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Abstract: Several lines of evidence suggest that the modulation of presynaptic GABA release is mediated by a variety of 

receptors including; presynaptic AMPA, cannabinoid, GABAB, kainate, metabotropic glutamate, NMDA, and opioid re-

ceptors. The evidence supporting presynaptic modulation of inhibition is predominantly obtained from studying stimulus 

elicited, spontaneous or miniature synaptic events, where the information regarding the identity of the presynaptic cell is 

lost. This article summarises these findings then focuses on another approach to study the presynaptic modulation of 

GABA release by comparing the modulation of GABA release at unitary synapses identified morphologically, immunocy-

tochemically and electrophysiologically. To date, evidence for cell-type specific regulation of presynaptic inhibition at 

identified synapses involving most of the above presynaptic receptors does not exist. Therefore, the key presynaptic 

modulators that will be focused on here are kainate and cannabinoid receptors and their intracellular signalling cascades 

that orchestrate GABA release. There will be some discussion on presynaptic modulation via opioid receptors at identified 

synapses. This review provides evidence to suggest a cell-type specific modulation of presynaptic inhibition in cortical re-

gions. 
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INTRODUCTION 

 Inhibition is essential in shaping response properties in 
single cells and assisting co-operativtity in large populations 
of cells. It is the network of GABAergic interneurones that 
balances excitability by controlling dendritic electrogenesis 
and spike generation of pyramidal cells as well as setting and 
maintaining oscillatory rhythms. In CA1 alone there are cur-
rently 22 identified subclasses of interneurones [54]. These 
interneurones are classified according to their neurochemis-
try, electrophysiological properties and their gross morphol-
ogy [32, 51, 62, 81, 84]. In the neocortex and hippocampus, 
inhibitory interneurones may terminate on pyramidal cell 
dendrites, these include bistratified cells [5, 12] Schaffer 
collateral associated interneurones [3, 17, 72, 93] and oriens 
lacunosum molecular interneurones in the hippocampus, [7-
9, 81] and Martinotti, double bouquet, bipolar and bitufted 
cells in the neocortex [51, 85, 94]. These dendrite-preferring 
interneurones serve to fine-tune pyramidal cell activity by 
allowing a wide time window for coincidence detection [65].  

 Other interneurones target proximal regions of pyramidal 
cells, for example basket cells [4, 12, 81] and axo-axonic 
cells [56, 85]. These cells are thought to have a functional 
role in negating pyramidal cell activity by responding faster 
and more reliably, thus restricting the time window for spike 
generation in the postsynaptic target cells [15, 34, 48, 65, 
73]. However, the properties of proximally targeting basket 
cells are becoming well documented [see 33, 34 for reviews] 
and their role in “negating pyramidal cell” activity is far  
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more complex because basket cells are active at different 
times during network behaviour [53, 54]. There are two dif-
ferent types of basket cells; parvalbumin and cholecystokinin 
(CCK) –positive cells. The most widely distributed are par-
valbumin positive, cells which usually display fast, non-
accommodating action potentials, with fast membrane time 
constants and elicit fast inhibitory postsynaptic potentials 
mediated predominantly by alpha 1 subunit containing 
GABAA receptors [4, 5, 8, 88]. These fast properties allow 
the fast spiking basket cells to faithfully respond to repetitive 
excitation [5, 38]. Conversely, CCK-positive basket cells 
usually display slower, accommodating action potentials and 
membrane time constants and elicit slower IPSPs that are 
mediated by alpha 2/3 subunit containing GABAA receptors 
[5, 8, 38, 88]. Thus, although structurally basket cells target 
similar postsynaptic domains, there is dichotomy in the 
physiological functions. 

 Selective insertion of presynaptic receptors such as ka-
inate, cannabinoid (CB), AMPA, NMDA, GABAB, opioid, 
and metabotropic glutamate receptors (mGluRs) may add 
further diversity to interneuronal function. These signalling 
pathways exert a modulatory role on transmitter release at 
inhibitory synapses, though how all these receptors/modu-
lators variously regulate inhibition in a cell type-specific 
manner still requires detailed investigation. The evidence 
surrounding presynaptic modulation of inhibition at identi-
fied synapses available to date predominantly focuses on 
presynaptic basket cells, probably because the CCK-positive 
basket cells express a range of presynaptic receptors and 
modulators, such as; CB1 and 5-HT3 receptors, vesicular 
glutamate transporter type 3 and a high level of GABAB re-
ceptors [see 31, 32, 83 for reviews]. Parvalbumin basket 
cells express fewer presynaptic modulators/receptors, there-
fore the different physiological properties of these two sub-
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classes of basket cells could be a reflection of their diverse 
intrinsic properties, as well as the modulatory pathways  
involved. Here, I will be reviewing these two subclasses of 
basket cells, and dendrite targeting cells that express CCK 
and focus on presynaptic modulation via kainate and can-
nabinoid receptors with some discussion on opioid receptors.  

Modulation of GABA Via Presynaptic Kainate Receptors  

 Cortical interneurones mostly express the GluR5 or 
GluR6 subunits of kainate receptors [13, 71].  

 The first evidence to suggest that kainate receptors  
decrease inhibition came from studies performed in the hip-
pocampus [25, 82, 96]. Following these studies, it has been 
demonstrated that kainate acts presynaptically to modulate 
the release of neurotransmitter release [see 46, 55 for  
reviews]. Evidence of presynaptic kainate receptors regulat-
ing inhibition came from stimulus elicited experiments 
where inhibitory postsynaptic currents (IPSCs) were shown 
to be depressed with either exogenous application of kainate 
[13, 19, 29, 30, 74, 75, 76] or by a direct activation of gluta-
matergic pathways [66]. However, some interneurones in-
cluding fast spiking basket cells (that have been so far identi-
fied) also express functional somato-dendritic kainate recep-
tors, which upon activation will enhance the spontaneous 
firing rates of these cells, therefore increasing the frequency 
of spontaneous IPSCs [13, 29, 30]. This has lead to the as-
sumption that the depression of stimulus elicited IPSCs dur-
ing application of kainate receptor agonists could be due to 
the secondary effects of excess GABA acting on both pre- 
and postsynaptic cells rather than the activation of presynap-
tic kainate receptors [29, 30]. One way to demonstrate the 
involvement of kainate receptors on presynaptic terminals 
was to look at action potential independent spontaneous 
IPSCs (or miniature IPSCs). However, although some stud-
ies have reported a decrease in the frequency of miniature 
IPSC [21] others have disagreed [13, 29, 30]. Thus there was 
debate as to whether kainate receptors are located presynap-
tically to modulate inhibition. More direct evidence was pro-
vided by studying unitary IPSCs elicited by fast spiking  
interneurones (which are typically immunoreactive for  
Parvalbumin) in layer V pyramidal cells of the neocortex. 
IPSCs were depressed by ATPA, a GluR5 kainate receptor 
subunit specific agonist and by the endogenous agonist  
L-glutamate (in the presence of AMPA, NMDA, mGluR and 
GABAB receptor antagonists) suggesting the involvement of 
the GluR5 subunit [6]. This is illustrated in (Fig. 1). These 
effects were accompanied by an increase in the failure rate of 
synaptic transmission, in the coefficient of variation and in 
the paired pulse ratio, indicating a presynaptic origin of the 
IPSC depression.  

 Some studies have suggested that presynaptic kainate 
receptors increase, rather than inhibit GABA release at  
connections between inhibitory neurones in CA1 [19, 47, 
67], in hypothalamic neurones [57] and in cultured dorsal 
horn neurons [52]. Interestingly this bidirectional role for 
kainate receptor modulation of inhibition has been reported 
in the amygdale [11]. The exact mechanisms that enhance 
GABA release at these synapses remains unclear. 

 These data suggest that the modulation of GABA  
mediated synaptic events is heterogeneous and dependent on 

the postsynaptic target neurone. There is sufficient evidence 
to suggest that within cortical regions kainate receptors re-
duce the inhibitory efficacy of synapses presynaptically. 

Intracellular Signalling Cascades Involved in Activating 

Presynaptic Kainate Receptor 

 Intracellular signalling cascades that trigger presynaptic 
kainate receptors probably co-operate with postsynaptic 
mechanisms such as depolarisation induced suppression of 
inhibition (DSI). This mechanism is triggered by postsynap-
tic membrane depolarisation and requires the opening of 
voltage dependent calcium channels in the postsynaptic cell, 
resulting in a release of retrograde signal to act on inhibitory 
interneurones presynaptically to reduce the release of GABA 
[1, 2, 64]. Previous studies have suggested that glutamate is 
released from postsynaptic dendrites as a result of DSI acting 
as a retrograde messenger [6, 100].This glutamate then acti-
vates presynaptic kainate receptors that probably inactivate 
presynaptic calcium channels, hence a reduced influx of  
calcium decreasing GABA release [49, 60, 78]. These  
regulatory mechanisms also may involve G-proteins since a 
decrease in GABA release induced by kainate receptors is 
affected by PTx-sensitive G-protein and phosphykinase C 
activation [75, 76].  

Modulation of GABA Release Via Cannabinoid Recep-

tors  

 Cannabinoid receptors constitute a major family of G 
protein- coupled receptors. There are two major types, CB1 
and CB2, of which CB1 is predominantly found in the CNS 
[for reviews see, 39, 41, 45, 77, 97]. 

 In the CNS, CB1 receptor mRNA is predominantly local-
ised in neocortical and hippocampal presynaptic terminals in 
subsets of GABAergic interneurones [43, 50, 63, 89]. In  
particular, axon terminals of CB1 receptors were also  
co-localised with cholecystokinin (CCK), but never parval-
bumin shown by double immuno-labelling experiments [10, 
39, 50, 68]. This is also supported by physiological data. The 
first intracellular recordings that provided evidence for the 
modulation of GABAergic synaptic transmission via CB1 
receptors were from hippocampal pyramid cells, in-vitro.
IPSCs were reduced by bath application of an exogenous 
cannabinoid without affecting the action potential independ-
ent spontaneous events, supporting the presynaptic site of 
cannabinoid action [40, 42, 43]. This modulation of GABA 
release is absent in CB1 receptor knockout mice [40, 69, 98]. 
In the neocortex for example, inhibitory potentials elicited by 
CB1 receptor-expressing, regular spiking interneurones (but 
not fast spiking interneurones) to pyramidal cells connec-
tions are suppressed by endocannabinoids [35].  

 Co-localisation of CCK and CB1 receptors are not  
restricted to proximally targeting basket cells and are also 
expressed by dendrite targeting interneurones [see 3, 17, 32, 
54, 72, 93]. Hence, there is some overlap of CB1 receptor 
function with perisomatic and dendritic inhibition which is 
discussed below. In CA3, CCK-positive mossy-fiber-associ-
ated interneurones contact apical dendrites of pyramidal 
cells. Using paired whole-cell recordings, an increased firing 
rate of this presynaptic interneurone relieved silencing of this 
synapse by persistent CB1 receptor activation [58]. This  
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observation was extended to CA1, where GABA release at 
CCK-positive basket cells targeting pyramidal cells was  
decreased via presynaptic CB1 receptors at low frequencies 
of presynaptic firing, however the presynaptic basket cell 
recovered from this inhibition of GABA release when it was 
activated at higher firing frequencies [27]. These synapses 
showed a tonic silencing which has been suggested to be a 
result of tonic endocannabinoid mobilization from postsyn-
aptic pyramidal cells and this release of endocannabinoids is 
thought to be regulated by mGluRs and muscarinic receptors 
[26]. Recently, these observations have extended to unitary 

connections among interneurones [3]. We have observed that 
there is a target-cell dependent short-term synaptic plasticity 
of IPSPs elicited by presynaptic CCK-positive cells onto a 
variety of postsynaptic interneurones that could also  
indirectly play an important role in spike timing of pyramidal 
cells. These synapses all modulate their GABA release via
presynaptic CB1 receptors that may alter their short-term 
dynamics [3, Ali and Todorova, unpublished observations]. 
(Fig. 2) illustrates IPSPs between SCA interneurones which 
are reduced by a CB receptor agonist, Anandamide. The  
decrease of GABA release was prevented by the CB1  

Fig. (1). Presynaptic kainate receptors regulate unitary IPSPs in rat neocortex. (A) Pair of synaptically connected cells labelled with biocytin 

(marked with AMCA). The postsynaptic interneurone was immuno-positive for Parvalbumin (PV) and negative for cholecystokinin- (CCK). 

This type of multipolar basket cells typically display fast firing patterns (B). (C) Voltage clamp recordings to demonstrate the suppression of 

unitary IPSCs elicited by fast spiking interneurones in pyramidal cells in control, during bath application of ATPA (1 , GluR5 specific 

agonist) and during L-glutamate (10 ) . Subsequent addition of CNQX (30 ,broad spectrum, AMPA and kainate receptor antago-

nist)almost completely abolished the suppression of these IPSCs. (D) Schematic diagram illustrating a synapse between a fast spiking in-

terneurone and a pyramidal cell in the neocortex. The endogenous release of L-glutamate as a retrograde messenger from the postsynaptic 

pyramidal cell as a result of depolarisation (increase in postsynaptic excitation i.e. conditioning protocol) is thought to have suppressed the 

IPSCs as result of activating presynaptic kainate receptors. This suppression was prevented by CNQX [See ref. 6 for further details]. 
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receptor antagonist AM-251. Fig. (2B) also demonstrates 
there is a persistent inhibition due to activation of CB1  
receptors at these connections that was relieved after the bath 
application of AM-251, resulting in an enhancement of the 
unitary IPSPs (Ali and Todorova, unpublished observation). 
This persistent silencing via CB1 receptors probably plays a 
role in differentiating between certain ensembles of pyrami-
dal cells, allowing ongoing activity at some ensembles, while 
silencing others. In contrast, the persistent silencing via CB1 
receptors observed in hippocampal regions is not always 
present at neocortical inhibitory connections involving  
presynaptic regular spiking interneurones (De-May and Ali, 
unpublished observations), suggesting that persistent silen-
cing via CB1 receptors may be predominantly a hippocampal 
function.  

 In summary, there is a consistent observation that GABA 
release is modulated via CB1 receptors at synapses that  
co-localise CCK and CB1 receptors. This probably contrib-
utes to short and long term synaptic plasticity throughout the 
brain. Interestingly, CCK, itself is a modulator at synapses 
by acting as molecular switch that determines the source of 

perisomatic inhibition [26]. The study by Földy and  
colleagues demonstrates that CCK selectively excites and 
enhances the output of parvalbumin-expressing basket cells, 
while concurrently suppressing GABA release from CCK-
positive basket cells. It has been suggested that this reduc-
tion is triggering endocannabinoid mediated, retrograde sig-
nalling, since CCK-B receptors are linked to G-protein cou-
pled receptors that can act through phospholipase C [95] 
leading to endocannabinoid production and release.  

Intracellular Signalling Cascades that Trigger Down-

Regulation of Inhibition Via CB1 Receptors 

 Much of the attention focused on endogenous cannabi-
noids as a retrograde signal is linked with DSI (a decrease in 
GABA release presynaptically as a result of postsynaptic 
membrane depolarisation) due to the following observation; 
firstly exogenous cannabinoids modulate GABA release [3, 
21, 24, 28, 35, 37, 69, 98]. Secondly both DSI and endo-
cannbinoid synthesis require Ca

2+
 influx into the postsynap-

tic cell. Thirdly, DSI expression is thought to be presynaptic 
since it does not affect the quantal size of miniature GABA 
mediated events [2, 97] consistent with the presynaptic loca-

Fig. (2). Inhibition at CCK-positive terminals is regulated by CB1 receptors. (A) Schematic of 2 connected CCK-positive Shaffer collateral 

associated interneurones (SCA) in CA1 stratum radiatum. These connections typically displayed synaptic facilitation (B) and were sensitive 

to CB1 receptor pharmacology (C) and depolarisation induced suppression of inhibition (DSI) (D). CB1 receptor antagonist/inverse agonist 

AM-251 (10 ) prevented the actions of Anandamide (14 M, CB receptor agonist) and DSI [see ref. 3 for further details]. (B) Bath appli-

cation of AM-251 at another connection between 2 SCA interneurones resulted in an enhancement of the train of IPSPs elicited. This en-

hancement to the train of IPSPs suggests that there is a persistent silencing of these synapses via CB1 receptors that was relieved by AM-

251. 
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tion of cannabinoid receptors. Most studies reporting the 
modulation of synapses via CB1 receptors usually employ 
the DSI protocols, however in the neocortex, connections 
between CB1-positive cells lack DSI [35] suggesting that 
perhaps another CB receptor is involved here.  

 When endocannabinoids are released they activate CB1 
receptors to modulate neuronal signalling mainly via the 
inhibition of adenylate cyclase and N and P/Q type calcium 
channels [23, 60, 70, 90, 98] or by activation of inwardly 
rectifying potassium channels [20, 79, 92]. The inhibition of 
presynaptic calcium channels could result in the suppression 
of the release of neurotransmitters such as glutamate, acetyl-
choline, noradrenaline and GABA [36, 39, 42, 44, 50].  

 The presynaptic activation of CB1 receptors is most 
likely linked to an inhibition of N- or P/Q-type voltage gated 
calcium channels involved in vesicular release [42, 90].  
Recently it has been suggested that mGluR1 effects on DSI 
may be a result of the activation of endocannabinoids with 
glutamate acting as a trigger rather than as a retrograde sig-
nal in the cerebellum [61, 91].  

MODULATION OF GABA RELEASE VIA OPIOID 

RECEPTORS 

 Opioids are powerful modulators of inhibition in the  
hippocampus [14, 16, 18, 80, 99] where these receptors 
strongly increase the spiking probability of pyramidal cells 
[59]. It has been demonstrated that opioids selectively sup-
press inhibition on parvalbumin-positive, fast spiking basket 
cells, but not regular spiking, CCK-positive basket cells [37]. 
The study by Glickfeld and colleagues suggests that opioids 
modulate the membrane potential of fast spiking basket cells 
is consistent with the evidence that opioid-mediated outward 
currents result from both the opening and closing of  
hyperpolarizing and depolarizing conductances, respectively 
[87]. These results are consistent with the preferential colo-
calization of opioid receptors with parvalbumin but not with 
CCK in synaptic terminals [22, 86].  

CONCLUSION 

 This review focuses on the regulatory mechanisms of 
identified subclasses of basket and other CCK-positive cells 
and their presynaptic inhibition involving kainate and  
cannabinoid receptors. The cascade of events leading to  
presynaptic mechanisms regulating GABA release is proba-
bly a dynamic process with postsynaptic mechanisms. These 
presynaptic modulatory pathways are also strongly corre-
lated with the class of presynaptic interneurones recruited 
and perhaps there is a selective insertion of presynaptic  
receptors. Subclasses of basket cells illustrate this well, for 
example, CCK-positive basket cells have a great array of 
presynaptic receptors and modulators in comparison to the 
parvalbumin-positive basket cells, specializing CCK-basket 
cells to be highly modifiable allowing fine-tuning of periso-
matic inhibition. Perhaps parvalbumin basket cells that have 
a more rigid and precise nature of inhibition in synchronizing 
the network [15, 53] do not use many modulatory pathways 
that fine-tune inhibition because it is not required. 

 Thus selective modulation by activity-dependent release 
of neurotransmitter via specific presynaptic receptors may 

change the strength and properties of inhibition in cortical 
regions. These modulatory pathways may also act in a  
complementary manner that regulates these two distinct 
sources of inhibition in a co-ordinated, but opposing manner 
by amplifying one source and dampening inhibition on  
another. 

 Future experiments need to focus on revealing how the 
many presynaptic receptors and modulators regulate synaptic 
strength at other identified subclasses of interneurones. With 
the existence of diverse inhibitory circuitry in the cortical 
regions, it is of interest to dissect how these interneurones 
and the pre and postsynaptic mechanisms involved in medi-
ating responses determine the overall effect of synaptic inhi-
bition.  
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