevated liver enzyme levels in the obese mice indicate hepatocyte
death due to normally liver-resident enzymes being released into the
bloodstream. Importantly, obese liver enzyme levels often fell
outside of the normal range for mice as indicated by the dotted
lines, suggesting that the high fat diet fed mice exhibited evidence of
disease similar to nonalcoholic fatty liver disease seen in humans
(52, 53).

Since human obesity is accompanied by chronic inflammation,
we also sought to measure circulating inflammatory cytokine levels
of the mice in our model. We noted that obese female mice
displayed significantly higher TNF-a (p=0.0043), IL-6 (p=0.0303)
and IL-1b (p=0.0043) levels when compared to female wild type
counterparts (Figures 1E–G). Similarly, obese males also displayed
significantly higher circulating levels of TNF-a (p=0.0002), IL-6
(p=0.0019) and IL-1b (p=0.0499) when compared to wild type male
counterparts (Figures 1E–G). Interestingly, wild type females also
displayed significantly higher levels of TNF-a (p=0.0016) and IL-6
(p=0.0186) when compared to wild type males, while obese females
displayed significantly higher levels of TNF-a (p=0.0200) and IL-1b
(p=0.0127) when compared to obese males (Figures 1E–G). These
data highlight that inflammation is generally higher in females than
inmales, regardless of diet status. Taking together the sex differences
August 2021 | Volume 12 | Article 739025
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A B

C D

E

G

F

FIGURE 1 | Diet-induced obese mice experience liver damage and have elevated levels of circulating inflammatory cytokines. (A) Weights at time of infection. To
ensure mice fed the high fat diet were obese prior to infection, female (wt n=28 and ob n=27) and male (wt n=20 and ob n=27) mice were weighed. Both female and
male ob mice weighed significantly more than wt counterparts (p<0.0001). (B–D) Serum liver enzyme levels. Liver function was monitored by measuring serum levels
of (B) alkaline phosphatase (ALKP), (C) alanine aminotransferase (ALT) and (D) aspartate aminotransferase (AST) in wt female (n=5), ob female (n=5), wt male (n=8)
and ob male (n=6) mice. All liver enzyme levels tested were detected at significantly higher amounts in ob mice when compared to wt mice, and numerous ob mice
displayed enzyme levels outside of the normal range for a mouse (as indicated by the dotted lines). When comparing ALKP levels in ob versus wt females, p=0.0079,
while p=0.0127 for ob versus wt males. When comparing ALT levels, p=0.0079 for ob versus wt females, while p=0.0007 for ob versus wt males. When comparing
AST levels, p=0.0079 for ob versus wt females, while p=0.0080 for ob versus wt males. (E–G) Circulating inflammatory cytokine levels. qRT-PCR was used to
characterize expression of three inflammatory cytokines, tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6) and interleukin-1b (IL-1b), in the blood of naïve wt and
ob female (n=5 and n=6, respectively) and male (n=8 and n=8) mice. In each instance, inflammatory cytokine levels were significantly higher in ob mice when
compared to wt counterparts. Additionally, overall, inflammation was higher in female mice when compared to male mice. (E) TNF-a expression: p=0.0043 for ob
versus wt females, p=0.0047 for ob versus wt males, p=0.0080 for ob females versus ob males and p=0.0109 for wt female versus wt males. (F) IL-6 expression:
p=0.0303 for ob versus wt females, p=0.0045 for ob versus wt males, p=0.0533 for ob females versus ob males and p=0.0109 for wt female versus wt males.
(G) IL-1b expression: p=0.0303 for ob versus wt females, p=0.0499 for ob versus wt males, p=0.0127 for ob females versus ob males and p=0.0109 for wt female
versus wt males. Statistical significance was determined by Mann-Whitney test. *p < 0.05, **p < 0.01, ***P < 0.001, ****p < 0.0001, ns, not significant.
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in terms of weight change and inflammation levels, we decided to
separate the female and male mice for the remainder of our studies.

Obesity Enhances the Mortality Rate of
Female Mice Following WNV Infection
Following the establishment of our obesity mouse model, we
sought to test our hypothesis that obese mice would be more
susceptible to severe WNV infection. To test this, female and
male obese and wild type mice were infected subcutaneously
(SC) with 100 focus forming units (FFU) of WNV via hind
footpad injection. Following infection, the mice were monitored
for survival for 30 days. Wild type females exhibited a
significantly higher survival rate when compared to obese
females with ~73% of wild type females surviving, while only
about ~26% of obese females survived (p=0.0132) (Figure 2A).
The mean time to death (MTD) for the obese females was 10
days post infection (DPI). These findings are consistent with
studies done using influenza viral infection models in obese mice
(25, 28, 54, 55). However, no significant differences were noted in
survival rates between wild type and obese male mice
(Figure 2B). Wild type females also displayed a 10% greater
survival rate than wild type males (Figures 2A, B). The disparity
between the survival rate of male and female mice was somewhat
surprising, although studies in humans have previously noted
differences in WNV disease severity between sexes (56, 57).

Obesity Enhances WNV Load in the CNS
of Female Mice
Due to the high mortality rate of obese females, we next sought to
measure viral titers in various organs previously shown to harbor
productive WNV replication (58) to determine if increased viral
burden contributed to enhanced mortality rates or altered WNV
tissue tropism. To this end, wild type and obese mice were
infected SC with 100 FFU WNV. The following organs were
collected at 3, 8 and 15 DPI: subcutaneous fat, liver, spleen,
kidney and brain. As we noted a significant difference in the
Frontiers in Immunology | www.frontiersin.org 5
survival only with the female mice (Figure 2) we separated the
analysis of the mice based on the sex of the animals. Virus was
quantified both by focus forming assay to detect infectious virus
(Figure 3), and qRT-PCR to detect WNV genome copies
(Supplementary Figure 1).

In the periphery, obese females exhibited a slight but
significantly higher level of infectious WNV in the liver at each
time point post infection (3 DPI p=0.0433, 8 DPI p=0.0238, 15
DPI p=0.0286) (Figure 3A). Similarly, the female obese state
displayed higher levels of infectious WNV in the spleen at 3 DPI
(p=0.0152) when compared to wild type females, however, no
differences in titer were noted at 8 or 15 DPI (Figure 3B). The
infectious virus was not significantly different in other peripheral
sites including fat and kidney at any time point post infection
(Figures 3C, D). Examination of the WNV genome copies in the
peripheral organs showed no differences between the obese and
wild type female mice liver and fat titers (Supplementary
Figures 1A, C), but a slight yet significantly lower amount of
viral genome copies was observed in the obese mouse spleens
(p=0.0315) and kidneys (p=0.0268) at eight days post infection
(Supplementary Figures 1B, D). As expected, WNV viral titer
data showed no differences in infectious virus or viral genome
copies between male wild type and obese mice in any peripheral
or CNS organ at any time point tested (Supplementary
Figures 2, 3). Overall, these data suggest that the obese state in
female mice may contribute to modestly higher viral replication
in some peripheral organs with the greatest impact occurring in
the liver, but the slight differences in viral titer in the periphery
do not appear to explain the stark differences in mortality
between the obese and wild type female mice.

AsWNV is predominately a CNS disease (59) we hypothesized
that the higher mortality observed in the obese females would be
associatedwithhigherWNVtiters in the brainsof these animals. To
determine if obesity impacted viral infection in the CNS, we
examined WNV viral titer in the brains of the obese and wild
type female mice at 3, 8 and 15 DPI (Figure 4). We were unable to
A B

FIGURE 2 | Diet-induced obese mice have enhanced mortality following viral infection. (A, B) Survival of mice following WNV infection. Mice were infected with 100
FFU of WNV via subcutaneous foot pad injection. (A) Wt females (n = 15) displayed a significantly higher survival rate when compared to ob females (n = 15)
(p = 0.0132). (B) No differences were noted in the survival rates between male wt and ob mice (n = 22 and n = 19, respectively) (p = 0.9559). Survival significance
was determined via Mantel-Cox test. *p < 0.05, ns, not significant.
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detect infectious virus and saw no differences in the genome copy
numbers between the wild type and obese females at 3 DPI
(Figure 4A). However, by 8 DPI, obese females had
approximately two logs more infectious virus in the brains as
compared to the wild type control mice (p=0.0397) (Figure 4B).
The obese female mice also displayed significantly higher WNV
genome copies in the brain at this time point (p=0.0012)
(Figure 4B). The obese female mice maintained a significantly
higher infectious viral titer compared to the controls with a log
difference between the two groups in the surviving mice at 15 DPI
(p=0.0079) (Figure 4C), but there were no differences in the
genome copy numbers of WNV in brains between these groups
at this time point. Interestingly, the genome copy number in the
brains of the wild type animals increased between day 8 and 15 post
infection. Importantly, as the MTD for the obese mice is 10 DPI,
viral titer in the surviving obese mice decreased suggesting some
evidence of effective immune control in the surviving animals.

Obese Females Generate Poorly
Functioning Neutralizing Antibodies to WNV
Previous studies have shown that obesity can lead to poor antibody
responses following vaccination (25–27, 60–62). Therefore, we
hypothesized that the increase in mortality and high viral loads
seen in the obese female mice was due in part to defects in
the antibody response in the obese WNV infected animals.
Frontiers in Immunology | www.frontiersin.org 6
To test this hypothesis, we analyzed the function of neutralizing
antibodies in wild type and obese mice at 8, 15 and 30 DPI through
focus reduction neutralization tests (FRNTs), as we described
previously (63). Employing the use of FRNTs allowed us to
determine the concentration of serum, as a by proxy of
neutralizing antibody titer, required to neutralize 90% (FRNT90)
and 50% (FRNT50) of WNV present in the assay. Between male
obese and male wild type mice, the percentage of WNV infected
cells was slightly elevated at low serum dilutions at 8 and 30 DPI,
but as the serum dilution increased, nearly identical infection rates
were noted between the two groups (Supplementary Figures 4A,
G). In addition, both obese and wild type males display similar
FRNT90 and FRNT50 values, suggesting that neutralizing
antibodies primed in male obese mice are functional
(Supplementary Figures 4B, C, E, F, H, I).

At 8, 15 and 30 DPI in the female mice, there is a higher
percentage of WNV infected cells for each obese mouse serum
dilution tested when compared to the serum dilutions of wild
type females (Figures 5A, D, G), suggesting that the neutralizing
antibodies primed in the female obese state fail to neutralize
WNV as robustly as those antibodies primed in wild type
females. Further, at each time point tested, FRNT90 values are
significantly lower in the obese females when compared to the
wild type females (8 DPI p=0.0286, 15 DPI p=0.0079, 30 DPI
p=0.0021), again highlighting a defect in the quality of
A B

C D

FIGURE 3 | The obese state in females promotes early WNV entry into peripheral organs. (A–D) Infectious viral titers in female mouse organs. Mice were infected
with 100 FFU of WNV via subcutaneous foot pad injection. At 3 (wt n=6 and ob n=6), 8 (wt n=5 and ob n=5) or 15 (wt n=4 and ob n=4) days post infection, liver (A),
spleen (B), fat (C) and kidney (D) were harvested, frozen and homogenized. Levels of infectious virus were measured via focus forming assay and reported as FFU/
ml of organ homogenate. Asterisks indicate statistically significant values (*p < 0.05) as determined by Mann-Whitney test. ns, not significant.
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neutralizing antibodies primed in obese female mice
(Figures 5C, F, I). Similarly, FRNT50 values trend toward
being lower in obese females versus wild types at 8 DPI
(Figure 5B), and these values are significantly lower in obese
females at 15 and 30 DPI (15 DPI p=0.0079, 30 DPI p=0.0044)
(Figures 5E, H). Thus, the neutralizing antibodies primed in the
obese females display a reduced neutralization capacity when
compared to those primed in the wild type females.
Frontiers in Immunology | www.frontiersin.org 7
DISCUSSION

With obesity rates rising globally and having links to numerous
pathophysiological conditions, we sought to determine if obesity
conferred immunological dysfunction in a murine diet-induced
obesity WNV infection model. Here we have shown that in
female mice, high fat diet feeding induces an obese state that
promotes increased mortality, heightened viral titers in the brain,
A

B

C

FIGURE 4 | The obese state in female mice promotes heightened viral titers in the brain. (A–C) Brain viral titers in female mice. Mice were infected with 100 FFU
WNV via SC footpad injection and brains were harvested at 3 (A), 8 (B) and 15 (C) DPI. Brains were homogenized and used to determine infectious titer via focus
forming assay or RNA was isolated and used for qRT-PCR analysis to determine WNV genome copy numbers based off a copy control. Infectious titer data were
reported as WNV FFU/ml and genome copy data were reported as WNV RNA/µl based off GAPDH expression. Asterisks indicate statistically significant values
(*p < 0.05, **p < 0.001) as determined by Mann-Whitney test. ns, not significant.
August 2021 | Volume 12 | Article 739025

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Geerling et al. Obesity Enhances Viral Disease Severity
and impaired function of neutralizing antibodies. In this report,
we primarily focused on the female data as it highlights the most
pronounced differences in disease, but current studies are
underway in our laboratory to further investigate the interplay
between chronic inflammation and sex in altering immune
responses to viral pathogens. Interestingly, sex has been cited
as a confounding factor in immune responses to viral pathogens
with males generally having a higher risk of severe outcomes
from respiratory infections at younger and older ages, while
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females are often at a higher risk for severe viral disease during
reproductive years (reviewed in [64)].

We noted a stark difference in survival between wild type and
obese females where obese females died at a significantly higher
rate than wild type females (Figure 2A). The WNV titers in the
peripheral organs revealed modest differences between the obese
and wild type female mice with elevated titers in the livers and
spleens of obese females at various earlier time points post
infection (Figures 3A, B). These findings are consistent with
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FIGURE 5 | Obese females have poorly neutralizing antibodies to WNV. At 8 (wt n = 4 and ob n = 4), 15 (wt n = 5 and ob n = 5) and 30 (wt n = 10 and ob n = 8)
DPI, focus reduction neutralization tests were performed to assess neutralizing antibody function. Neutralization curves at each time point (A, D, G) show a higher
frequency of infected cells when virus was incubated with serum derived from obese females. Although no differences are noted between FRNT50 values at 8 DPI
between wild type and obese animals (B), these values are significantly lower in obese females at 15 and 30 DPI when compared to wild type counterparts (E, H),
while FRNT90 values are significantly lower in obese females when compared to wild type at each time point tested (C, F, I). Asterisks indicate statistically significant
values (* p<0.05, ** p<0.001) as determined by Mann-Whitney test. ns, not significant.
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other studies exploring the impact of obesity on organ titer in the
context of various viral infections (55, 65, 66). AsWNV is known
to be neuroinvasive (67, 68), we sought to explore a potential role
of obesity in altering WNV pathogenesis. Notably, the obese
females displayed significantly higher titers in the brains at 8 and
15 DPI when compared to wild type females (Figures 4B, C). As
shown previously by Brien et al., elevated WNV titers in the
brain significantly correlate with mortality from WNV (69).
Based on our work and on previous studies in the literature,
we can conclude that the significant increase in mortality in the
obese mice is due to the elevated viral titers observed.

Numerous studies exploring the effect of diet-induced obesity
on vaccination outcomes to various viruses and toxins, including
influenza and hepatitis B viruses and tetanus toxin, have
highlighted that the titer of neutralizing antibodies primed in
the obese state is reduced when compared to the wild type state,
and such antibodies wane rapidly (26, 27, 29, 62, 70, 71). These
observations highlight a potential defect in the formation of
memory B cells within the obese state, a phenomenon that
could be detrimental in the context of WNV infection as
neutralizing antibodies are essential in reducing viral load
amidst WNV infection (33, 72, 73). Previous studies have also
shown that WNV specific antibody responses are important for
the control of WNV burden in the CNS (33). Thus, we sought to
determine if the obese state impacted the function of neutralizing
antibodies. As can be seen on the neutralization curves in Figure 5,
we noted a higher frequency of WNV-infected cells at each
dilution tested from female obese mouse-derived serum at all
the time points observed. Similarly, when analyzing the FRNT90
and FRNT50 values, it is evident that a significantly higher amount
of female obese mouse-derived serum is required to neutralize
90%, as well as half, of the virus present when compared to serum
derived from wild type female mice (Figures 5B, C, E, F, H, I),
implicating defects in sterilizing immunity within obese females.

Through these studies, we determined that obesity induces
immunological dysfunction in a murine diet-induced obesity
WNV infection model. We showed that high fat diet feeding in
female mice induces an obese state that promotes altered viral
pathogenesis, and a decreased neutralization capacity of
neutralizing antibodies. The early time points studied
throughout these experiments revealed that the obese state
impacts the adaptive immune responses at early time points
post infection, thus shedding light on the potential for obesity to
induce epigenetic changes that alter the differentiation landscape
within the obese state. This phenomenon could account for why
obesity tends to induce impaired memory responses. Studies to
further explore the sex differences noted within our model, as
well as to investigate the impact of obesity on epigenetic
modification of immune cells, are undergoing.
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Supplementary Figure 1 | The obese state in females promotes early WNV entry
into peripheral organs. (A–D) Organ viral titers in female mice. Mice were infected
with 100 FFU of WNV via subcutaneous foot pad injection. At 3, 8 or 15 days post
infection, liver (A), spleen (B), fat (C) and kidney (D) were harvested, frozen and
homogenized. RNA was isolated from organ homogenates and viral genome copies
were quantified via qRT-PCR using a standard curve to interpolate values based off
a copy control. Data were then normalized to GAPDH and reported as WNV
genome copies/µl of organ homogenate. Asterisks indicate statistically significant
values (*p<0.05) as determined by Mann-Whitney test. ns: not significant.

Supplementary Figure 2 | The obese state in males does not impact the timing
or replication pattern of WNV in peripheral organs. (A–D) Infectious viral titers in
male mouse organs. Mice were infected with 100 FFU of WNV via subcutaneous
foot pad injection. At 3 (wt n=4, ob n=3), 8 (wt n=3, ob n=3) or 15 (wt n=3, ob n=3)
days post infection, liver (A), spleen (B), fat (C) and kidney (D) were harvested,
frozen and homogenized. Levels of infectious virus were measured via focus
forming assay and reported as FFU/ml of organ homogenate. (E–H) Organ viral
genome copies in male mice. RNA was isolated from organ homogenates of liver
(E), spleen (F), fat (G) and kidney (H) and viral genome copies were quantified via
qRT-PCR using a standard curve to interpolate values based off a copy control.
Data were then normalized to GAPDH and reported as WNV genome copies/µl of
organ homogenate. ns: not significant.

Supplementary Figure 3 | The obese state in males does not impact the timing
or replication pattern of WNV in the CNS. (A–C) Infectious and genome copy viral
titers in male mouse brain. Mice were infected with 100 FFU of WNV via
subcutaneous foot pad injection. At 3 (A), 8 (B) or 15 (C) days post infection, brains
were harvested, frozen and homogenized. Levels of infectious virus were measured
via focus forming assay and reported as FFU/ml of brain homogenate. To determine
genome copy number, RNA was isolated from brain homogenates and viral
genome copies were quantified via qRT-PCR using a standard curve to interpolate
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values based off a copy control. Data were then normalized to GAPDH and reported
as WNV genome copies/µl of organ homogenate. ns: not significant.

Supplementary Figure 4 | Obese males have no defects in neutralizing antibody
function against WNV. At 8 (wt n=3 and ob n=4), 15 (wt n=4 and ob n=3) and 30 (wt
n=11 and ob n=13) DPI, focus reduction neutralization tests were performed to
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assess neutralizing antibody function. Neutralization curves at 8 and 30 DPI (A, G)
show a slightly higher frequency of infected cells when virus was incubated with low
serum dilutions derived from obese males, but nearly identical levels of infection are
ultimately reached as the serum becomes more dilute. FRNT50 and FRNT90 values
are nearly identical at each time point tested between wild type and obese male
mice (B, C, E, F, H, I). ns: not significant.
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