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Analysis of previously published target-cell limited viral dynamic models for pathogens

such as HIV, hepatitis, and influenza generally rely on standard techniques from dynamical

systems theory or numerical simulation. We use a quasi-steady-state approximation to

derive an analytic solution for the model with a non-cytopathic effect, that is, when the

death rates of uninfected and infected cells are equal. The analytic solution provides time

evolution values of all three compartments of uninfected cells, infected cells, and virus.

Results are compared with numerical simulation using clinical data for equine infectious

anemia virus, a retrovirus closely related to HIV, and the utility of the analytic solution is

discussed.

Keywords: quasi-steady-state approximation, viral dynamics, equine infectious anemia virus, HIV, dynamical

systems, matched asymptotic expansion

1. INTRODUCTION

Mathematical models have proven valuable in understanding the dynamics of viral infections
in vivowithin host cells andwere originally devised to examineHIV infection (reviewed by Perelson
and Ribeiro, 2013). For interactions of that sort, a basic three-component dynamical systemsmodel
consisting of an uninfected target-cell population, an infected cell population, and the free virus
population was proposed (see Figure 1). This model implied that the propagation of the virus
was limited by the availability of susceptible target-cells and hence is now characterized as target-
cell-limited (Phillips, 1996). Assuming a rapid enough time-scale for the free virus dynamics so
that a quasi-steady-state approximation could be employed, Tuckwell and Wan (2004) formally
reduced this basic target-cell-limited viral model system to a two-component one consisting of the
uninfected and infected target-cells. They then showed that there were no periodic solutions for the
two-component model and that the trajectories of both systems remained quite close. DeLeenheer
and Smith (2003) and Prüss et al. (2008) studied the global stability of the biologically relevant
equilibrium points for this basic target-cell-limited viral model system and found that its behavior
depended upon the size of a particular non-dimensional parameter R0, the basic reproductive
number, to be defined in the next section. If R0 < 1, they demonstrated that the virus-free
equilibrium point was globally asymptotically stable, while if R0 > 1, this property shifted to the
disease-persistence equilibrium point.

The results cited above use either standard techniques of dynamical systems theory or numerical
simulations. Defining α as the ratio of the death rates of the infected to the uninfected cells,
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FIGURE 1 | Schematic diagram of the basic target-cell-limited viral dynamics

model illustrating cell-virus interactions. Uninfected target-cells (T) can be

infected by the virus (V) to create productively infected cells (I) (see e.g.,

Perelson and Ribeiro, 2013). In the case of a non-cytopathic virus ρ ≈ δ. The

associated mathematical model (Equation 1) is described and analyzed in

section 2.

Burg et al. (2009) classified such viral interactions to be either
cytopathic or non-cytopathic depending upon whether α > 1
or α = 1, respectively. During cytopathic viral interactions
the infected cells are killed by the virus during the course of
infection. Some viruses are intrinsically non-cytopathic because
they replicate in a relatively benign manner while others actively
maintain such a state by shutting down all destructive processes,
activating non-destructive mechanisms, or inducing alternate
non-damaging replication programs (Plesa et al., 2006).

In what follows, we shall consider non-cytopathic retroviral
interactions; that is, interactions that satisfy α = 1, which is
believed to be the case for the equine infectious anemia virus
(EIAV) (Schwartz et al., 2018). EIAV shows many characteristics
similar to other retroviruses, including a very rapid replication
rate and high levels of antigenic variation. It, however, is
unusual among retroviruses in that most infected animals,
after a few episodes of fever and high viral load, progress
to a stage with low viral load and an absence of clinical
disease symptoms. The horses effectively control viral replication
through adaptive immune mechanisms. Given that this differs
from the retroviruses human immunodeficiency virus (HIV)
and simian immunodeficiency virus (SIV), in which the infected
develop immunodeficiency and disease, EIAV is especially
interesting to study in clinical research as well as by using
mathematical models. When adopting the mathematical model
depicted in Figure 1, the viral clearance rate γ captures these
adaptive immune system response mechanisms. In section 2, we
shall employ a systematic two-time method (Matkowsky, 1970)
to deduce a quasi-steady-state asymptotic closed-form analytic
solution of that basic target-cell-limited viral dynamics model.

Although such non-linear problems can be solved numerically
the computation must be performed sequentially for each
different set of parameter values. The advantage of this
asymptotic approach is that it yields an analytic representation,
involving the parameters as well as time, required for
least-squares parameter-identification curve-fitting procedures

to experimental data. We conclude by applying this approach to
an experimental data set on EIAV infection.

2. THE BASIC TARGET-CELL-LIMITED
MODEL

The basicmodel for viral dynamics (see Anderson andMay, 1992;
Tuckwell and Wan, 2004; Burg et al., 2009; Stancevic et al., 2013)
that describes the interactions of a virus with target-cells is given
by

dT

dt
= λ − ρT − βTV (1a)

dI

dt
= βTV − δI (1b)

dV

dt
= bI − γV (1c)

where T represents the uninfected target-cell population, I is the
population of infected cells, and V is quantity of free virus while
t, as usual, represents time. It is assumed that the target-cells are
produced at a constant rate λ and die at a rate ρT. Free virus
infects target-cells at a rate βTV and infected cells die at a rate δI.
New virus particles are produced at a rate bI and are cleared at a
rate γV . For the model under consideration, we assume that the
viral interaction is non-cytopathic and therefore take ρ = δ in
the analysis which follows.
We begin by introducing the dimensionless quantities

x(τ ; ε) =
ρ

λ
T(t), y(τ ; ε) =

ρ

λ
I(t), v(τ ; ε) =

β

ρ
V(t), τ = ρt,

ε = ρ/γ and R0 =
λβb

ρδγ
,

which upon substitution in Equations (1) yields the
dimensionless system

dx

dτ
= 1− x− xv (2a)

dy

dτ
= xv− y (2b)

ε
dv

dτ
= R0 y− v. (2c)

2.1. The Method of Matched Asymptotic
Expansions
The parameter, ε in Equations (2) is negligible when compared
to terms of O(1) if the intrinsic death rate of the target-cell
population is small when compared to the clearance rate of the
virus. We proceed under this assumption and seek a solution of
the form

[x, y, v](τ ; ε) = [x0, y0, v0](τ )+ O(ε). (3)

Upon substituting Equation (3) into the dimensionless system
(Equations 2) and retaining terms of order O(1), we obtain the
differential-algebraic system
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dx0

dτ
= 1− x0 − x0v0 (4a)

dy0

dτ
= x0v0 − y0 (4b)

v0 = R0y0. (4c)

We now construct the inner (or boundary layer) solution, the
outer (or quasi-steady-state) solution, and the uniformly valid
additive composite.

2.1.1. The Inner or Boundary Layer Solution
The presence of ε in Equations (2) suggests that the system
contains interactions that occur on two widely different time
scales—one fast and one slow. In light of this, we introduce the
“transient time” variables

η = τ/ε = γ t, X(η; ε) = x(τ ; ε), (5)

Y(η; ε) = y(τ ; ε), V(η; ε) = v(τ ; ε).

Upon substituting these into Equations (2) and noting that
d/dη = ε d/dτ we obtain the boundary layer equations

dX

dη
= ε(1− X − XV), (6a)

dY

dη
= ε(XV − Y), (6b)

dV

dη
= R0Y − V. (6c)

The ratio of the time scales ε = ρ/γ << 1, is both a consequence
of the fact that the virus acts on a fast time scale η = γ t and
the target-cells, on a slower time scale τ = ρt, and a necessary
condition for the employment of a quasi-steady-state approach.

Seeking a solution of Equations (6) of the form

[X,Y,V](η; ε) = [X0,Y0,V0](η)+ O(ε)

we find that

dX0

dη
=

dY0

dη
= 0,

dV0

dη
= R0Y0 − V0,

which upon integration yields

X0(η) ≡ x(0), Y0(η) ≡ y(0),

V0(η) = R0y
(0) + [v(0) − R0y

(0)]e−η, (7)

where x(0), y(0) and v(0) are the O(1) values as ε → 0 of the
prescribed initial conditions

X(0; ε) = x(0), Y(0; ε) = y(0), V(0; ε) = v(0).

2.1.2. The Outer Solution or the Quasi-Steady-State

Approximation
We determine the proper initial conditions to impose for the
one-term outer solution functions satisfying Equations (4) by
employing the one-term matching rule

x0(0) = lim
η→∞

X0(η), y0(0) = lim
η→∞

Y0(η), v0(0) = lim
η→∞

V0(η),

which in conjunction with the results of Equation (7) yields

x0(0) = x(0), y0(0) = y(0), v0(0) = R0y
(0),

where the target-cell initial values can be normalized to satisfy

x(0) + y(0) = 1.

Since the target-cell populations for both their infected and
uninfected states have been non-dimensionalized by employing
the same scale factor, this may be accomplished if that common
scaling is identified with the initial value of the sum of these
populations.

Now returning to Equations (4) and taking the sum of its
differential equations, we find that

d(x0 + y0)

dτ
+ (x0 + y0) = 1 (8)

with initial condition just determined of

x(0) + y(0) = 1. (9)

Solving this differential equation problem (Equations 8 and 9),
we obtain

x0(τ )+ y0(τ ) ≡ 1 or y0 = 1− x0, (10)

which from Equation(4c) implies

v0 = R0y0 = R0(1− x0). (11)

Finally, substituting Equation (11) into Equation (4a) yields the
Ricatti equation for x0 = x0(τ ;R0):

dx0

dτ
= 1− (R0+1)x0+R0x

2
0, τ > 0; 0 ≤ x0(0;R0) = x(0) ≤ 1,

(12)
where the initial condition follows from Equation (9). We note
that x0 = 1 is a particular solution of Equation (12), thus we
introduce the variable

z ≡ x0 − 1 (13)

which upon substituting into the above Riccati equation yields
the Bernoulli equation

dz

dτ
+ (1− R0)z = R0z

2 (14)

that can be solved by introducing the variable w = z−1 to obtain

z−1 =
R0

1− R0
+ ce(1−R0)τ . (15)

Making use of Equation (13) and the initial condition x0(0) =

xi ≡ x(0), we arrive at the quasi-steady-state approximation for
the uninfected target-cell population

x0(τ ) =

{

f (τ ) if R0 = 1,

g(τ ) if R0 6= 1,
(16)
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where

f (τ ) =
xi + (1− xi)τ

1+ (1− xi)τ

and

g(τ ) = 1+
(1− R0)(xi − 1)

R0(xi − 1)+ (1− R0xi)e(1−R0)τ
.

Note that expressions for y0(τ ) and v0(τ ) follow directly from
Equations (10) and (11), respectively. For ease of exposition in
what follows we set yi ≡ y(0) and vi ≡ v(0). Many similar three-
component model systems assume that initially the target-cells
are free of the viral infection. If an assumption of that sort were
made for our model by taking yi = 0 or equivalently xi = 1 then
Equation (16) would yield the unrealistic result that x0(τ ) ≡ 1.
Hence, we shall approximate that situation by adopting the initial
condition yi = a or equivalently xi = 1 − a instead where the
perturbation infected population density a satisfies the condition
0 < a << 1. Specifically, for the relevant plots of Figures 2, 3,
we shall take a = 0.0001 which implies that xi = 0.9999.

2.1.3. The Uniformly Valid Additive Composite
Constructing the one-term uniformly valid additive composites
defined by

x(0)u (τ ) = x0(τ )+ X0(τ/ε)− xi,

y(0)u (τ ) = y0(τ )+ Y0(τ/ε)− yi,

v(0)u (τ ) = v0(τ )+ V0(τ/ε)− R0yi;

we obtain, from the results of sections 2.1.1 and 2.1.2, that

x(0)u (τ ) = x0(τ ), y(0)u (τ ) = y0(τ ),

v(0)u (τ ) = v0(τ )+ [vi − R0yi]e
−τ/ε , (18)

where

y0(τ ) = 1− x0(τ ) and v0(τ ) = R0y0(τ ) = R0[1− x0(τ )].
(19)

Observe, for the target-cell variables, the outer solution is actually
uniformly valid to this order.

3. RESULTS

In this section we examine the qualitative behavior of the quasi-
steady-state approximation given by Equations (18) and (19).
We then compare the quasi-steady-state approximation with a
numerical simulation of Equations (2) using equine infectious
anemia virus (EIAV) data (Schwartz et al., 2018).

From the form of x0(τ ), it is readily seen that when R0 = 1,
x0(τ ) = f (τ ) → 1 as τ → ∞. If R0 < 1 then x0(τ ) = g(τ ) → 1
while if R0 > 1, x0(τ ) = g(τ ) → 1/R0 as τ → ∞, where x0(τ ) is
expressed as a percent of its initial population. This is consistent
with the global stability results mentioned in section 1.

Figure 2 is a plot of the three uniformly valid composite

functions x
(0)
u (τ ), y

(0)
u (τ ), and v

(0)
u (τ ). Parameter values used are

median values reported in Schwartz et al. (2018) for the equine
infectious anemia virus. Specifically, we take

λ = 2019 cells/(ml ∗ day),

β = 3.25× 10−7ml/(viral RNA copies ∗ day),

b = 505 viral RNA copies/(cell ∗ day),

ρ = δ = 1/21 per day, and γ = 6.73 per day.

Given that a dimensionless time unit (τ = 1) corresponds to 21
days, we see that the uninfected cell population remains relatively
constant for approximately 7 days (τ = 0.33). This is followed by
a period of eight to ten days of rapid infection of the uninfected
cell population at the end of which approximately 95% of the
population has been infected by the EIAV.

Figure 3A provides a comparison of the one-term
asymptotic representation of the cell population (solid
black curve) given by Equation (16) with a numerical
simulation (dashed curve) of Equation (2) using the parameter
values given above. Figure 3B provides a comparison of
the one-term asymptotic representation of the free virus
population (solid black curve) with its numerical simulation
(dashed curve). The initial virus population was taken to be
450×β/ρ ≈ 0.00307 viral RNA copies/ml. We note the excellent
agreement between the analytic asymptotic representation and
numerical simulations.

4. DISCUSSION

Researchers that employ the basic viral dynamics model now
have an analytic representation involving the parameters that
provides a vehicle for least-squares parameter-identification
curve-fitting procedures to experimental data. In particular,
given a time series population data set {(tn,Tn)}

N
n=1 and our

analytic solution for uninfected target-cells in dimensional
variables denoted by T(t; λ, ρ,β , b, γ ), a parameter identification
residual least squares fit to that data is determined by defining
(Torres-Cerna et al., 2016)

E(λ, ρ,β , b, γ ) =

N
∑

n=1

[T(tn; λ, ρ,β , b, γ )− Tn]
2

and minimizing this function by solving for λc, ρc,βc, bc, γc such
that

∂E

∂λ
(λc, ρc,βc, bc, γc) =

∂E

∂ρ
(λc, ρc,βc, bc, γc)

=
∂E

∂β
(λc, ρc,βc, bc, γc)

=
∂E

∂b
(λc, ρc,βc, bc, γc)

=
∂E

∂γ
(λc, ρc,βc, bc, γc) = 0.

employing the appropriate algorithm. This procedure can be
accomplished much more efficiently if one has a closed form
representation for T(t; λ, ρ,β , b, γ ) as in our case.

We note that for the basic target-cell-limited viral
dynamics model, the deduction of an analytic solution for
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FIGURE 2 | Plots of the uniformly valid additive composite solutions. (A) Uninfected cell population, x
(0)
u (τ ) , (B) infected cell population, y

(0)
u (τ ), and (C) free virus

population, v
(0)
u (τ ). Populations are expressed as a percent of their initial population values. One dimensionless time unit (τ = 1) corresponds to 21 days. Parameters

used to create the plots are given in the text and correspond to R0 = 21.7 and ε = 0.007.

FIGURE 3 | Comparison of the asymptotic solution of the cell population (solid black line), (A), and EIAV population (solid black line), (B), with a numerical simulation

(dashed line) of Equations (2). Parameters used to create the plots are given in the text and correspond to R0 = 21.7 and ε = 0.007.

the quasi-steady-state approximation is crucially dependent
on the non-cytopathic condition α = δ/ρ = 1 and we have
selected parameter values relevant to this scenario for EIAV.
If this were the only non-cytopathic virus, our development
restricted to the spread of infection in horse populations might
not be representative enough to enlist general interest from
virologists. Besides EIAV, however, it has been shown that this
non-cytopathic assumption is reasonable for a fairly wide class
of important viral interactions in human and other animal
populations as well, for example, Hepatitis B and C viruses
(Wieland and Chisari, 2005). In addition, non-cytopathic
enteroviruses such as the coxsackie virus B, one of the agents
suspected to be responsible for chronic fatigue syndrome
(Landay et al., 1991), cause persistent infections in their host’s
cells. Another non-cytopathic virus infecting human populations
is the Newcastle disease virus (Carver et al., 1967). Finally,
Table II in Marcus and Carver (1967) lists a collection of similar
non-cytopathic viruses inducing intrinsic interference, among
which is the hemadsorption simian virus.

We have been investigating the non-cytopathic interaction
of EIAV infection. While similar to human immunodeficiency

virus (HIV), EIAV differs from the latter in that it is not

fatal, partially because the horses’ immune systems help to
effectively control the virus. Thus, studies of EIAV infection
are of importance since they serve as useful prototypes of viral
dynamics and immune control, which may have implications
in the development of vaccines for HIV and other retroviral
infections.
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