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Simple Summary: Pancreatic ductal adenocarcinoma is among the most aggressive malignancies
and improved treatment options are urgently needed. Silver nanoparticles are suggested as potent
antitumor agents, but the side effects of silver overdoses may limit the application. The natural
anti-oxidant α-lipoic acid might prevent these side effects. We synthesized nanosilver and used it to
treat several pancreatic cancer cells and normal cells in the presence or absence of α-lipoic acid. Silver
selectively eliminated pancreatic cancer cells and α-lipoic acid supported the cytotoxicity, whereas
benign cells largely resisted. α-Lipoic acid formed complexes with silver particles and reduced
silver-induced formation of reactive oxygen species, mitochondrial damage and liver toxicity. Our
data suggest that nanosilver application in the presence of α-lipoic acid is safe and effective in the
treatment of pancreatic cancer.

Abstract: Silver nanoparticles (AgNPs) have attracted attention in cancer therapy and might support
the treatment of pancreatic ductal adenocarcinoma (PDAC). Silver is in clinical use in wound dress-
ings, catheters, stents and implants. However, the side effects of systemic AgNP treatment due to
silver accumulation limit its therapeutic application. We evaluated whether the antioxidant and natu-
ral agent α-lipoic acid might prevent these side effects. We synthesized AgNPs using an Ionic-Pulser®

Pro silver generator and determined the concentration by inductively coupled plasma–optical emis-
sion spectrometry. The effect of α-lipoic acid was examined in four PDAC and two nonmalignant cell
lines by MTT, FACS analysis, TEM, xenotransplantation and immunohistochemistry. The viability of
PDAC cells was nearly totally abolished by AgNP treatment, whereas nonmalignant cells largely
resisted. α-Lipoic acid prevented AgNP-induced cytotoxicity in nonmalignant cells but not in PDAC
cells, which might be due to the higher sensitivity of malignant cells to silver-induced cytotoxicity.
α-Lipoic acid protected mitochondria from AgNP-induced damage and led to precipitation of AgNPs.
AgNPs reduced the growth of tumor xenografts, and cotreatment with α-lipoic acid protected chick
embryos from AgNP-induced liver damage. Together, α-lipoic acid strongly reduced AgNP-induced
side effects without weakening the therapeutic efficacy.

Keywords: pancreatic cancer; silver nanoparticle; α-lipoic acid; chelation; BCAT1; oxidative
stress; cytotoxicity
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive common
malignancies and is characterized by late diagnosis, early metastasis, and high therapy
resistance. Despite worldwide efforts, therapeutic options are limited. PDAC remains
the fourth leading cause of cancer-related deaths with an estimated 47,050 deaths in the
US in 2020, which account for 8.0% of all cancer deaths, and 57,600 new cases, which
account for 3.0% of all new cancer cases [1]. Therefore, improved therapeutic options are
urgently required.

Numerous recent studies describe silver nanoparticles (AgNPs) as potent antitumor
agents [2,3], e.g., for experimental treatment of PDAC [4]. Silver is known as one of the most
effective killers of any type of fungus, bacterium and virus [5], including the SARS-CoV-2
virus (COVID-19) [6], and has been used since ancient times for its antimicrobial properties.
For example, silver coins preserved milk, silver vessels kept drinking water fresh, and silver
plates on wounds prevented infection [5,7]. Hippocrates (400 BCE) used silver powder for
the treatment of ulcers and infectious diseases, and Paracelsus used silver nitrate salt for
the treatment of wounds [5,7]. During the Middle Ages, upper social class families used
everyday household plates and cutlery made from silver, which might have protected them
from the bubonic plague [8]. The price was permanent bluish-gray skin after significant
exposure to silver, a medical condition called argyria. Silver particles with diameters of 7 to
9 nm have been used in medications since 1889 and are known as “colloidal silver” [9]. The
treatment of patients with antimicrobial silver was largely discontinued in the 1940s after
the discovery of penicillin, for which Sir Alexander Fleming, a Scottish researcher, was
credited in 1928. However, Fleming already recognized the potential of bacteria to develop
resistance. Nanosilver is discussed to circumvent the increasing resistance of bacteria to
antibiotics because it is effective even against methicillin-resistant Staphylococcus aureus
(MRSA) [10,11]. In modern medical applications, silver is routinely used in dressings to
treat burns, skin wounds and skin infections; silver nitrate is used for Crede prophylaxis
to prevent chlamydia or gonococcal conjunctivitis in newborns [12], and aortic, heart,
biliary or ureteral stents are coated with silver nanoparticles to prevent infection and stent
blockade by biofilms [13,14]. For inoperable, obstructing PDAC, palliative, silver-coated
biliary stents are applied [13].

In addition to pure metallic silver (Ag), there are silver salts, silver nitrates, silver
sulfates, silver zeolite and silver protein complexes up to silver nanoparticles (AgNPs). The
common working principle of any form of silver seems to be the release of monoatomic
silver ions (Ag+) [5]. A suspension of silver-containing particles with sizes ranging from 1
to 1000 nm is loosely defined as colloidal silver [15]. Silver nanoparticle suspensions are
most often mixtures of silver ions, nanoparticles and aggregated nanoparticles [16]. The
nanosilver particle sizes range from 1 to 100 nm [17]; they have a greater surface area and
produce more silver ions than complex silver reagents. It is thought that the antitumor and
antibacterial activities of silver nanoparticles depend on the silver ions, which are released
from the nanoparticle surface [18].

The molecular mechanisms involved in the cytotoxicity of AgNPs against cancer
cells are still under investigation. A direct interaction of AgNPs with cellular proteins,
DNA, antioxidants, enzymes, membranes and organelles is suggested to converge into cell
death [5,19]. Alternatively, AgNPs are thought to indirectly influence cellular functions by
the generation of reactive oxygen species (ROS) and oxidative stress, which then causes
DNA damage, protein modification and degradation, metabolic toxicity and cellular dys-
function, which finally lead to cell death [5,20]. To date, the only available information
on silver effects on pancreatic cancer cells is that exposure of the established PDAC cell
line PANC-1 to AgNPs led to an altered mitochondrial ultrastructure and increased ROS
generation [4].

Side effects, such as agyria, have been observed after long-term ingestion of high
amounts of colloidal silver [21,22]. A case report described agyria after five years of
occasional ingestion of colloidal silver, and the estimated daily mean amount was 700 mL
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of a 0.15 µg/mL (=0.15 ppm) colloidal silver solution, which corresponds to a total silver
amount of 0.2 g silver ingested in 5 years [21]. It is assumed that agyria might be due to
the stimulation of melanocytes by deposited silver or to a sunlight-induced reduction of
the initially colorless silver in the dermis [23,24]. Additionally, silver deposition following
oral administration has been detected in the liver, kidneys, brain, spleen, blood and small
intestine [25]. Besides, neurotoxicity, changes in liver enzymes, weight loss, hypoactivity
and immunological effects are described following excessive administration of silver
nanoparticles [17,26].

The naturally occurring antioxidant and anti-inflammatory agent α-lipoic acid is
present in organ meats, spinach, broccoli, tomato, peas, Brussels sprouts and rice [27]. α-
Lipoic acid is also synthesized by the human body within the mitochondria, which explains
its important function as a cofactor of pyruvate and alpha-ketoglutarate dehydrogenase
in energy metabolism. In addition, α-lipoic acid was demonstrated to reverse the toxicity
of mercury derived from dental amalgams [28], excess copper in Wilson disease [29],
heavy metal intoxication, toxic mushroom poisoning, diabetic polyneuropathy and liver
cirrhosis [28]. Due to its lipophilic properties, α-lipoic acid penetrates cell membranes and
reaches high intracellular concentrations within 30 s of administration [30]. α-Lipoic acid
forms complexes with manganese (Mn2+), zinc (Zn2+), cadmium (Cd2+), lead (Pb2+), cobalt
(Co2+), nickel (Ni2+) and iron (Fe2+) [31]. A recent publication hints at the possibility that α-
lipoic acid also forms complexes with silver ions (Ag+) because it capped AgNPs on human
gingival fibroblasts while maintaining its antimicrobial effect for oral applications [32].

In the present study, we examined the effect of α-lipoic acid on the cytotoxicity of
AgNPs on human PDAC cell lines and benign cells. We found that AgNPs quickly killed
PDAC cell lines, whereas benign cells largely resisted. Our results demonstrate that α-lipoic
acid forms complexes with silver nanoparticles and ions and reduces AgNP-induced ROS
formation, mitochondrial damage and liver toxicity. At the same time, the high therapeutic
cytotoxicity of nanosilver to PDAC cells was maintained.

2. Materials and Methods
2.1. Cell Lines

The human PDAC cell lines BxPc-3, PANC-1 and MIA-PaCa2 and the nonmalignant
human pancreatic ductal cell line CRL-4023 (hTERT-HPNE-immortalized) were purchased
from the American Type Culture Collection (ATCC, Manassas, VA, USA). Immortalized
human hepatic stellate LX-2 cells were purchased from Merck (Darmstadt, Germany).
Gemcitabine-resistant BxGEM cells were selected by continuous gemcitabine treatment of
parental BxPc-3 cells as described [33]. BxPc-3, BxGEM, PANC-1, MIA-PaCa2 and LX-2 cells
were cultured in Dulbecco’s modified Eagle’s medium with high glucose supplemented
with 100 µg/mL fetal bovine serum (both from Sigma-Aldrich, Taufkirchen, Germany)
and 1 mM HEPES (PAA Laboratories, Posching, Austria). CRL-4023 cells were cultured in
Dulbecco’s modified Eagle’s medium without glucose (Thermo Fisher, Frankfurt, Germany)
and Medium M3 Base (Incell Corp, San Antonio, TX, USA) at a ratio of 3:1 with 2 mM
L-glutamine, adjusted to 1.5 g/L sodium bicarbonate, and supplemented with 5% fetal
bovine serum, 10 ng/mL human recombinant EGF, 750 ng/mL puromycin (all from Sigma-
Aldrich, Taufkirchen, Germany) and 5.5 mM D-glucose (Merck Darmstadt, Germany).
All cell lines were cultured at 37 ◦C in a humidified atmosphere of 95% O2 and 5% CO2,
and they were authenticated by Multiplexion GmbH (Heidelberg, Germany) and by their
typical morphology throughout the culture. To maintain authenticity of the cell lines,
frozen stocks were prepared from initial stocks, and every three months, a new frozen stock
was used for the experiments. Mycoplasma-negative cultures were ensured by monthly
testing by PlasmoTest™ (InvivoGen, San Diego, CA, USA).

2.2. Reagents

α-Lipoic acid (≥99%) (Sigma-Aldrich, Taufkirchen, Germany) was dissolved in ethanol
to a 200 mM stock solution and stored in aliquots at −20 ◦C. Each aliquot was used only
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once immediately after thawing. The final concentrations of the solvents in media were
0.5% or less.

2.3. AgNP Synthesis

AgNPs were produced by the use of the IDEAL-Pulser Basic S silver generator
(Pestalozzi-Apotheke, Lörrach, Germany). In short, 200 mL H2Obidest was boiled and
used to fill a heat-resistant laboratory glass beaker; then, the generator was placed on
top of the beaker so that the 8 cm-long and 5 mm-thick electrodes of pure silver > 99.99%
and a distance of 1 mm between each electrode were almost completely immersed in
water. During the synthesis, the electrode sludge was wiped off with a lint-free cellulose
cloth every 15 min. Finally, the AgNP solution was filtered through a 0.2 µm syringe
filter (GE Healthcare, Frankfurt, Germany) and transferred to an amber glass bottle for
short-term storage.

2.4. Determination of Silver Ion Concentration

The conductivity of AgNP solutions was measured by the use of an HP8753C network
analyzer in combination with an HP86046 A S-parameter test set (Hewlett-Packard, Palo
Alto, CA, USA) for microwave reflectometry. The conductivity was determined by mea-
suring the complex reflection coefficient on an open coaxial line immersed in the AgNP
solution as described [34]. Briefly, at 10 MHz, the conductivity of an aqueous solution
was calculated using the imaginary part of the complex dielectric permittivity, which was
obtained from the measured reflection coefficient. Assuming that only Ag+ and OH− ions
are produced by pulsing H2Obidest, the conductivity was considered to be the difference
in the conductivity of the silver solution minus that of pure water. The calculation of the
silver concentration was as follows:

σ′Ag(10 MHz)− σ′H2o(10 MHz) = e
(
ZAgµAgnAg + ZOHµOHnOH

)
(1)

with the elementary charge e = 1.6× 10−19C, charge number ZAg = ZOH = 1, ion mobility

µAg = 6.42× 10−8 m2

Vs , µOH = 2.052× 10−7 m2

Vs at 18 ◦C, and number density nAg = nOH of
the Ag+ and OH− ions.

The conductivity measurements were performed at 25 ◦C, thus the ion mobilities had
to be calculated for this temperature using Equation (2).

µi(25 ◦C) = µi(18 ◦C)(1 + αi(25 ◦C− 18 ◦C)) (2)

and i = Ag, OH, αAg = 0.0209 1
K , αOH = 0.0206 1

K .
From Equation (1) we calculated the number density nAg, which was given in ppm,

based on the silver molar weight of 107.87 g/mol.

2.5. Quantification of Total Silver Concentration

To determine the intracellular silver concentration, the cells were treated with 1.4 ppm
AgNPs for 24 h, and then the cells were detached from the cell culture plate by the use of
trypsin and washed with PBS. To detect the silver concentration in liver tissues, the livers
were resected from 10 embryos of each group, and the tissues were minced with sterile
scissors. Then, the cells and livers were dissolved and acidified in 400 µL of 65% HNO3
for 24 h at 65 ◦C. H2Obidest was added to a total volume of 4 mL to each sample, and the
silver concentration was determined by plasma optical emission spectrometry (ICP-OES)
at a wavelength of 328.068 nm using an Agilent 720 ICP-OES device (Agilent, Santa Clara,
CA, USA). To assess the amount of silver deposited in each cell in vitro or per gram of
liver tissue in vivo, the obtained results of each group were divided by the cell number or
the weight of lysed liver (in grams). A conical nebulizer with a cyclone chamber served
as the sample introduction system (Agilent). All samples were prepared and analyzed
in duplicate.
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2.6. Transmission Electron Microscopy (TEM)

Round, sterile coverslips (Carl Roth, Karlsruhe, Germany) were placed in Greiner
Cell Star® 24-well plates (Merck, Darmstadt, Germany), and 5 × 104 cells were seeded.
Twenty-four hours later, the cells were treated, with the final concentrations in the medium
containing 1.4 ppm AgNPs w and w/o 1 mM α-lipoic acid or were left untreated in the
control. Twenty-four hours later, the cells were fixed for 30 min at room temperature
with 2.5% glutaraldehyde, 2% sucrose in 50 mM sodium-cacodylate buffer (pH 7.2; Sigma-
Aldrich, Taufkirchen, Germany) supplemented with 50 mM KCl, 2.6 mM MgCl2 and
2.6 mM CaCl2. Afterwards the samples were washed 5 × 2 min with 50 mM cacodylate
buffer and post fixed for 40 min (at 4 ◦C in the dark) with 2% osmium tetroxide in 50 mM
sodium-cacodylate buffer. After 3 washing steps with H2Obidest (5 min each), the coverslips
were en bloc stained with 0.5% aqueous uranyl acetate for 30 min at room temperature in
the dark. Samples were dehydrated in a graded ethanol series (from 40% to 100%) at RT
and finally coverslips were placed on capsules filled with Spurr-resin and polymerized
for 24 to 48 h at 60 ◦C. Embedded samples were sectioned using a Reichert Ultracut S
ultramicrotome (Leica Instruments, Vienna, Austria) to a thickness of 70 nm. Post-staining
was done with 3% uranyl acetate in H2Obidest and lead citrate. Imaging was done at a
Jeol JEM-1400 (Jeol Ltd., Tokyo, Japan), operating at 80 kV, equipped with a 4 k × 4 k
digital camera (TEMCAM F416, TVIPS, Gauting, Germany) using EMMenue4 for taking
micrographs. Characterization of silver nanoparticles was done by dropping the suspension
onto a formvar coated grid using a micropipette. After a few seconds the grid was briefly
washed with a drop of H2Obidest and air dried afterwards. Samples were imaged without
further staining.

2.7. Measurement of E. coli Growth

The Escherichia coli (E. coli) bacterial strain OP50 was cultured in LB medium overnight
and was then diluted to an OD600 of ~0.1. Then, 0.1 mL of the bacterial solution was
pipetted into single wells of a 96-well plate containing LB medium plus AgNPs at final
concentrations of 1.4 ppm, 2.8 ppm, 4.2 ppm, 5.6 ppm or 7.0 ppm or the solvent H2Obidest
alone, followed by culture at 37 ◦C for 24 h. Then, the OD600 was measured in 60-min
intervals through the use of a Helios Delta spectrophotometer (Thermo Spectronic, London,
UK) for a period of 8 h. The growth curve was created using GraphPad Prism 6.0 software
(GraphPad Software Inc., San Diego, CA, USA).

2.8. Measurement of Cell Viability by MTT Assay

A total of 5 × 103 cells/100 µL cell culture medium per well of a 96-well plate was
seeded (n = 8 per group). Twenty-four hours later, the cells were treated with 1.4 ppm
AgNPs w and w/o 0.5 mM or 1 mM α-lipoic acid were left untreated in the control.
Following incubation for 24 h, 10 µL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) (Sigma-Aldrich, Taufkirchen, Germany) was added to each well, followed
by incubation at 37 ◦C for 4 h until the formation of violet formazone crystals became
visible. Then, 200 µL of DMSO was added to each well and incubated with gentle shaking at
37 ◦C for 15 min. The absorbance was measured at 560 nm using a Biotek EL800 microplate
reader (BioTek Instruments, Winooski, VT, USA) with a reference wavelength of 630 nm.
The cell viability was calculated based on the optical density. For data analysis, the value
of the DMSO control background was subtracted. The calculated value of the control of
each cell line was set to 100%.

2.9. Determination of Intracellular ROS by H2DCFDA-Cellular ROS Assay

The cells were seeded into 6-well plates at a density of 1.2 × 105 per well. Twenty-
four hours later, the cells were treated with 1.4 ppm AgNPs w and w/o 1 mM α-lipoic
acid or were left untreated in the control for 24 h. After discarding the culture medium,
the cells were washed once with 5 mL PBS, and then the cells were detached by the
use of trypsin-EDTA (Thermo Fisher, Frankfurt, Germany), followed by washing in PBS.
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The cell pellet was diluted in 300 µL of the buffer provided in the H2DCFDA-Cellular
ROS Assay Kit (Abcam, Berlin, Germany) and incubated in 10 µM cell-permeant 2′,7′-
dichlorodihydrofluorescein diacetate for 0.5 h at 37 ◦C. The fluorescence of DCF, which
reflects the oxidized form of H2DCFDA, was measured with a FACSCanto II flow cytometer
(BD Biosciences, Heidelberg, Germany), and the excitation and emission wavelengths of
480 and 525 nm were evaluated from 10,000 individual cells per measured value.

2.10. Staining of Mitochondria

The cells were seeded into 24-well plates at a density of 5 × 104 per well. Twenty-four
hours later, the cells were treated with 1.4 ppm AgNPs w and w/o 1 mM α-lipoic acid
or were left untreated in the control. Twenty-four hours later, the cell culture medium
was removed, and the cells were stained according to the instructions of the Mitochon-
drial Staining Kit—Red Fluorescence—Cytopainter (Abcam, Berlin, Germany). Randomly
chosen fields were examined at 400× magnification using a Leica DMRB fluorescence
microscope. Images were captured using a SPOTTM FLEX 15.2 64 Mp shifting pixel digital
color camera (Diagnostic Instruments, Inc., Sterling Heights, MI, USA) and analyzed with
SPOT Advanced 4.6 software (SPOT ImagingTM, Sterling Heights, MI, USA).

2.11. Detection of Apoptosis and Necrosis by Flow Cytometry

The cells were seeded into 6-well plates at a density of 5 × 104/mL per well. Twenty-
four hours later, the cells were treated with 1.4 ppm AgNPs w and w/o 1 mM α-lipoic
acid or were left untreated in the control. Twenty-four hours later, the cells were detached
by the use of trypsin without EDTA (Thermo Fisher, Frankfurt, Germany), followed by
washing in PBS. Then, the cells were resuspended in 1× Annexin V Binding Buffer (BD
Bioscience, Heidelberg, Germany), and 1 × 106 cells were collected and incubated with
1 µM Annexin V-FITC (BD Bioscience, Heidelberg, Germany) for 0.5 h at room temperature.
After washing three times with 1× Annexin V Binding Buffer, the cells were incubated
in 200 µL 1× Annexin V Binding Buffer supplemented with 2 µL 7-aminoactinomycin (7-
AAD; BD Bioscience, Heidelberg, Germany) for 20 min at room temperature. Subsequently,
the cells were washed and resuspended in 300 µL 1× Annexin V Binding Buffer and
stored in the dark on ice for up to 0.5–1 h until FACS measurement. Annexin V-FITC
(excitation/emission: 494/518 nm) binds to phosphatidylserine exposed by apoptotic cells
on the cell surface. 7-AAD is a fluorescent intercalator that experiences a spectral shift after
DNA binding, and 7-AAD/DNA complexes can be excited by a laser at 488 nm with a
maximum emission wavelength of 647 nm. In general, 7-AAD is excluded from living cells
but binds to the DNA of late apoptotic or necrotic cells. The fluorescence of cells stained
with annexin V-FITC/7-AAD was measured with a FACS Canto II flow cytometer (BD
Biosciences, Heidelberg, Germany). The excitation and emission wavelengths of 488 and
650 nm were evaluated from 10,000 individual cells per measured value.

2.12. Evaluation of Growth and Liver Morphology of Chick Embryos

Fertilized eggs from genetically identical hybrid Lohman brown chickens were ob-
tained from a local ecological hatchery (Geflügelzucht Hockenberger, Eppingen, Germany).
The eggs were washed with 70% ethanol and placed in sterile 37.8 ◦C incubators in a
vertical position with the pointed side of the eggs downwards. On day 4 of chick devel-
opment, a 1-cm2 hole was cut with scissors into the eggshell to check the viability of the
embryo. Afterward, the eggs with live embryos were replaced in the incubator and kept in
a horizontal position. Eggs with dead embryos were excluded from the experiment. From
developmental day 12 to day 17, the chick embryos were treated by dropping 200 µL or
400 µL of a 14 ppm AgNP solution, 200 µL or 400 µL of a 0.5 mM α-lipoic acid solution, or
both solutions together on the chorioallantoic membrane (CAM). Control eggs received
400 µL H2Obidest only. On developmental day 18, the chick embryos were sacrificed by
injection of 10 µL of a 25 mg/mL ketanest@ solution (Pfizer Pharma PFE GmbH, Berlin,
Germany) into a CAM vessel. Each embryo was photographed and weighed, and the
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livers were resected and incubated in 10% formalin. Then, the liver tissue was embedded
in paraffin, and 3–5 µm tissue sections were prepared by the use of a HistoCore Rotary
Microtome (LEICA RM2155, Leica Biosystems, Wetzlar, Germany), placed on Superfrost
slides (Menzel-Gläser, Braunschweig, Germany), and dried overnight. The sections were
deparaffinized by consecutive immersion in petroleum ether, 99% ethanol, 95% ethanol
and 70% ethanol, followed by 3× washing with PBS. The liver sections prepared in this
way were subsequently stained with hematoxylin (Carl Roth, Karlsruhe, Germany) for
1 min, washed 3× with H2Obidest and counterstained with eosin-phloxine (Sigma-Aldrich
Chemie GmbH, Schnelldorf, Germany) for 30 s. Then, the sections were dehydrated by
2× washing with 95% EtOH for 5 min and mounted in a xylene-based mounting medium
(SouthernBiotech, Birmingham, AL, USA). The stained liver tissues were evaluated under
a Leica DMRB fluorescence microscope using SPOT Advanced Version 4.6 software (SPOT
ImagingTM, Sterling Heights, MI, USA).

2.13. Tumor Xenotransplantation of The CAM of Fertilized Chicken Eggs

Fertilized chicken eggs were obtained and incubated as described above. On day 8 of
chick development, 1× 106 MIA-PaCa2 cells were mixed with Corning™ Matrigel™ Matrix
(Corning Life Science BV, Amsterdam, The Netherlands) at a ratio of 1:1 to a total volume
of 50 µL. Coverslips (Carl Roth, Karlsruhe, Germany) were punched, and the resulting
rings were placed on the CAM. After gently scratching the surface of the CAM in the
center of the coverslip with a 0.4 mm × 19 mm stainless-steel needle (BD Microlance™,
Louth, Ireland), the mixture of cells and Matrigel™ was transplanted onto the wounded
region. From developmental day 12 to day 17, 400 µL of a 14 ppm AgNP solution, 400 µL
of a 0.5 mM α-lipoic acid solution or both solutions together were dropped onto CAM
vessels that supplied the MIA-PaCa2 xenograft tumors. Control eggs received 400 µL
H2Obidest only. At day 18, the embryos were gently and humanely euthanized by injection
of 10 µL of a 25 mg/mL ketanest@ solution (Pfizer Pharma PFE GmbH, Berlin, Germany)
into a CAM vessel, followed by tumor resection and the evaluation of the tumor volumes
3-dimensionally by a USB microscope camera (eScope, Oitez, Hong Kong) and digital
image editing using a customized mount.

2.14. mRNA Microarray Profiling

LX-2 cells were seeded into 6-well plates at a density of 5 × 104 mL per well. Twenty-
four hours later, the cells were treated with 1.4 ppm AgNPs w and w/o 1 mM α-lipoic
acid at final concentrations or were left untreated in the control, followed by incubation
for an additional 24 h. Then, the cells were harvested, and mRNA was isolated by us-
ing an RNeasy Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s
instructions. Microarray analysis was performed at the Microarray-Analytic Center of
the Medical Faculty Mannheim by using Clariom™ D Assays (Thermo Fisher Scientific,
Darmstadt, Germany).

2.15. Gene Set Enrichment Analysis (GSEA)

To determine the interplay between α-lipoic acid and AgNPs and their relationship
to pathway regulation, GSEA was performed (software version 4.1.0). A list of preranked
genes, which was generated from our gene microarray based on a score calculated as the
-log10 of the p value multiplied by the sign of the fold change, was tested in predefined
annotated gene sets (C1–C7 collections) from the Molecular Signatures Database (MSigDB
v7.4) to find significant differences between two phenotypes. A heatmap was created
by using the free software environment for statistical computing and graphics R Studio
(https://rstudio.com/products/rstudio/) (accessed on 1 March 2021).

2.16. Western Blot Analysis

A total of 1 × 105 cells per well of a 6-well plate were seeded. Twenty-four hours later,
the cells were cultured in a medium with 1.4 ppm AgNPs in the presence or absence of α-

https://rstudio.com/products/rstudio/
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lipoic acid or were left untreated in the control. Following incubation for 24 h, the cells were
washed, and proteins were harvested by the use of a RIPA lysis buffer (both from Abcam,
Cambridge, UK). Western blot analysis was performed using a semidry blotting system
according to a standard protocol. Primary antibodies were rabbit polyclonal antibody
against BCAT1 (Abcam, Cambridge, UK, ab197941) and rabbit monoclonal antibody against
GAPDH (Cell Signaling Technology, Danvers, MA, USA, Cat# 2118, RRID: AB_561053).
IRDye® infrared dye-conjugated secondary antibodies (LI-COR Biosciences, Bad Homburg,
Germany) were used. The infrared intensity was measured with an Odyssey CLx Infrared
Imaging System (LI-COR).

2.17. Statistical Analysis

The quantitative data are presented as the means± SD from at least three independent
experiments, which were performed in triplicate or multiples thereof. Statistically relevant
group sizes of at least 10 eggs per group were chosen for in vivo experiments. Differences
between two groups were assessed by Student’s t-test and one-way ANOVA. SPSS 22.0 and
GraphPad Prism 6 (San Diego, CA, USA) were used for statistical analysis, and a p < 0.05
was considered statistically significant.

3. Results
3.1. Synthesis and Characterization of Nanosilver

Nanosilver was prepared from 200 mL H2Obidest by the use of at least 99.99% pure
silver electrodes and the Ionic-Pulser® Pro silver generator (Figure 1A). The presence of Ag+

ions before and after pulsing was determined by measuring the conductivity of the aque-
ous silver solution with a network analyzer. We found an intensity of 15 × 10−4 Siemens
per meter 60 min after pulsing (Figure 1B). The concentration of Ag+ ions was calcu-
lated by subtracting the conductivity of H2Obidest from that of the silver solution. The
amount of Ag+ ions increased consecutively over time and was 1.8 ppm, 3.5 ppm, 4.1 ppm,
7.9 ppm, 9.2 ppm and 10.9 ppm at 8 min, 13 min, 18 min, 33 min, 43 min and 60 min,
respectively, whereas no Ag+ ions were detectable before pulsing (Figure 1C). The total
silver concentration consisting of Ag+ ions and unloaded silver particles was measured
by ICP-OES. Compared to distilled water, 14 ppm total silver was detected 60 min after
pulsing (Figure 1D). These data suggest that in addition to the measured value of 10.9 ppm
Ag+ ions (compare Figure 1C), 3.1 ppm unloaded silver particles are present in the silver
solution. For all subsequent experiments, the total silver concentration is given in ppm, as
measured by ICP-OES. Finally, the size of the AgNPs was determined by TEM, which indi-
cated an average particle core size of 9.04 nm, 60 min after pulsing (Figure 1E). This particle
size was expected because it is within the published size of nanosilver, which ranges from 1
to 100 nm [17]. The cytotoxicity of our nanosilver was confirmed by the treatment of E. coli
OP50 bacteria with different silver concentrations in the range from 1.4 ppm to 7 ppm.
The OD600 was measured in 60-min intervals by the use of a spectrophotometer over a
period of 8 h. The lowest AgNP concentration of 1.4 ppm markedly inhibited bacterial
growth, which was enhanced at a concentration of 2.8 ppm and completely inhibited at a
concentration of 4.2 ppm and higher (Figure 1F).
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Figure 1. Generation of AgNPs and characterization. (A) Nanosilver particles were produced by
pulsing 200 mL boiled H2Obidest at 25 ◦C with the IDEAL-Pulser Basic S silver generator, and a
representative picture is shown. (B) The conductivity of H2Obidest (CO) and a AgNP (Ag) solution
pulsed for 60 min was analyzed by a network analyzer, and the presence of conductive silver anions
(Ag+) is given as Siemens per meter (S/m). (C) The concentration of Ag+ ions before and after pulsing
for 8, 13, 18, 33, 43 and 60 min was determined by conductivity measurement and calculation. The
values are provided as mg/L, which corresponds to parts per million (ppm). (D) The concentration
of total silver, consisting of silver particles and Ag+ ions, was determined by plasma optical emission
spectrometry (ICP-OES) in at least three independent experiments 60 min after pulsing. H2Obidest

served as the control (CO). (E) A 14 ppm AgNP solution was examined by TEM. The black dots
indicate AgNPs, and the arrow points to a silver particle with a typical size of 9 nm. The visible larger
clumps mainly result from aggregated particles. The scale bar indicates 200 nm. (F) E. coli OP50
bacteria were pipetted into single wells of a 96-well plate containing AgNPs at final concentrations of
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1.4 ppm, 2.8 ppm, 4.2 ppm, 5.6 ppm or 7.0 ppm or the solvent H2Obidest alone and were cultivated
in LB medium for 24 h. The OD600 was measured in 60-min intervals with a spectrophotometer for
a period of 8 h. (G) The nonmalignant human primary pancreatic duct cell line CRL-4023 and the
hepatic stellate cell line LX-2 at a concentration of 5 × 103 cells/100 µL per well of a 96-well plate
were seeded. Twenty-four hours later, the cells were incubated in 100 µL cell culture medium with
5 µL of 14 ppm AgNP stock solution, resulting in a final AgNP concentration of 0.7 ppm. Likewise,
10 µL and 15 µL of a 14 ppm AgNP stock solution were added, resulting in final concentrations of
1.4 ppm and 2.1 ppm AgNPs, respectively. The control cells were left untreated (CO) or incubated in
100 µL medium containing 15 µL H2Obidest (H2O). After incubation for 24 h, viability was determined
by MTT assay. The data shown are derived from at least three independent experiments; the controls
(CO) of each cell line were set to 100%. (H) The PDAC cell lines BxPC-3, BxGEM, PANC-1 and
MIA-PaCa2 were treated and analyzed by MTT assay, as described above. The data are presented as
the mean values, and standard deviations are given. * p < 0.05, ** p < 0.01.

To address the cytotoxicity of AgNPs to human, benign, immortalized cell lines, we
treated pancreatic ductal CRL-4023 cells and liver stellate LX-2 cells with AgNPs at final
concentrations of 0.7 ppm, 1.4 ppm and 2.1 ppm. The controls were left untreated or were
treated with H2Obidest alone. Twenty-four hours later, viability was detected by MTT assay.
Whereas CRL-4023 cells were totally resistant to either AgNP concentration, the viability of
LX-2 cells was dose-dependently inhibited to 85%, 75% and 60% with 0.7 ppm, 1.4 ppm
and 2.1 ppm AgNPs, respectively (Figure 1G). In contrast, the treatment of PDAC cell
lines with AgNPs totally downregulated the viability of the BxPc-3, BxGEM, PANC-1 and
MIA-PaCa2 cells, already at a AgNP concentration of 1.4 ppm and higher, whereas a lower
concentration of 0.7 ppm was not effective in any cell line (Figure 1H). These results suggest
that PDAC cells exhibit a much higher sensitivity to AgNPs than nonmalignant cells.

3.2. High AgNP Concentrations Are Toxic to Liver and Inhibit Embryonal Development

To obtain knowledge about the side effects of higher AgNP concentrations in vivo, we
dropped nanosilver onto the CAM of fertilized chicken eggs. Starting at day 12 of chick
development, 200 µL or 400 µL of a 14 ppm AgNP solution, or 400 µL H2Obidest only in the
control, were dropped twice daily to the CAM (Figure 2A). On day 18 of development, the
eggs were opened, and the chicks were sacrificed and weighed. The mean chick weight
of 20 g did not change upon treatment with 200 µL AgNPs or H2O alone, whereas 400 µL
AgNPs significantly reduced the weight to approximately 16 g. In addition, the embryonal
livers were resected, and deparaffinized tissue sections were stained with H&E, followed by
immunohistochemistry and microscopic evaluation. We found that only the high amount
of 400 µL AgNPs, but not the lower amount of 200 µL, led to a condensed liver structure
that resembled necrotic tissue (Figure 2B). The degree of liver damage was microscopically
evaluated in 10 vision fields per embryonic liver section by two blinded examiners with
expertise in liver pathology. For quantitative evaluation, we used a scoring system, which
is described in the figure legend.
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Figure 2. High AgNP concentrations are toxic to the liver and delay embryonal development.
(A) Fertilized chicken eggs were prepared as described in the Materials and Methods. On day 12
of embryonal development, 400 µL H2Obidest (CO) or 200 µL or 400 µL of a 14 ppm AgNP solution
was dropped into the CAM twice daily until day 18. Then, the chick embryos were humanely
euthanized, and the weight of the chicks in each group was evaluated. The mean weight per group
(n = 10) ±SD and the photodocumented chicks are shown. (B) The embryonal livers were resected
and stained with H&E, followed by microscopic evaluation. Liver damage was evaluated by the
degree of cell morphology destruction of 10 vision fields per embryonic liver section (n = 10) by
the following scoring system: 0: normal liver; 1: slightly damaged liver; 2: moderately damaged
liver; and 3: severely damaged liver. The mean values ± SD and representative staining at 400×
magnification, with 50× higher magnifications inside the boxes, are shown. * p < 0.05.

3.3. α-Lipoic Acid Protects Nonmalignant Cells but Not PDAC Cells from
AgNP-Induced Cytotoxicity

To avoid silver-induced side effects, we evaluated the suitability of the natural antioxi-
dant and organosulfur component α-lipoic acid (Figure 3A), which is produced by plants,
animals and humans, and is commercially available as a supplement [35]. Nonmalignant
CRL-4023 and LX-2 cells were treated with α-lipoic acid at concentrations of 0.5 mM, 1 mM,
2 mM and 3 mM because these concentrations have recently been used for experimental
treatment of breast cancer cells [36]. Twenty-four hours later, viability was determined by
MTT assay. Both cell lines were largely resistant to any concentration; only the viability of
LX-2 cells was slight but was significantly decreased by the highest concentration of 3 mM
α-lipoic acid from 100% in the control to 90% (Figure 3B). Similar results were obtained by
treatment of BxPc-3 and MIA-PaCa2 cells with α-lipoic acid, whereas BxGEM and PANC-1
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were even more sensitive because their viability was already decreased at a α-lipoic acid
concentration of 2 mM (Figure 3C). Since α-lipoic acid concentrations of 2 mM and higher
seem to be slightly toxic, we used α-lipoic acid concentrations of 0.5 and 1 mM in subse-
quent experiments. Upon combined treatment of CRL-4023 and LX-2 cells with AgNPs and
α-lipoic acid, the silver-induced toxicity was nearly completely abolished (Figure 3D,E).
In contrast, the cotreatment of PDAC cells with AgNPs and α-lipoic acid only minimally
interfered with the therapeutic silver toxicity, as the AgNPs nearly completely eliminated
all cancer cells within 24 h, despite the presence of α-lipoic acid (Figure 3E).

Figure 3. α-Lipoic acid protects nonmalignant cells from AgNP-induced toxicity but not PDAC cells. (A) Molecular
structure of α-lipoic acid (ALA) with two sulfur atoms at the C6 and C8 positions, which are connected by a disulfide bond.
(B) Nonmalignant CRL-4023 and LX-2 cells at a concentration of 5 × 103 in 100 µL cell culture medium per well were seeded
into 96-well plates and cultured for 24 h. Then, the cells were cultured by adding final concentrations of 0.5, 1, 2 and 3 mM
α-lipoic acid to the cell culture medium. The controls were left untreated (CO), or 1.5 µL 99% EtOH was added. Twenty-four
hours later, viability was evaluated by MTT assay. (C) Likewise, PDAC cell lines at a concentration of 5 × 103 in a 100 µL
cell culture medium per well were seeded in 96-well plates. Twenty-four hours later, the cells were treated and evaluated as
described above. (D) CRL-4023 and LX-2 cells were incubated in 100 µL cell culture medium with final concentrations of
1.4 ppm AgNPs w and w/o 0.5 mM α-lipoic acid or 1 mM α-lipoic acid per well in 96-well plates. The viability was assessed
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24 h later by MTT assay. (E) Representative images of the morphological changes observed microscopically in LX-2 and
BxPc-3 cells at 400× magnification are shown. The scale bar represents 500 µm. (F) PDAC cells at a concentration of 5 × 103

in 100 µL cell culture medium per well were seeded in 96-well plates. Twenty-four hours later, the cells were treated
and evaluated as described above. The data for the MTT assay analysis were obtained from at least three independent
experiments, and the controls were set to 100%. * p < 0.05, ** p < 0.01.

3.4. α-Lipoic Acid Inhibits AgNP-Induced Mitochondrial Damage and ROS Formation

To highlight the intracellular effects of AgNPs, we treated LX-2 cells with 1.4 ppm
AgNPs, 1 mM α-lipoic acid or both agents together, or left the cells untreated in the control.
Twenty-four hours later, the cell organelles were analyzed by TEM. The most obvious
difference appeared in the mitochondria, which had a regular tubular shape in the untreated
or α-lipoic acid-treated cells, whereas AgNPs induced a structural change to a globular,
condensed shape (Figure 4A), which is consistent with the loss of the mitochondrial
membrane potential [37]. In contrast, the combined treatment with AgNPs and α-lipoic acid
largely prevented the loss of the membrane potential because the mitochondria still looked
condensed but more tubular, which suggests that α-lipoic acid partly prevented AgNP-
induced mitochondrial breakdown. To quantitatively measure the observed morphological
changes, the cells were treated with the Mitochondrial Staining Reagent “Red-Cytopainter”,
which is a fluorogenic probe to label the mitochondria of live cells and is retained in
the mitochondria for a long time due to its cell-retaining group [38]. We detected the
red fluorescence of this dye by fluorescence microscopy (Ex/Em = 350/490 nm). For
quantification, we measured the fluorescence intensity using ImageJ in 10 vision fields
per image of each group and calculated the mean fluorescence intensities and standard
deviations. While the exposure of CRL-4023 cells to AgNPs, α-lipoic acid or both together
did not change the fluorescence intensity (Figure 4B), the exposure of LX-2 cells to AgNPs
significantly inhibited the fluorescence intensity, which indicates the loss of mitochondrial
function. However, cotreatment with α-lipoic acid significantly prevented the inhibition
of fluorescence intensity, most likely by preventing silver-induced toxicity. In contrast,
α-lipoic acid only marginally restored the fluorescence intensity and thus silver toxicity in
BxPc-3 and MIA-PaCa2 cells. These results reflect our former data obtained by MTT assays,
where mitochondrial function is detected by the reduction of a tetrazolium component
(MTT) into an insoluble formazan product by functional mitochondria [39]. We detected
higher mitochondrial damage in PDAC cells because less formazan was measured (compare
Figure 1G,H and Figure 3D–F).

To further highlight silver-induced mitochondrial damage and mitochondrial rescue
by α-lipoic acid, we measured ROS formation. After treatment of nonmalignant cells
and PDAC cell lines with AgNPs, α-lipoic acid or both together, we detected ROS by
the use of the 2′,7′-dichlorofluorescein diacetate (H2DCFDA) assay and FACS analysis.
Whereas α-lipoic acid alone did not increase DCFDA fluorescence, AgNPs induced a
significant increase in DCFDA fluorescence and thus ROS formation in LX-2, BxPc-3 and
MIA-PaCa2 cells but not in CRL-4023 cells (Figure 4C). Quantitatively, AgNPs induced
40% ROS formation in LX-2 cells and approximately 50% ROS formation in PDAC cells.
Most importantly, the combination of AgNPs with α-lipoic acid completely abolished
the elevated ROS formation in LX-2 cells but to a lower extent in PDAC cells, whereas
pronounced ROS formation in CRL-4023 cells was not detectable. These data again suggest
a higher sensitivity of malignant cells to AgNPs.
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Figure 4. α-Lipoic acid rescues AgNP-induced mitochondrial damage and ROS formation in non-
malignant but only partially rescues in PDAC cells. (A) LX-2 cells at a concentration of 5 × 103 in
100 µL cell culture medium per well were seeded in 96-well plates. Twenty-four hours later, the cells
were treated by adding 10 µL of a 14 ppm AgNP stock solution to the cell culture medium, resulting
in a final working concentration of 1.4 ppm AgNPs. Likewise, 0.5 µL of a 200 mM α-lipoic acid
(ALA) stock solution was added, resulting in a final concentration of 1 mM, as indicated. Control
cells were left untreated (CO). Twenty-four hours later, the cells were prepared for TEM, followed
by ultramicroscopic evaluation. Representative images are shown above, and 30×magnifications
are shown below. The scale bar indicates 1 µm. The arrows mark the mitochondria. (B) CRL-4023,
LX-2, BxPc-3 and MIA-PaCa2 at a concentration of 5 × 104 in a 1 mL cell culture medium per well
were seeded in 24-well plates. Twenty-four hours later, the cells were incubated in a 1 mL medium
with 1.4 ppm AgNPs w and w/o 1 mM α-lipoic acid (ALA) at final concentrations or were left
untreated in the control (CO). Twenty-four hours later, the cells were stained by adding 2 µL of the
mitochondria-specific red fluorescent dye CytoPainter to the cell culture medium. After half an
hour, 10 vision fields were randomly selected from each group and examined using a Leica DMRB
fluorescence microscope at 400×magnification. Representative images are shown on the left, and the
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scale bar indicates 500 µm. The intensity of the red fluorescence was quantified by ImageJ software.
Diagrams with the obtained mean data ± SD are shown on the right. (C) CRL-4023, LX-2, BxPc-3
and MIA-PaCa2 cells were seeded into 6-well plates at a density of 1.2 × 105 per well. Twenty-four
hours later, the cells were treated with final concentrations of 1.4 ppm AgNPs, 1 mM α-lipoic acid
(ALA) or both together, or were left untreated (CO), followed by incubation for an additional 24 h.
Then, the cells were incubated in medium with a final concentration of 10 µM H2DCFDA for 0.5 h.
The fluorescence of DCF, which reflects the oxidized form of H2DCFDA, was measured with a
FACSCanto II flow cytometer, and the excitation and emission wavelengths were 480 and 525 nm,
respectively. Representative FACS histograms and diagrams with the obtained mean data ± SD are
shown. * p < 0.05, ** p < 0.01.

3.5. α-Lipoic Acid Reduces AgNP-Induced Cell Death

To evaluate the involvement of cell death in AgNP-induced toxicity, we treated CRL-
4023, LX-2, BxPc-3 and MIAPaCa2 cells with 1.4 ppm AgNPs, 1 mM α-lipoic acid or both
agents together, or left the cells untreated in the controls. Twenty-four hours later, the cells
were stained with Annexin V-FITC for detection of phosphatidylserine exposure on the
plasma membrane of cells undergoing early apoptosis and with the DNA-intercalating
agent 7-actinomycin D (7-ADD) for detection of damaged DNA, which occurs in late
apoptosis or necrosis. Then, the specific fluorescence signals were measured by FACS
analysis. Whereas the fluorescence intensities in CRL-4023 did not increase noticeably
with any treatment, the 7-AAD signal in LX-2 cells significantly increased to 15% upon
silver treatment but was completely inhibited by α-lipoic acid cotreatment, as shown
by representative FACS histogram blots and diagrams with the mean data and standard
deviations (Figure 5A). AgNPs induced even higher rates of 7-AAD-positive cells, of 60%
and 80%, in BxPc-3 and MIA-PaCa2 cells, respectively, which was significantly but not
completely downregulated by α-lipoic acid cotreatment (Figure 5B). Because more 7-AAD-
positive cells than annexin V-FITC-positive cells were found, we assume that AgNPs induce
necrosis rather than apoptosis.

3.6. α-Lipoic Acid Precipitates Silver Particles and Ions

Because α-lipoic acid is described to form complexes with metal ions [31], we wanted
to know whether the precipitation of AgNPs by α-lipoic acid may contribute to the observed
protective effect. We mixed 10 mM α-lipoic acid with 14 ppm AgNPs to a total volume
of 20 mL aqueous solution and observed that the AgNP aqueous solution immediately
became cloudy after adding α-lipoic acid (Figure 6A). This could be confirmed by the
measurement of the optical density at OD600, which significantly increased after adding
α-lipoic acid to the AgNP solution (Figure 6B). Twenty-four hours later, the cloudy fog
was sedimented at the bottom of the vial, which was associated with a loss of conductivity
(Figure 6C) and a total loss of AgNPs, as detected by ICP-OES (Figure 6D). These data
suggest neutralization of AgNPs by complex formation with α-lipoic acid. To further
highlight the chelating activity of α-lipoic acid in living cells, we pretreated CRL-4023,
LX-2, BxPc-3 and MIA-PaCa2 cells with 1 mM α-lipoic acid for 24 h, followed by incubation
of the cells with 1.4 ppm AgNPs, as indicated, and ICP-OES analysis. AgNP treatment
resulted in a significant increase in intracellular silver, which was strongly inhibited by
cotreatment with α-lipoic acid, whereas α-lipoic acid alone or H2Obidest in the control had
no effect, as shown by representative spectroscopy histograms and diagrams with the
means and standard deviations (Figure 6E). These results demonstrate that α-lipoic acid
possesses excellent silver chelating properties.
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Figure 5. α-Lipoic acid inhibits AgNP-induced cell death in nonmalignant but not in PDAC cells. (A) CRL-4023 and LX-2
cells were seeded into 6-well plates at a density of 5 × 104/mL per well. Twenty-four hours later, the cells were treated with
1.4 ppm AgNPs w and w/o 1 mM α-lipoic acid (ALA) at final concentrations or were left untreated in the control, followed
by incubation for an additional 24 h. Then, the cells were harvested and incubated in 100 µL Annexin V Binding Buffer with
1 µM Annexin V-FITC for 0.5 h at room temperature. After washing with PBS, the cells were suspended and incubated in
300 µL Annexin V Binding Buffer supplemented with 2 µL 7-aminoactinomycin (7-AAD) for 20 min at room temperature.
The procedure was protected from light. The fluorescence of Annexin V (excitation/emission: 494/518 nm) and 7-AAD
(excitation/emission: 488/647 nm), which reflect apoptosis and necrosis, respectively, was measured with a FACSCanto II
flow cytometer. Representative FACS plots of LX-2 are shown, and the diagrams of CRL-4023 and LX-2 with the obtained
mean data ± SD are shown on the right. (B) The PDAC cell lines BxPc-3 and MIA-PaCa2 were treated and evaluated as
described above. Representative FACS plots of BxPc-3 are shown, and the diagrams of BxPc-3 and MIA-PaCa2 with the
obtained mean data± SD are shown on the right. ** p < 0.01.
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Figure 6. α-Lipoic acid chelates AgNPs and Ag ions. (A) A 20 mL H2Obidest solution containing final concentrations of
10 mM α-lipoic acid and 14 ppm AgNPs was prepared (ALA + Ag). Likewise, 20 mL H2Obidest alone, H2Obidest containing
a final concentration of 10 mM α-lipoic acid (ALA) or the final concentration of 14 ppm AgNPs (Ag) were prepared.
Twenty-four hours later, representative images were taken. (B) The optical density of each aqueous solution was measured
at 600 nm by a Biotek EL800 microplate reader, and the mean data ± SD are shown in a diagram. (C) Likewise, the presence
of Ag+ ions was indirectly detected via conductivity measurements in each aqueous solution. The experiments were
measured by the use of an HP8753C network analyzer in combination with an HP86046 A S-parameter test set and analyzed
as described in the Materials and Methods. The data obtained from at least three independent experiments and results are
shown as Siemens per meter (S/m) ± SDs. (D) The concentration of total silver (AgNPs and Ag+ ions) was measured by
ICP-OES, and the mean concentrations are shown as ppm ± SD. (E) CRL-4023, LX-2, BxPc-3 and MIA-PaCa2 cells were
seeded into cell culture dishes at a density of 8× 104 mL and incubated for 24 h. Then, the cells were precultured with a final
concentration of 1 mM α-lipoic acid (ALA). After incubation for an additional 24 h, the medium of the ALA precultured
cells was changed, and the cells were treated with a final concentration of 1.4 ppm AgNPs for 24 h or were left untreated in
the control. The cells were dissolved in 65% HNO3 for 24 h, and the AgNP concentration was determined by ICP-OES. The
data obtained from at least three independent experiments and the diagrams with the obtained mean data ± SD are shown.
* p < 0.05, ** p < 0.01.

3.7. α-Lipoic Acid Prevents AgNP-Induced Side Effects In Vivo but Does Not Affect the
Therapeutic Efficacy of AgNPs on Tumor Growth

To evaluate the in vivo functionality, we used the transplantation of tumor cells to the
CAM of fertilized chicken eggs. This avian xenograft model is a naturally immunodeficient
system, the tumor microenvironment is similar to that of immunodeficient mice, and it is
well suited for short-term evaluation of tumor growth for up to 10 days [22]. MIA-PaCa2
cells were transplanted onto the CAM on day 9 of embryonic development, which is a
time point of chick development at which the embryonic blood vessel system is dense
enough to support xenograft growth. From developmental day 12 to day 17, 400 µL of
a 14 ppm AgNP solution, 400 µL of a 0.5 mM α-lipoic acid solution or both together
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were dropped twice daily onto the CAM vessels that supplied the Mia-PaCa2 xenograft
tumors. Control eggs received 400 µL H2Obidest twice a day. The chick embryos were
humanely euthanized at day 18 of development followed by resection of tumor xenografts
and embryonic livers. A representative image of a tumor xenograft growing in the egg
is shown, along with images of each resected tumor xenograft and a diagram with the
individual tumor volumes, the means and standard deviations (Figure 7A). The results
show that AgNPs alone significantly reduced the mean tumor size, while α-lipoic acid
alone had no effect and did not affect the AgNP-mediated inhibition of tumor xenograft
growth in the combination treatment.

Figure 7. α-Lipoic acid prevents AgNP-induced liver toxicity and embryonal weight loss without
affecting the inhibition of PDAC xenograft growth. (A) Fertilized chicken eggs were prepared for
xenotransplantation as described in the Materials and Methods, and on day 9 of development, 106

MIA-PaCa2 cells in 50 µL MatrigelTM were transplanted onto the CAM. A representative image of a
tumor xenograft at day 18 of chick development and a magnification thereof (black arrow) is shown
on the upper left. On day 12 of embryonal development, 400 µL H2Obidest (CO), 400 µL of a 14 ppm
AgNP solution, 400 µL of a 0.5 mM α-lipoic acid (ALA) solution or 400 µL of a complex of 14 ppm
AgNPs with 0.5 mM ALA was separately dropped onto the CAM vessels that supplied the xenograft
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tumors g until day 18. Tumor xenografts were resected on day 18 and photographed, and images of
the tumor sizes of each group are shown below. The scale bar indicates 1 cm. The individual tumor
volumes in cm3 and the mean volumes of each group ± SD are presented on the upper right. Please
note that the images show the two-dimensional size, but the diagram on the left the three-dimensional
tumor volume, and both do not necessarily match. (B) The embryonal livers were resected, stained
with H&E and microscopically evaluated. Representative staining liver tissue of each group is shown
at 400×magnification, and 50× higher magnifications are shown on the right. (C) The level of liver
damage was quantified by the degree of cell morphology destruction in 10 randomly chosen vision
fields of each embryonic liver section (n = 10) by the following scoring system: high, medium, low
and absent damage were scored as 3, 2, 1 and 0, respectively. (D) The amount of silver accumulation
in each gram of liver was measured by ICP-OES. (E) The evaluation of the weight of the chicks in
each group with the obtained mean data ± SD is shown. CO (n = 13), ALA (n = 11), Ag (n = 16) and
Ag + ALA (n = 15). * p < 0.05, ** p < 0.01.

To examine the side effects, tissue sections of the embryonic livers were stained with
H&E, followed by immunohistochemistry. Upon AgNP treatment, the morphology of
the embryonic livers exhibited signs of ballooning degeneration, which was described as
enlarged hepatocytes with a wispy cleared cytoplasm and a condensed structure resem-
bling necrotic tissue (Figure 7B). However, the combination of AgNPs with α-lipoic acid
prevented this morphology of a damaged liver. The results were quantified by the use
of the scoring system described in the figure legend, and the mean values with standard
deviations are shown in a diagram (Figure 7C). Whereas AgNPs increased liver toxicity,
the combination with α-lipoic acid reduced liver toxicity, although these differences were
not statistically significant. In addition, the tissue from 10 livers of each treatment group
was minced, followed by the measurement of the silver concentration by ICP-OES. The
detected amounts of total silver were significantly enhanced by AgNP treatment compared
to the controls but significantly downregulated by α-lipoic acid cotreatment (Figure 7D).
Accordingly, AgNPs significantly reduced the mean weight of chick embryos, and this side
effect was significantly reversed by α-lipoic acid cotreatment (Figure 7E). These results in-
dicate that α-lipoic acid cotreatment strongly reduces AgNP-mediated silver accumulation
and side effects but does not affect the therapeutic efficacy of AgNPs on tumor growth.

3.8. AgNPs Inhibits BCAT1 Expression, Which Is Rescued by α-Lipoic Acid

To further elucidate the interplay between α-lipoic acid and AgNPs, we treated LX-2
cells with AgNPs and α-lipoic acid alone, or both together, or left the cells untreated in
the control. Then, the RNA was harvested and examined by an mRNA profiling array,
which was analyzed by GSEA, a pathway enrichment method that evaluates microarray
data at the level of gene sets. Based on the bioinformatics evaluation, we observed that the
biosynthesis of amino acids was downregulated by AgNPs but upregulated by α-lipoic
acid cotreatment or α-lipoic acid alone, presented as enrichment plots (Figure 8A). In
addition, uisng KEGG analysis, whose results are presented as a heat map, we identified
71 genes related to the biosynthesis of amino acids (Figure 8B). Of particular interest was
the branched chain amino acid transaminase 1 (BCAT1) gene, which was downregulated
by AgNPs, while the α-lipoic acid cotreatment or α-lipoic acid alone upregulated the
expression of BCAT1. BCAT1 is involved in transamination-dependent glutamate synthesis,
which is required to produce glutathione, which is capable of preventing damage caused
by ROS [40]. The AgNP-induced downregulation of BCAT1 and the rescue of its expression
by cotreatment with α-lipoic acid were confirmed by Western blot analysis and treatment
of CRL-4023, LX-2 and MIA-PaCa2 cells (Figure 8C).
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Figure 8. α-Lipoic acid rescues AgNP-induced downregulation of BCAT1 in nonmalignant but not in PDAC cells. (A) LX-2
cells were seeded into 6-well plates at a density of 5 × 104/mL per well. Twenty-four hours later, the cells were treated
with 1.4 ppm AgNPs w and w/o 1 mM α-lipoic acid (ALA) at final concentrations or were left untreated in the control,
followed by incubation for an additional 24 h. Then, the cells were harvested, and mRNA was isolated by using the RNeasy
Mini Kit, followed by microarray analysis with Clariom™ D Assays in triplicate and bioinformatic evaluation. The results
of GSEA demonstrated that biosynthesis of amino acids was downregulated by AgNPs but upregulated by α-lipoic acid
cotreatment or α-lipoic acid alone, which is presented as enrichment plots. (B) The results of the heat map reveal 71 genes
related to the biosynthesis of amino acids, which were significantly up- or downregulated genes (red: high expression; blue:
low expression). The scale from 1 to −1 indicates the relative expression. The expression of the branched chain amino acid
transaminase 1 (BCAT1) is indicated. (C) CRL-4023, LX-2, BxPc-3 and MIA-PaCa2 cells were seeded into 6-well plates at a
density of 5 × 104/mL per well and cultured for 24 h. Then, the cells were treated with 1.4 ppm AgNPs w and w/o 1 mM
α-lipoic acid at final concentrations or were left untreated in the control, followed by incubation for an additional 24 h. The
proteins were harvested, and the expression of BCAT1 was detected by Western blot analysis. GAPDH served as a control
to ensure equal loading conditions. The protein sizes in kilodaltons (kDa) are given on the right.
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4. Discussion

Here, we demonstrate that the natural antioxidant α-lipoic acid is able to reverse
AgNP-induced side effects on benign cells and tissues while preserving the therapeutic
effect on PDAC cells. Our data suggest the cotreatment of tumor cells with nanosilver in
the presence of α-lipoic acid as a safe new treatment option for pancreatic cancer patients.

We produced AgNPs with an IDEAL-Pulser Basic S silver generator, which resulted
in approximately 2/3 silver ions and 1/3 unloaded silver particles with an average size of
9.04 nm. By the use of 200 mL H2Obidest, at least 99.99% pure silver electrodes, and a pulsing
time of 60 min, we obtained a silver concentration of 14 ppm. This concentration is different
from that given by the manufacturer, who found a 100 ppm AgNP concentration after
pulsing H2Odest for 60. This difference may be due to the aggregation of AgNPs [41] during
the production process, resulting in a large loss of AgNPs after filtration with a 0.2 µm
syringe filter, as we did, or it may be caused by the different methods of measurement.

By treating E. coli OP50 bacteria with different AgNP concentrations, we ensured an-
tibacterial activity and found that bacterial growth was totally inhibited by a 7 ppm AgNP
solution, which is consistent with the results of Yoojin Choi et al. [42]. This antimicrobial
effect was most likely mediated by AgNP-induced damage to the bacterial cell membrane
because AgNPs generate pits and gaps in the bacterial cell membrane and thereby destroy
its permeability [43].

The AgNP-mediated eradication of E. coli implies that the intake of colloidal silver
may damage the gut microbiome. Indeed, a recent study reported that dietary AgNPs,
which because of their antimicrobial properties are added by the food industry to consumer
products or are used for coating components from food processing machines or plastic
food packaging, led to an estimated intake of dietary silver at 70–90 µg/day, as estimated
for 2009, and such an AgNP concentration disturbed the gut microbiota in mice [44]. This
is interesting because an altered gut microbiome contributes to tumor biology, malignant
transformation, tumor progression and the therapy response of cancer [45]. However,
this may be a double-edged sword because AgNPs on the one hand may eradicate an
unfavorably altered, tumor-contributing gut microbiome, and on the other hand, they
may destroy a healthy gut microbiome and thereby contribute to tumorigenesis. To take
speculation to the extreme, one could even assume that AgNPs may be able to damage the
tumor microbiome, which has been detected and characterized in several tumor entities [46],
although its role in tumorigenesis is currently unclear.

By treating benign cells and PDAC cell lines with AgNPs, we detected that a working
concentration of 1.4 ppm AgNPs almost completely inhibited the viability of malignant
cells, whereas benign cells largely resisted the inhibition of viability. This finding of selective
toxicity of AgNPs toward malignant cells corresponds to recent data that demonstrated lysis
of the cell membrane of the human lung cancer cell line A549 by 3 ppm AgNPs, whereas
no obvious leakage of the cell membrane of nonmalignant L132 lung cells occurred [47].
We demonstrated that high AgNP concentrations of 400 µL of a 14 ppm AgNP solution
twice a day for a period of 6 days reduced the weight of chick embryos, accumulated in
the liver and was liver toxic. Our data are underlined by previous studies, which showed
that AgNPs increase fetal mortality and developmental inhibition after pregnant rats were
orally administered 10 mg AgNPs per kilogram body weight [17]. Furthermore, Lee et al.
found that AgNPs induce piecemeal necrosis and chronic inflammation in the liver, along
with silver accumulation/deposition, in rats after intraperitoneal injection of AgNPs at a
concentration of 500 mg/kg [48]. If we convert our AgNP in vivo concentration of 400 µL of
a 14 ppm (=14 mg/L) AgNP solution twice daily to body weight, 800 µL AgNPs correspond
to 4% of the body weight of a chick embryo of 20 g. Related to a 70 kg person, this amount
is comparable to the daily intake of 2.8 L of a 14 ppm (=14 mg/L) AgNP solution, which
corresponds to a total silver amount of 39 mg AgNPs/70 kg ingested daily.

Mechanistically, we observed that AgNPs impaired mitochondrial function by altering
the shape and number of mitochondria and by increasing the ROS levels, which converged
to necrotic cell death. AgNPs may enter the mitochondria by endocytosis and distribution
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to the cytoplasm and nucleus through intracellular trafficking, as suggested [49]. Silver
ions can be continually released from the surface of AgNP particles and adhere to the cell
wall and cytoplasmic membrane because of electrostatic attraction and affinity to sulfur
proteins [50]. Adherent ions enhance the permeability of the cytoplasmic membrane, and
the uptake of free silver ions deactivates respiratory enzymes and generates ROS, whose
overproduction provokes disruption of the cell membrane and DNA modification [51].
Most importantly, we observed that AgNPs induced more mitochondrial dysfunction and
ROS formation, followed by more necrotic cell death, in PDAC cells than in nonmalignant
cells. In general, we observed that PDAC cells respond more sensitively than benign cells
to AgNPs.

The major challenge in the clinical use of AgNPs for tumor therapy is to effectively
deliver silver nanoparticles and ions to the target tumor tissue without inducing adverse
effects and silver deposition in nonmalignant tissues. Our results illustrated that the
coadministration of α-lipoic acid significantly decreased AgNP-induced ROS formation
and protected the mitochondrial membrane potential of nonmalignant cells. Our results
are consistent with those of recent publications, which demonstrated that α-lipoic acid
and its metabolite, dihydrolipoic acid (DHLA), are capable of scavenging a variety of
ROS, including hydroxyl radicals, hypochlorous acid and singlet oxygen [52–54]. This is
because α-lipoic acid indirectly plays a role in maintaining the cellular antioxidant status
by inducing the synthesis of endogenous low molecular weight antioxidants or antioxidant
enzymes, such as increasing the intracellular ascorbate levels [27] and augmenting the
cellular glutathione pool [55].

By gene array analysis and bioinformatics, we found that AgNPs inhibited the
expression of branched chain amino acid transaminase 1 (BCAT1), thereby reducing
transamination-dependent glutamate synthesis [56]. The synthesis of glutamate makes
an important contribution to maintaining the relatively large intracellular glutathione
pool, which is capable of preventing damage caused by ROS [40]. Then, we observed
that cotreatment with α-lipoic acid completely rescued BCAT1 downregulation by increas-
ing the expression of BCAT1 in nonmalignant cells, indicating that α-lipoic acid reverses
AgNP-induced glutamate depletion and thereby protects against ROS formation. However,
compared with the control group, the expression of BCAT1 in the MIA-PaCa2 cell line was
still significantly downregulated after cotreatment with α-lipoic acid, and there was no
expression of BCAT1 in BxPc-3 cells. This may be due to cancer-specific BCAT1 expression,
as suggested by Mayers et al., who demonstrated that PDAC patient tissues expressed
lower BCAT1 levels than normal tissues [56]. Therefore, the low basal BCAT1 expression in
PDAC cells may be one major reason for the observed failure of α-lipoic acid to protect
malignant cells from AgNP-induced toxicity. In addition, oncogenic KRAS mutations are
commonly seen in most human pancreatic tumors [57] and are associated with increased
glucose and glutamate consumption to support anabolic processes, including nucleotide,
lipid and nonessential amino acid biosynthesis [58]. These data explain why α-lipoic acid
mainly rescued nonmalignant cells from AgNP-induced cytotoxicity but not PDAC cells.
To our knowledge, our finding is the first report describing the crosstalk/interactions
between α-lipoic acid and BCAT1.

In addition to being an antioxidant, α-lipoic acid is described as a chelator of redox-
active metal ions with a preference for Pb2+, Zn2+ and Cu2+ [31]. Here, we show that AgNPs
and Ag+ ions are strongly chelated by α-lipoic acid, and the complexes were excreted from
the cells. Then, we proceeded to test the efficacy of α-lipoic acid and found no side effects
on nonmalignant cells at concentrations up to 3 mM. This is in line with previous results
of a clinical trial, where patients were treated with high lipoic acid concentrations of
800 mg/day for 4 years, and no side effects were observed [59]. In contrast, α-lipoic acid
even improved health outcomes in overall healthy individuals and in patients affected by
other diseases [60]. Additionally, our findings of the safety of α-lipoic acid in nonmalignant
cells and tissues and its putative suitability for pancreatic cancer treatment are underlined
by a recent study of the treatment of rats xenografted with pancreatic tumors and treated
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with nab-paclitaxel [61]. α-Lipoic acid was applied at concentrations of 15, 30 and 60 mg/kg
and prevented oxidative stress and peripheral neuropathy without diminishing the body
weight or the chemotherapeutic effect on tumor growth. Our in vivo results demonstrate
that 0.5 mM α-lipoic acid prevented side effects without diminishing the AgNP effect on
xenograft growth. Calculated to a human being, considering a relative blood volume of
4000 mL, this suggests the intake of 412 mg α-lipoic acid/day. This concentration is realistic
and corresponds to the α-lipoic acid concentration of 800 mg/day, which was applied to
patients for 4 years without any negative side effects [59]. Interestingly, α-lipoic acid has
been clinically used in Germany as a pharmaceutical drug for the treatment of diabetic
polyneuropathy for more than 50 years [62].

Finally, we verified our concept in vivo by the use of tumor xenotransplantation to fer-
tilized chicken eggs. This avian model is an excellent alternative to experiments performed
on mammals, such as mice [63], and has been evaluated in several of our recent stud-
ies [64,65]. One major advantage of the chicken egg model is its natural immunodeficiency
because immunity occurs only after hatching [66]. Thus, cells from other species or tissues
are accepted to be similar to immune-compromised mice. In this model, xenografts are
transplanted into the chorioallantoic membrane (CAM) between days 8–9 of development
because at that time point, the network of blood vessels is dense enough to support the
growth of a tumor xenograft. An additional advantage of CAM xenotransplantation is
fast tumor growth, which starts between 2 and 5 days after transplantation. Using this
model, we confirmed our in vitro data, and because the AgNPs alone inhibited xenograft
growth of the PDAC xenografts, cotreatment with α-lipoic acid prevented liver cytotoxicity
and developmental disturbance without interfering with the AgNP-induced inhibition of
tumor growth.

5. Conclusions

In conclusion, we have demonstrated an easy, simple and patient-friendly approach
to ingest therapeutic AgNPs in tumor diseases and avoid the toxic side effects to normal
tissues. However, our study has limitations because we mainly performed in vitro studies.
Although we verified the results by in vivo xenotransplantation, our data cannot be trans-
ferred one-to-one to the patient without confirmation in clinical studies. Nevertheless, our
data are promising and point to a more successful therapy for pancreatic cancer and other
tumor entities in the future.

Author Contributions: I.H., X.A. and L.L.: concept and design; X.A., M.S., C.S., S.H., L.L., H.J., Y.L.,
J.G. and K.W.: development of methodology; X.A., B.Y., L.L. and M.S.: acquisition of data; X.A., L.L.
and M.S.: analysis and interpretation of data; X.A. and I.H.: writing, review and/or revision of the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by grants from the German Research Council (DFG HE
3186/15-1), Karsten Burmeister—BIMAG Bau- und Industriemaschinen GmbH, Heidelberger Stiftung
Chirurgie, Dietmar Hopp-Stiftung, Klaus Tschira Stiftung and Hanns A. Pielenz-Stiftung.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets supporting the conclusions of this article and its supple-
mental files are included within the article and thus are available.

Acknowledgments: We wish to express our gratitude to Wolfgang Groß for help with statistics,
Carolina De La Torre for support with gene array analysis, and Silvia Rheinberger and Sonja Bauer
for excellent technical assistance.

Conflicts of Interest: The authors have no conflicts of interest to disclose regarding the publication
of the present manuscript.



Cancers 2021, 13, 4770 24 of 26

Abbreviations

7-ADD 7-aminoactinomycin
CAM Chorioallantoic membrane
H2DCFDA 2′,7′-dichlorodihydrofluorescein diacetate
ICP-OES Inductively coupled plasma-optical emission spectrometry
FDR False discovery rate
GSEA Gene Set Enrichment Analysis
AgNPs Silver nanoparticles
PDAC Pancreatic ductal adenocarcinoma
(MTT) 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
TEM Transmission electron microscopy
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