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Abstract More than 109 base pairs of the genome in higher
eucaryotes are positioned in the interphase nucleus such that
gene activation, gene repression, remote gene regulation by
enhancer elements, and reading as well as adjusting
epigenetic marks are possible. One important structural and
functional component of chromatin organization is the zinc
finger factor CTCF. Two decades of research has advanced
the understanding of the fundamental role that CTCF plays
in regulating such a vast expanse of DNA.

Introduction

The remarkable chromatin-organizing factor CTCF was
discovered in 1990 (Baniahmad et al. 1990; Lobanenkov et
al. 1990) and has gained increasing attention especially
during the last decade (Table 1). Important results in
chromatin-mediated molecular mechanisms have been
catalyzed by the CTCF connection. During this time, many
key aspects of chromatin structure and function in general
and the key role of CTCF in particular were brought to
light. Here we detail important chromatin-mediated molec-
ular mechanisms and highlight the fundamental role played
in them by CTCF. The different levels of CTCF action start

with chromatin binding and nucleosomal positioning.
Three-dimensional enhancer function and blocking by
CTCF is the next level. How are interactions in cis or in
trans mediated, and what is the role of cohesin binding in
these? Furthermore, the involvement of CTCF in specific
chromatin features such as imprinting, X-chromosome
inactivation, and heterochromatin barrier function are
discussed.

How are nucleosomes positioned, and what does it have
to do with CTCF?

In eukaryotes, DNA is packaged into a protein–DNA
complex termed chromatin where 147 bp of DNA is
wrapped around histone octamers to form nucleosomes
that are typically separated by 20–50 bp of linker DNA.
For about half of the genome, the precise position of a
given nucleosome relative to the genomic sequence
varies between individual nuclei, i.e., the nucleosomes
are not regularly positioned. However, in order for DNA-
binding factors to bind, nucleosomes have to be properly
positioned. Currently, a number of factors are known to
play a role in determining the position of nucleosomes
such as the underlying sequence of the DNA, the
availability/binding of transcription factors, and subse-
quent recruitment of nucleosome remodeling activities
(Segal and Widom 2009).

A first indication that the sequences in the vicinity of a
CTCF binding site (CTS) are marked by a specific pattern
of nucleosome occupancy came from the analysis of the
H19 imprinting control region (ICR). In this study, the
CTSs were found at linker regions between positioned
nucleosomes (Kanduri et al. 2002). Recent advances in
high-throughput analyses of nucleosome occupancy have
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now shown that CTSs are associated with precise positioning
of up to 20 nucleosomes (Fu et al. 2008).

What causes this arrangement of precisely positioned
nucleosomes in relationship to CTSs? Since no sequence
conservation in the regions adjacent to the CTSs has been

found, CTCF binding on its own was suggested to be able
to move and arrange nucleosomes into evenly spaced
positions (Fu et al. 2008). However, in the case of the
H19 ICR, it was conclusively shown that the nucleosome
positioning is a feature of the underlying sequence rather

Table 1 Time line in CTCF milestones

1990 CTCF or NeP1 is discovered as a transcriptional repressor/silencer of the chicken myc and lysozyme genes (Baniahmad et al. 1990;
Lobanenkov et al. 1990)

1997 CTCF and NeP1 are identical (Burcin et al. 1997)

CTCF is an activator (Vostrov and Quitschke 1997)

1998 The CTCF gene is localized in a chromosomal region frequently deleted in breast and prostate cancers (Filippova et al. 1998)

1999 Enhancer blocking activity of the LCR insulators is mediated by CTCF (Bell et al. 1999)

2000 Imprinted expression of the Igf2 gene is controlled by CTCF, and DNA binding is methylation sensitive (Bell and Felsenfeld 2000; Hark et
al. 2000; Kanduri et al. 2000; Szabo et al. 2000)

2001 CTG triplet repeat expansion prevents CTCF binding by DNA methylation (Filippova et al. 2001)

2002 X inactivation choice/imprinting center with multiple CTCF binding sites (Chao et al. 2002)

Germ line-specific paralogous protein CTCFL (BORIS) is discovered (Loukinov et al. 2002)

CTCF binds to linker regions between positioned nucleosomes (Kanduri et al. 2002)

2003 Enhancer blocking can be modulated by thyroid hormone (Lutz et al. 2003)

Maintenance of Igf2/H19 differential DNA methylation requires CTCF (Pant et al. 2003; Schoenherr et al. 2003)

2004 Enhancer blocking by CTCF is regulated by poly(ADP-ribosyl)ation (Yu et al. 2004)

Three-dimensional positioning of interphase chromatin is mediated by CTCF (Yusufzai et al. 2004)

Microdeletions of CTS result in Beckwith–Wiedemann Syndrome (Sparago et al. 2004)

2005 CTCF binding and three-dimensional chromatin structure at the H19 locus are maintained throughout mitosis (Burke et al. 2005)

CTCF-mediated enhancer blocking is conserved from Drosophila to man (Moon et al. 2005)

Antisense transcription of triplet repeats is constrained by CTCF (Cho et al. 2005)

Boundaries between X inactivation and escape of inactivation bind CTCF (Filippova et al. 2005)

CTCF antagonizes with CTCFL at the cancer testis gene MAGE-A1 (Vatolin et al. 2005)

2006 Chromatin remodeling mediated by CTCF recruitment of CHD8 (Ishihara et al. 2006)

Recruitment of PRMT7 by CTCFL may promote DNA methylation (Jelinic et al. 2006)

Three-dimensional long-range chromatin interaction is mediated by CTCF (Kurukuti et al. 2006; Splinter et al. 2006; Zhao et al. 2006)

Interchromosomal interaction mediated by CTCF (Ling et al. 2006; Zhao et al. 2006)

rDNA gene transcription is inhibited by CTCF (Torrano et al. 2006)

2007 Whole-genome high-resolution mapping identifies CTCF at boundaries of histone methylation domains in vertebrates (Barski et al. 2007;
Kim et al. 2007; Xi et al. 2007; Xie et al. 2007)

CTCF regulates asynchronous replication (Bergstrom et al. 2007)

Recruitment of RNA polymerase II to CTCF target sites (Chernukhin et al. 2007)

The Drosophila insulator factors CTCF and Gypsy function similarly and use the same cofactor CP190 (Gerasimova et al. 2007; Mohan et
al. 2007)

Functional separation of the Bithorax complex regulatory elements is mediated by dCTCF (Holohan et al. 2007; Mohan et al. 2007)

Homologous X-chromosome pairing requires CTCF (Xu et al. 2007)

2008 A set of about 20 nucleosomes is positioned by CTCF (Fu et al. 2008)

Transcription causes eviction of CTCF from chromatin (Lefevre et al. 2008)

Cohesins functionally interact with CTCF and mediate enhancer blocking (Parelho et al. 2008; Rubio et al. 2008; Stedman et al. 2008;
Wendt et al. 2008)

DNA methylation causes CTCFL-induced transcriptional activation (Sun et al. 2008)

2009 Insulators and active promoters share the insulator cofactor CP190 (Bartkuhn et al. 2009)

Three subclasses of Drosophila insulators show cell-type specificity (Bushey et al. 2009)

Loss of CTCF binding silences tumor suppressor gene (Witcher and Emerson 2009)

Oct4 with CTCF control X-chromosome pairing and counting (Donohoe et al. 2009)

CTCF regulates replication timing in trans (Sandhu et al. 2009)
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than the presence of CTCF (Kanduri et al. 2002).
Moreover, there is intrinsic sequence information in a large
fraction of the genome that controls nucleosome position-
ing despite the absence of any detectable sequence motif
(Segal and Widom 2009). Thus, CTCF binding within an
array of positioned nucleosomes may work through two
different mechanisms. On the one hand, the evolution of
large stretches of sequences capable of positioning nucle-
osomes may have co-evolved with the emergence of CTSs
within the corresponding linker regions. On the other hand,
the finding that CTCF interacts with the ATP-dependent
chromatin remodeler CHD8 (Ishihara et al. 2006) may
suggest an active role in controlling nucleosome movement
to initiate nucleosomal phasing.

How do enhancers function?

Enhancers operate by increasing the likelihood of transcrip-
tional activation of nearby genes (Fiering et al. 2000; Li et al.
2006). The enhancer regions, which are made up of multiple
cis-regulatory elements attracting trans-acting factors, can be
positioned on either side of the transcriptional start site as
well as at long distances from the promoter, sometimes far
beyond 100 kb (Sagai et al. 2009). The CTCF-dependent
chromatin insulator activity antagonizes both short- and
long-range enhancer functions in a manner that, although
poorly understood, in all likelihood reflects upon the mode
of enhancer action.

Despite several decades of intensive research, the inner
workings of enhancer functions remain enigmatic. One
mechanism of enhancer function has been suggested to take
place via the formation of a chromatin loop, resulting in
enhancer contacts with the gene promoter (Carter et al.
2002; Ohlsson et al. 2001; Phillips and Corces 2009;
Tolhuis et al. 2002). Such a formation can be achieved
either by the enhancer tracking along the chromatin fiber
itself, or by the direct formation of enhancer–promoter
chromatin loops or combinations thereof. An alternative
mechanism for enhancer-mediated transcriptional activation
involves the so-called transcription factory (Faro-Trindade
and Cook 2006). This transient transcription factory
structure, which can be visualized by antibodies against
active RNA polymerase II, appears to support simultaneous
transcription of many coding genes (Sutherland and
Bickmore 2009). Thus, to provide insights into how
enhancers work, the question of how these transcription
factories are formed will need to be addressed.

Real-time analysis has revealed that transcriptional
activation is preceded by increased mobility of chromatin
fibers (Chuang et al. 2006). Chromatin marks, such as
histone acetylation, are associated with increased chromatin
mobility and flexibility (Li et al. 2006), raising the

possibility that enhancers regulate these features by
tracking along the chromatin fiber to leave acetylated
histones in its wake. This process has two pivotal
consequences: An enhanced ability of a transcriptional unit
to explore its environments may eventually lead to the
recognition of a nearby transcription factory and/or to the
clustering of transcription units prior to overt transcriptional
activation. Such clustering was observed at the TH2-cell
locus with neighboring interleukin 4, 5, and 13 genes in
type-2 helper T cells (TH2 cells) being primed for
transcriptional activation (Cai et al. 2006). Moreover, the
formation of a transcription factory on these physically
aligned regulatory elements was suggested to coordinate
their expression (Cai et al. 2006). Thus, compacting
genomic sequences into a small volume increases the
chances of enhancer/promoter interaction. Whether forma-
tion of a transcription factory may be assisted by the
interaction of CTCF molecules flanking such clusters
remains to be shown.

How are enhancers blocked to prevent unscheduled
promoter activation?

Chromatin insulators may have evolved in concert with the
emergence of gene clusters to differentially regulate the
activity of cluster members. Indeed, coexpressed genes are
generally flanked by CTS elements (Xie et al. 2007).
Furthermore, insulators can act over large distances, in
excess of 100 kb, to shield particular promoters from
enhancer functions in developmentally regulated fashions
(Wallace and Felsenfeld 2007). This property requires that
the insulator is located between enhancer(s) and a promoter,
in order to be kept inactive. In contrast to repressors,
however, chromatin insulators act in a position-dependent
manner, a feature strongly suggesting that this process acts
in a linear manner. In support of this notion is the evidence
that CTCF binds to the insulator of the maternally inherited
H19 ICR, thereby physically preventing the enhancer from
tracking along the chromatin fiber (Kurukuti et al. 2006).
Finally, as already mentioned, the CTCF insulator-mediated
blocking of enhancer-induced histone acetylation (Zhao and
Dean 2004) could impede the mobility/flexibility of
transcription units separated from the enhancer by the
insulator.

Chromatin insulators were also suggested to play a
role in organizing complex chromatin structures with
distal cis-regulatory elements that have been alleged to
prevent enhancer-mediated transcriptional activation. In
the “inactive loop” (Kurukuti et al. 2006) and “knotted
loop” (Qiu et al. 2008) models, the insulator is proposed to
act as a topological barrier, creating a tight and transcrip-
tionally inactive loop. In the “unproductive loop” model,
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the insulator competes with the enhancer for promoters,
acting in effect as a promoter decoy for enhancers (Yoon
et al. 2007). A more elaborate discussion on CTCF-
dependent chromatin loops is presented in Phillips and
Corces (2009). A unifying hypothesis invokes the possibility
that the insulator has a dual function, i.e., the insulator can
provide a physical barrier and, that as a generator of three-
dimensional structures, it can also target distal cis-regulatory
elements.

What is the function of the CTCF–cohesin connection?

Sister chromatid cohesion is the process that holds together
sister chromatids after replication in S phase. Cohesion is
promoted by a protein complex that forms a ring-shaped
structure consisting of multiple cohesins. This process is
necessary for proper chromosome segregation in mitosis as
well as for post-replicative DNA-repair mechanisms.
Recent studies have extended this canonical function of
the cohesin complex toward a role in gene regulatory
circuits. For example, in Drosophila and yeast, a role for
cohesin subunits in transcriptional processes beyond sister
chromatid cohesion was suggested (Dorsett 2007). In fact,
these studies pointed to a role for cohesin in gene regulation
via a mechanism resulting in organization of a higher order
chromatin structure. Subsequently, cohesin components
were found to interact with chromatin by CTCF-
dependent recruitment (Fig. 1) during interphase (Parelho
et al. 2008; Rubio et al. 2008; Stedman et al. 2008; Wendt
et al. 2008). Furthermore, CTCF-dependent enhancer
blocking at the H19 ICR was found to depend on cohesin

components (Wendt et al. 2008), suggesting that cohesin
mediates enhancer blocking via CTCF-dependent recruitment
to insulator sites.

Expression analysis after CTCF/cohesin knockdown
through RNAi in HeLa cells demonstrated an overlap
between the target genes of both factors, with a number of
them being indeed bound by CTCF and cohesin (Wendt et
al. 2008). This finding indicates not only that cohesin
connects identical sequences on sister chromatids but that
remote cis-regulatory regions may also be connected by
cohesin bound to CTCF (Fig. 1). This CTCF/cohesin
binding may result in chromatin loop formation, which in
turn may play a role in several key aspects of chromatin
function, such as enhancer action, enhancer blocking, or
immunoglobulin recombination. Indeed, a recent study has
demonstrated that CTCF-bound cohesin is required to
activate the IFNG gene and that loop formation as well as
IFNG expression are augmented by cohesin as shown by
depletion of Rad21, a subunit of the cohesin complex
(Hadjur et al. 2009).

Additional evidence that cohesin plays a role in
transcriptional regulation has come from recent studies
analyzing patients suffering from Cornelia de Lange
syndrome, a disease caused by mutations in several genes
coding for components of the cohesin complex (Liu et al.
2009). A significant overlap between genes changing their
expression levels after cohesin reduction or CTCF depletion
was detected (Wendt et al. 2008). However, in addition to
CTCF binding, a more general role for cohesin in
transcription was suggested as the promoters of genes
deregulated in CdLS patients were markedly enriched for
cohesin binding in the absence of CTCF (Liu et al. 2009).
A correlation between cohesin binding and transcription
has been seen in Drosophila as well (Misulovin et al. 2008;
Schaaf et al. 2009).

Interaction of remote sites and loop formation is also
required for V(D)J recombination at the immunoglobulin
loci. Again, multiple binding sites for CTCF/RAD21 have
been identified at the Igh and Igκ locus. Interestingly,
CTCF binding at these sites appears largely unchanged
throughout differentiation. In contrast, RAD21 recruitment
to CTSs was found to be both lineage and stage specific
(Degner et al. 2009). Thus, CTCF binding to DNA does not
appear to determine the site-specific action of cohesin, but
rather a site-specific modification of CTCF or the presence
of other factors may regulate cohesin binding or function.

How are long-range chromatin contacts made, even
between different chromosomes?

The spatial conformation of the interphase chromatin
enables regions to be separated far from each other to

Fig. 1 Three-dimensional chromatin interaction is observed on two
levels of complexity. CTCF–cohesin complexes (green) contract
chromatin fibers in cis by linking nearby CTCF binding sites. For
longer-range interactions, such as between different chromosomes
(light and dark blue), specificity beyond the CTCF–cohesin interac-
tion appears to be necessary. This process may be mediated by
unknown factors in concert with the CTCF–cohesin complex bound to
one of the chromatin partners
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make physical contact both within and between chromosomes
(Gondor and Ohlsson 2009). There is also accumulating
evidence to suggest that these interactions are often CTCF-
dependent both in cis and in trans. Using methods based on
the chromosome conformation capture (3C) technique
(Dekker 2006), the insulator sites at the HS5 site at the
5′-boundary of the mouse β-globin gene (Splinter et al.
2006) as well as at the H19 ICR (Kurukuti et al. 2006) were
found to generate loops involving CTCF and CTCF binding
sites. Moreover, both of these regions can also interact with a
wide range of sequences derived from almost all autosomal
chromosomes (Ling et al. 2006; Sandhu et al. 2009; Zhao et
al. 2006).

How are these regions making contact with each
other, and how can the specificity in such long-range
interactions be achieved? Stochastic movements of
chromatin fibers presumably provide opportunities for
chromatin fiber collisions with a frequency directly
proportional to their proximities and affinity to each
other. Research showing that CTCF–cohesin complexes
contract chromatin fibers in cis at the IFNG (Hadjur et al.
2009) and apolipoprotein (Mishiro et al. 2009) loci
suggests that the cohesin link brings more proximal CTSs
together. Importantly, for the IFNG locus, it was conclu-
sively shown that this interaction was strictly maintained
in cis (Hadjur et al. 2009). It is thus conceivable that
CTCF and components of the cohesin complex provide
sufficient affinity between interacting CTSs to stabilize,
perhaps even to immobilize, chromatin fiber interactions
(Wallace and Felsenfeld 2007) resulting from proximal
stochastic collisions (Fig. 1).

For longer-range interactions, an element of specificity
beyond the CTCF–cohesin interaction appears to be
necessary to avoid extensive tangling of chromatin fibers
to tens of thousands of CTSs. This notion is further
supported by the absence of any enrichment of CTSs in
sequences from other chromosomes directly or indirectly
interacting with the CTSs within the H19 ICR (Sandhu et
al., unpublished observation). It thus appears that CTCF
when bound to a chromatin fiber has shorter-range affinity
for CTSs in cis, but longer-range affinities for other
partners both in cis and in trans. Specificity for longer-
range interaction may incorporate 3D features of higher
order chromatin structures that provide an affinity for a
similar region on another chromosome (Gondor and
Ohlsson 2009) (Fig. 1).

How are imprinted chromatin marks read?

Our understanding of genomic imprinting, i.e., parent of
origin-specific epigenetic marks frequently manifested in
mono-allelic expression patterns, has been dramatically

improved by the analysis of CTCF and chromatin insulation.
Although the current research focus is heavily on H19 ICR,
CTCF is also known to associate with several other imprinted
domains, such as DLK1/GTL2 (Wylie et al. 2000), Meg1/
Grb10 (Hikichi et al. 2003), Rasgrf1 (Yoon et al. 2005),
MEG-3 (Rosa et al. 2005), and KvDMR (Fitzpatrick et al.
2007). For most of these domains, CTCF is known to bind in
an allele-specific manner to a region pivotal for the
regulation of the imprinted status.

CpG methylation, a key parent of origin-specific
epigenetic mark, is not only strongly linked with regulating
occupancy of CTSs (Mukhopadhyay et al. 2004) but also
DNA binding of CTCF protects against de novo methyla-
tion (Pant et al. 2003; Schoenherr et al. 2003). In addition
to this dual link between CTCF and an epigenetic state,
CTCF also regulates asynchronous replication timing. In
other words, for imprinted genes, one parental allele
replicates earlier, whereas the opposite allele replicates
generally late during the S phase. Thus, CTSs within the
H19 ICR domain appear to influence the timing by
delaying replication of the maternally inherited Igf2/H19
domain (Bergstrom et al. 2007).

In this context, it is of interest to note that the H19 ICR
domain interacts preferentially with other imprinted
domains in the germline as well as in stem and somatic
cells and that CTSs within the H19 ICR domain confer
replication timing patterns on the interacting sequences
(Sandhu et al. 2009). The question then becomes what are
the underlying structural features that enable chromatin to
bring about these processes? One possibility is that
particular combinations of repeat elements underlie a
chromatin scaffold that together with CTCF and other
factors provides an epigenetic signature with a high affinity
to a chromatin structure on another chromosome (Gondor
and Ohlsson 2009). This hypothesis is partially borne out
by the observation that imprinted states can be predicted
depending on constellations of repeat elements within
imprinted domains (Walter et al. 2006). However, it
remains to be established whether such features in
combination with CTSs were selected to transfer epigenetic
states in trans to facilitate evolution of genomic imprinting
(Sandhu et al. 2009).

What are the mechanisms of X-chromosomal inactivation?

X-chromosomal inactivation is the process that compensates
for the dosage difference in sex chromosomes between male
and female mammals. A number of key players involved in
this process have been identified through the past decades;
however, there is still some debate about the exact mecha-
nisms underlying this biological phenomenon. So far, it has
been established that the two X-chromosomes come into close
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contact in the nuclear space, just at the onset of
inactivation of one of the two X-chromosomes (Chow
and Heard 2009). Moreover, pairing was found to be
dependent on the X inactivation center (XIC), which itself
is involved in the counting of X-chromosomes and the
choice of inactivation (Bacher et al. 2006). Within the
XIC, a short fragment was found to recapitulate pairing
and that pairing was dependent on transcription as well as
on CTCF (Xu et al. 2007). Recently, a model was
proposed for XIC regulation (Donohoe et al. 2009). This
model involves the transcriptional regulator Oct4 that
interacts not only with CTCF bound to many sites, but
also with the XIC regulator genes Tsix and Xite, which are
located in antisense orientation next to the gene coding for
the X inactive specific transcript (Xist). Oct-4 activated
Tsix and Xite transcription inhibits transcription of Xist on
the same chromosome. Upon CTCF-mediated pairing and
cell differentiation, Oct4 levels are reduced such that only the
active X will continue with Tsix transcription, whereas
the lack of Tsix activity would enable Xist expression on the
inactive chromosome.

How are heterochromatin boundaries maintained?

Heterochromatic (inactive) regions are insulated from
euchromatic (active) regions (Fig. 2). If insulation at
these boundaries is defective, as observed after chromo-
somal rearrangements, for example, a spreading of
inactive chromatin modification into the active chromatin
is observed; a phenomenon called position-effect variega-
tion (Probst et al. 2009). A role for CTCF in barrier
function was already proposed in the 1990s based on the
finding that several CTS-containing insulator elements
were able to block the position effects on reporter genes
stably integrated in the genome (Chung et al. 1993; Li et
al. 2002). In contrast, it was shown that the enhancer
blocking and barrier functions of the chicken beta-globin
HS4 were separable, indicating that the boundary function
of this element was independent of CTCF (Recillas-Targa
et al. 2002).

Recent advances in high-throughput genomics have
resulted in genome-wide binding profiles of CTCF in
different organisms. These studies demonstrated a signifi-
cant association of CTCF with boundary elements defining
the borders between adjacent chromatin domains of
opposing activity as determined by the association with
specific histone modification marks (Barski et al. 2007;
Bartkuhn et al. 2009; Cuddapah et al. 2009). Binding to
boundaries between active and repressed chromatin was
seen especially in the context of H3K27me3, a histone
modification that occurs in large chromosomal domains
ranging from several kb up to several 100 kb in Drosophila

(Fig. 2). H3K27me3 modification is regarded as a hallmark
of Polycomb-repressed chromatin. These regions are
marked by low gene density. Furthermore, gene activity is
found with lower levels as compared to genes at other
genomic locations (Schwartz et al. 2006).

Similarly, CTCF was identified to bind to the margins of
lamin-associated domains (LADs). Association of chroma-
tin with the nuclear lamina is believed to negatively
influence gene expression through recruitment of chromatin
to the nuclear periphery. Interestingly, high levels of
H3K27me3 are also characteristic of those domains,
suggesting that LADs are similar to H3K27me3 domains
(Guelen et al. 2008). Additionally, LAD borders were
marked by active transcription from divergent promoters
transcribing away from the repressed domains or by CpG
islands, which again are indicative of active promoters
(Fig. 2).

CTCF-dependent heterochromatin boundaries have been
recently suggested to play a major role in the regulation of
tumor suppressor genes (Witcher and Emerson 2009).
Binding of CTCF to sites upstream of the promoters of
the p16, CHD1, and RASSF1A genes is correlated with
activation of the downstream genes, whereas the regions
upstream of the CTSs are marked by repressive chromatin
modification with the CTS demarcating the transition zones
between heterochromatic and euchromatic histone modifi-

Fig. 2 Heterochromatic (inactive) chromatin regions are insulated
from euchromatic (active) regions. Active domains, as exemplified by
active genes, histone acetylation, or histone H3 lysine 4 methylation
(H3K4me2), are separated from inactive domains, which are identified
by repressed genes, histone H3 lysine 27 methylation (H3K27me3),
lamin B1, or polycomb binding. These heterochromatic regions are
often associated with the nuclear lamina (gray arc). Several chromatin
features have been identified at the border position between domains.
These are CpG islands and active promoters, loss, or high turnover
rate of nucleosomes and CTCF/cohesin binding. A border function
may be mediated by chromatin activation at these regions to
counteract any spreading of inactive chromatin marks into the active
domains
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cations. Consequently, loss of CTCF binding leads to
repressive chromatin marks spreading into the p16 promoter
as well as to a loss of gene expression.

The mechanism of barrier function could be a physical
block generated by CTCF binding. Furthermore, the
presence of active promoters and/or the association of
CTCF with RNA polymerase II (Chernukhin et al. 2007)
and with active promoters (Bartkuhn et al. 2009) may
provide a local active chromatin region counteracting any
heterochromatic spreading.

Outlook

There are many important aspects concerning chromatin
organization in general and the role of CTCF in
particular that need addressing in the future. To start
with, CTCF binding sites are known to be flanked by an
array of phased nucleosomes. But what is the cause and
effect of nucleosome positioning and CTCF binding? Did
the nucleosome positioning feature evolve before or after
the emergence of CTCF binding sites? As nucleosome
positioning is determined by the underlying sequence
and independent of CTCF binding sites within at least
the H19 ICR, it is reasonable to assume that nucleosome
positioning evolved prior to CTCF binding.

The insulator function in some cases has been shown
to involve chromatin long range and CTCF and/or
cohesin binding. But how does this mechanistically
interfere with promoter/enhancer interaction? Could it
operate by stabilizing transient interactions in cis, thereby
allowing more time for epigenetic factors, such as Suz12
(Li et al. 2008) to silence the interacting region? Or does
this interaction serve to repress the interacting region by
contracting chromatin conformations?

ICRs display not only CTCF-dependent chromatin
insulator function but also a CTCF-dependent ability to
delay replication timing, which is strikingly different
between the alleles (Sandhu et al. 2009). How do CTCF
binding sites within such ICRs regulate BOTH insulation
and replication timing? And how can the H19 ICR regulate
replication timing in trans in a CTCF-dependent manner? Is
there a division of labor between different CTCF binding sites,
such that some govern insulation and others replication timing
patterns?

Furthermore, it is not clear whether CTCF has the ability
to interconnect its binding sites on a genome-wide scale.
This is hinted at by the demonstrations that CTCF appears
to contract chromatin structures by recruiting cohesin
(Hadjur et al. 2009). However, there is currently no
documentation that this occurs in trans. Even if this would
be the case, how are the specificities in interactions between
CTCF binding sites on different chromosomes achieved?

Finally, besides a striking colocalization of CTCF with
chromatin domain boundaries, there is functional evidence of
CTCF mediating a chromatin barrier function. Whether
barrier sites are mechanistically different from sites mediating
enhancer blocking remains to be shown. If so, what are the
decisive hallmarks discriminating CTCF binding sites
governing insulation and barrier functions, respectively? This
question can be extended to all of the CTCF-mediated
features: Are all of these functions realized at each of the
30,000 genomic binding sites (Cuddapah et al. 2009) or to
which extent, are binding site-specific functions mediated by
the DNA sequence or by neighboring factors? By extrapo-
lating the timeline of CTCF discoveries, we have here
identified what we believe are key issues within this research
area. By formulating specific questions, we hope to stimulate
discussions among colleagues dedicated to research on
CTCF, which is truly a remarkable factor.
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