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Abstract

Background

Sessile serrated polyps (SSPs) have emerged as important precursors for a large number

of sporadic colorectal cancers. They are difficult to detect during colonoscopy due to their

flat shape and the excessive amounts of secreted mucin that cover the polyps. The underly-

ing genetic and epigenetic basis for the emergence of SSPs is largely unknown with existing

genetic studies confined to a limited number of oncogenes and tumor suppressors. A full

characterization of the genetic and epigenetic landscape of SSPs would provide insight into

their origin and potentially offer new biomarkers useful for detection of SSPs in stool

samples.

Methods

We used a combination of genome-wide mutation detection, exome sequencing and DNA

methylation profiling (via methyl-array and whole-genome bisulfite sequencing) to analyze

multiple samples of sessile serrated polyps and compared these to familial adenomatous

polyps.

Results

Our analysis revealed BRAF-V600E as the sole recurring somatic mutation in SSPs with no

additional major genetic mutations detected. The occurrence of BRAF-V600E was coinci-

dent with a unique DNA methylation pattern revealing a set of DNA methylation markers
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showing significant (~3 to 30 fold) increase in their methylation levels, exclusively in SSP

samples. These methylation patterns effectively distinguished sessile serrated polys from

adenomatous polyps and did so more effectively than parallel gene expression profiles.

Conclusions

This study provides an important example of a single oncogenic mutation leading to repro-

ducible global DNA methylation changes. These methylated markers are specific to SSPs

and could be of important clinical relevance for the early diagnosis of SSPs using non-inva-

sive approaches such as fecal DNA testing.

Introduction

Colorectal cancer (CRC) is the third most common diagnosed and the fourth death causing

cancer worldwide and causes about 600,000 deaths every year (WHO 2012). Mutations in

APC, KRAS, BRAF, TP53, and TGF signaling genes are detected frequently in CRCs [1, 2].

While about 5% of CRCs show a family history, the majority of CRCs happen sporadically.

Recent evidence suggests that one third of sporadic colorectal cancers are thought to form

from the progression of premalignant serrated lesions [3, 4]. Serrated lesions are classified into

three categories; hyperplastic polyps (HP), sessile serrated adenomas/polyps (SSA/P), and tra-

ditional serrated adenomas (TSA). The basis for this classification is the distinct cyto-histologi-

cal features such as morphology and architecture of colon crypts, as well as position and extent

of the proliferative zone in the crypts [3–10]. However, the underlying molecular pathways

and possible genetic and epigenetic differences generating such distinctions are largely

unknown. Of these three categories HP shows the highest frequency in population but not

appears to advance to carcinoma. In contrast both SSP and TSA show significant malignant

potential to develop into cancer. However, the much higher incidences of SSP in population,

in comparison to TSA, makes SSP the principal precursor of colorectal cancers derived from

serrated lesions [3].

BRAF (V-Raf Murine Sarcoma Viral Oncogene Homolog B) is a serine/threonine protein

kinase functioning downstream of the KRAS in the MAPK signaling pathway, with roles in

cell proliferation and differentiation. BRAF is mutated in 5–10% of all malignancies (e.g. mela-

noma 60–80%, colorectal cancer 5–20%, and papillary thyroid cancer 30–50%) and is associ-

ated with changes in DNA methylation[11–14]. Mutation of valine at residue number 600 to

glutamic acid (BRAF-V600E), an activation mutation, constitutes more than 90% of all BRAF

mutations[15]. Previous surveys of cancer associated mutations in SSP samples, through tar-

geted analysis of limited known mutations identified the BRAF-V600E as the key mutation in

this disease[3, 16, 17]. However, it is not clear whether other mutations in the same samples

contribute to the etiology of this disease.

The BRAF-V600E and mutation in codon 12 and 13 of KRAS in mouse intestine are shown

to develop serrated lesions, that after deletion of P16 lead to tumorigenesis[18–20]. In human,

both BRAF and KRAS mutations are reported to be associated with serrated polyps. According

to a recent expert panel, however, SSP is mostly associated with BRAF mutation and the KRAS

mutation is linked to TSA [3].

There are subtypes in almost all cancer types that show, in selected CpG islands, a gain of

methylation phenotype known as CpG island methylator phenotype (CIMP). CIMP was ini-

tially described in CRCs and colon adenomas[21] and has been widely used for characterization
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of DNA methylation status of other cancer types. About ten specific regions of DNA are cur-

rently tested for gain of methylation in defining CIMP-positive CRCs[22–25]. Previous studies

on SSP showed that SSP harbor DNA methylation at these regions and is, therefore, classified as

a CIMP-positive [3, 17, 22–25].

Given the importance of SSP in colon cancer development, there is an urgent need to

understand its detailed molecular features at the genetic and epigenetic levels. Here we apply

state-of-the-art technologies to further characterize SSPs as the most predominant premalig-

nant serrated lesions. We show that BRAF-V600E is the sole recurrent somatic mutation asso-

ciated with SSP. And that SSPs harbor a unique DNA methylation profile associated with

BRAF-V600E that may be applicable for molecular characterization of SSP in diagnostic

procedures.

Materials and methods

These studies were approved by the University of Utah Institutional Review Board. Written

consent was obtained from all participants. No minors were involved.

Sample collection and preparation

All patient samples except P7-SSP-9 and P7-TSA-1 (TSA; traditional serrated adenoma)

were collected as biopsies in Huntsman Cancer Hospital. SSP-9 and TSA-1 are provided by

the Monterey Bay Gastroenterology Research Institute in FFPE blocks. P1-SSP-1, P1-SSP-2

and P1-SSP-3 were fixed in 10% formaldehyde and embedded in paraffin. Other biopsy

samples were flash frozen in liquid nitrogen, and later embedded in O.C.T. (optimal cutting

temperature compound). Five micron sections were cut from both FFPE and O.C.T. blocks

using Leica microtome or Leica cryostat respectively. The hematoxylin and eosin (H&E)

stained sections were used for characterization based on histopathological features. All

patients provided written consent for the proposed studies. No minors were included in the

patient group.

Whole-exome sequencing

The characterized biopsies were subjected to sample isolation from the affected areas of the

blocks using 1mm diameter disposable biopsy punches (Miltex). The QIAamp DNA FFPE Tis-

sue kit (Qiagen) was used to extract DNA from FFPE tissues. The Qiagen AllPrep kit was used

to extract both DNA and RNA from frozen O.C.T. embedded tissues. DNeasy Blood & Tissue

kit (Qiagen) was used to extract DNA from blood samples. Library construction for exome

sequencing was performed using Agilent Technologies SureSelect XT Reagent Kit, HSQ as

described below. Briefly, 1–3 μg genomic DNA was sheared using Covaris S2 Focused-ultraso-

nicator, in a 130 μl volume, with 5.0 intensity, 10% duty cycle, 200 cycles per burst, and 6:00

minutes treatment time. Sheared DNA was purified using QIAquick PCR Purification kit

(Qiagen). Using a combination of enzymes with filling and exonuclease activity, the DNA frag-

ments became blunt ended. To prepare the fragments for accepting adaptors and to block con-

catamerization, an A overhang was added to the 3’ end of the fragments, followed by ligation

to adaptors with T overhangs. Adaptor-ligated fragments were amplified using 6 cycle PCR

and followed by PCR product purification using Agencourt AMPure XP beads. Concentra-

tions and fragment size ranges of the libraries were measured using NanoDrop spectropho-

tometer and D1K ScreenTape assay in the Agilent 2200 TapeStation system. Exome capture

was performed on about 750 ng of the amplified libraries via biotinylated RNA bait molecules

of SureSelect Human All Exon 50Mb (Agilent). The captured molecules were purified using

Dynabeads MyOne Streptavidin T1, and index tagged in 10 PCR cycles. The amplified exome-
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enriched fragments were purified on Agencourt AMPure XP beads. Concentration and size

measurements were done using Invitrogen Qubit dsDNA HS Assay and High Sensitivity D1K

assay. The KapaBiosystems Kapa Library Quant kit was used to quantitate the concentration

of adaptor ligated libraries. The captured libraries were sequenced using HiSeq 2000 101 cycle

paired-end sequencing. The exome sequencing datasets are publicly available through GEO

with the following accession number: GSE110535.

Sequenced reads were aligned to the human genome (hg19) using novoalign (http://www.

novocraft.com) (2.08.1). SAMtools[26] (0.1.18) was used to create mpileup files from the align-

ments. VarScan (2.3.5) was used for finding the germline and somatic mutations in polyps

through comparison with the data from paired blood samples, and also the hg19 reference

genome. Variations with frequency of>5% in polyps were considered in the analysis. The var-

iations found using VarScan were annotated using Annovar[27] with addition of the data

from 1000 Genomes project, dbSNP 121, TFBS, DGV (Database of Genomic Variants), SIFT,

and PolyPhen-2.

Mutation verification

The BRAF-V600E mutation and mutations at KRAS codon 12 and 13, were specifically tested

by PCR amplification and sequencing, using the primer sets listed in S1 Table.

DNA methylation profiling by methyl-array

Bisulfite conversion of 500 ng genomic DNA (extracted from patient samples (P1-SSP-3,

P2-SSP-4, P5-SSP-7, P6-SSP-8, P7-SSP-9, P7-TSA-1, P8-TSA-2, P8-FAP-1, P9-FAP-2,

P10-FAP-3, P11-Ca-1, P12-Ca-2, P1-GU-1, P13-NA-1, and P13-NS-1) was performed using

EZ DNA methylation kit (Zymo Research) according to the manufacture protocol with few

modifications, recommended by Illumina specifically for 450K methyl-array, including the

incubation of the mixture of DNA and M-dilution buffer at 42˚C for 30 minutes and also after

addition of CT conversion reagent they went through 16 cycles of 30 seconds denaturation at

95˚C followed by an hour incubation at 50˚C. Converted DNA was hybridized to the Human-

Methylation450 Analysis BeadChip using the Illumina Infinium 450K Methylation assay pro-

tocol. The arrays were imaged on the Illumina iScan instrument. GenomeStudio software

v2011.1 (Illumina) was used to view the controls, calculate the Beta values for each CpG sites

and make the hierarchical clustering by correlation metrics. The Beta value report from Geno-

meStudio was analyzed for differential methylation using Partek Genomic Suite (version

6.12.1227). The methyl-array outputs are publicly available through GEO with following

accession.

Whole-genome bisulfite sequencing

Three micrograms of genomic DNA (extracted from P1-SSP-3, P1-GU-1 and P1-blood) were

sheared using Covaris S2 Focused-ultrasonicator, in a 130 μl volume, with 5.0 intensity, 10%

duty cycle, 200 cycles per burst, and 6:00 minutes treatment time. Sheared DNA was purified

using QIAquick PCR purification kit. Unmethylated DNA of lambda phage was added at 1%

concentration to each sample as an internal control of monitoring the conversion efficiency.

Libraries were made according to the Illumina library preparation protocol using the methyl-

ated adaptors. The libraries were purified using QIAquick PCR purification kit and bisulfite

converted using EpiTect bisulfite kit (Qiagen). To increase the conversion efficiency we per-

formed the denaturation steps at 98˚C for 10 minutes, and the samples were incubated for

another 120 minutes at 60˚C at the end of thermocycling reaction. The bisulfite converted

libraries were amplified using PfuTurbo HotStart DNA Polymerase (Agilent) for 16 cycles.
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The libraries were then size selected (200-300bp) and gel purified. The quality of libraries were

checked using DNA 1000 Bioanalyzer chip. Libraries were then quantitated by qPCR using

KapaBiosystems Kapa Library Quant kit and were run through 101 paired-end Illumina HiSeq

2000. The whole genome bisulfite sequencing datasets are publicly available through GEO

with the following accession number: GSE110537.

Fastq Illumina sequencing reads were aligned to the human genome (hg19) using Novoa-

lign (Novocraft). All downstream analysis were processed by programs in USeq package

(http://useq.sourceforge.net). NovoalignBisulfiteParser was used to pars the text file from

Novoalign into point data for each cytosine in the genome. The point data was parsed into

CpG context using ParsePointDataContexts. The fraction methylation of each cytosine, or

each CpG, with minimum 8 reads was calculated by BisStat. To calculate the FDR, BisStat used

the fraction of non-converted cytosines from control lambda genome. BisStat calculated frac-

tion methylation for windows of 1000 bp that contain minimum of 5 CpGs to find all methyl-

ated regions over the genome, with maximum FDR of 0.01, and made outputs to visualize on

IGB. To focus on a particular region FilterPointData was used to filter the point data for the

regions of interest. The output was then used by BisStat to find fraction methylation on that

particular region. BisSeq was used to find the DMRs of SSP compared to GU. It scanned the

parsed CpG point data with window of 200 bp that has minimum 5 CpGs differentially meth-

ylated with 3 fold changes and maximum FDR of 0.001. BisSeqAggregatePlotter was used to

plot class average aggregate of fraction methylation from CpG point data over the regions of

interest. BisStatRegionMaker was used to extract all the regions that are methylated from the

BisStat’s serialized window objects. IntersectRegions was used to intersect two region files and

calculate the correlation p-value.

The mean base fraction methylation over 10 Mb intervals of hg19 were plotted using Circos

(v0.64) (http://circos.ca/), and the mean base fraction methylation of specific regions were

plotted in R (v3.0.1) using ggplot2 (v0.9.3.1).

DNA methylation verification

A selection of methylation data from WGBS and methyl-array was validated by bisulfite PCR

sequencing. The primers are listed in S2 Table.

Gene expression profiling by RNAseq and analysis

RNA was extracted from O.C.T embeded frozen colon biopsies (P1-SSP-3, P2-SSP-4, P5-SSP-

7, P6-SSP-8, P8-TSA-2, P9-FAP-2, P10-FAP-3, P11-Ca-1, P12-Ca-2, P1-GU-1, P13-NA-1,

P13-NS-1, P14-NS-2, P15-NA-3) as explained above. Total RNA was DNase treated using

TURBO DNA-free Kit (Ambion), and its quality was assessed on Bioanalyzer RNA 6000 Nano

Chip. For ribosomal RNA depletion, the total RNA was treated with RiboMinus kit (Life Tech-

nologies), then directional RNAseq library was performed according to Illumina’s protocol.

Libraries were sequenced using 50bp single-end format on Illumina HiSeq 2000. Sequenced

reads were aligned to the human genome (hg19) plus extended splice junctions. The USeq

(8.4.6) package [28] was used to convert spliced alignments back to genomic space and gener-

ate per gene read counts. The read counts were used in the DESeq (1.12.0) and EdgeR (3.2.4)

bioconductor packages to determine differential gene expression. DESeq first normalizes the

data by dividing raw counts for each sample by the median of the per-gene geometric means

of the raw counts across all samples. DESeq then tests for differential expression using the neg-

ative binomial distribution and a shrinkage estimator for the distribution’s variance [29].

Genes with absolute log2 ratios >1 and FDR<0.01 were considered significant. EdgeR first

calculates a normalization factor using the trimmed mean of log2 fold change (TMM) method.
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Dispersions were then estimated using quantile-adjusted conditional maximum likelihood

(qCML). Finally, differential expression was determined using an exact test for the negative

binomial distribution [30]. Genes with an absolute log2 ratio >1 and FDR <0.01 were consid-

ered significant. The Gene expression profiling datasets are publicly available through GEO

with the following accession number: GSE110536.

Results

BRAF-V600E is the sole recurring somatic mutation in SSPs

Previous studies have shown, via targeted mutation analysis of candidate markers, that

BRAF-V600E is the major mutation underlying SSP. In addition, KRAS mutations predomi-

nantly at codons 12 and 13 have also been assigned to SSP, although later studies have con-

nected the KRAS mutations to the TSA type polyps instead [3]. Overall, due to lack of

comprehensive genome-wide mutation analysis surveys, involvement of additional mutation

(s) underlying SSP is still largely unclear. To address this we performed exome sequencing on

DNA extracted from total of eight SSP samples from six patients diagnosed, via colonoscopy

and pathological inspection of polyp sections, to have typical SSP type polyps in their colons.

From five of these patients a single polyp was analyzed to study the common mutations

between different affected individuals. From the sixth patient three different polyps were iso-

lated from different locations of the colon, providing the opportunity to separately sequence

the DNA extracted from all three samples to study the possible differences between different

polyps of the same individual. In parallel to these eight SSP samples, exome sequencing was

performed on corresponding available paired blood samples (from four patients; including the

one with three different polyps) to filter the germline mutations and single nucleotide poly-

morphisms (SNPs).

For the exome sequencing we used the SureSelect Human All Exon system (Agilent), cover-

ing about 51 million bases of the whole genome. This system is designed to capture all known

and predicted exonic sequences of about 21,000 genes from both of protein coding and non-

coding types. The released DNA fragments were then subjected to library preparation followed

by sequencing by HiSeq-2000 in a 101bp paired-end sequencing format. Sequencing reads

were aligned to H. sapiens Feb 2009 genome build (hg19) using the commercial Novoalign

package revealing about 6.87 Gb mapped deduplicated reads, on average, for each sequenced

sample, from that 3.59 Gb are on target. On average 92%, 80%, and 68% of the exome are cov-

ered with more than 10, 20, or 30 sequenced reads, respectively (S3 Table). To assess different

variant types (e.g. SNP, insertion and deletion), the sequenced exomes (including the

SSP-Blood paired data series) were compared to the reference genome using VarScan package

[31]. Between 17 to 30 thousand variations were detected in exonic regions and splicing junc-

tions of all sequenced samples (S4 Table). To narrow down the list of variations into disease-

associated mutations and isolate the relevant mutations, we used four criteria to filter the list

of variations. Specifically, we excluded: 1) all synonymous mutations (mutations in coding

sequence that do not alter the amino acid sequence), 2) variations reported by the 1000

genome project with the frequency of> 0.05 in the database—with the assumption that this

frequency is much higher than the estimated SSP frequency in the human population, 3) varia-

tions that are in duplicated regions of the genome because of the redundancy, and 4) muta-

tions with PolyPhen-2 arbitrary cutoff of< 0.1 (PolyPhen-2 (http://genetics.bwh.harvard.edu/

pph2/) predicts the functional effect of the mutation based on multiple alignment and the con-

served regions of protein and also the structural data). Finally, to identify the SSP-associated

mutation(s), we looked for common non-synonymous somatic mutations that are present in

all eight SSP samples. Notably, BRAF-V600E was the only common somatic mutation present
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in all eight SSP samples, including the three samples analyzed from the single individual,

although this mutation was not detected in the grossly uninvolved (GU) biopsy of this patient.

Interestingly, similar analysis of different combinations of smaller sample numbers (e.g. com-

binations of 7, 6, 5, or 4 samples) complemented by PCR verification resulted in the same find-

ing; isolation of BRAF-V600E as the sole common mutation in all different combinations

tested (S5 Table).

The BRAF-V600E mutation correlates with a reproducible unique DNA

methylation signature

Previous studies classify SSP as a CIMP-positive polyp showing gain of methylation in a lim-

ited (<10) number of tested CpG islands (CIMP markers). However, a high-resolution full

picture of the SSP-specific DNA methylation profile considering the complete list of differen-

tially methylated regions, in comparison to normal or other colon precancerous states, is lack-

ing due to lack of high-throughput DNA methylome studies. Importantly the possible

connection between SSP-specific mutation (BRAF-V600E) and such SSP-specific DNA meth-

ylation profile is currently unknown. To this end, we performed genome-wide DNA methyla-

tion profiling on fifteen available colon biopsies from eleven individuals including five SSP,

two TSA, three FAP, two carcinoma, one grossly uninvolved (GU) and two normal tissue sam-

ples. From these a single tissue sample was assessed per individual for seven patients, and from

the other four individuals a pair of two samples per person was used including; 1) a SSP-GU

pair, 2) a TSA-FAP pair, 3) a SSP-TSA pair, and 4) an NA-NS pair (two normal samples from

the ascending (NA) and the sigmoid (NS) section of the colon) (Table 1 and S1 Fig).

Characterization of the sample types was performed entirely based on the histopathological

features of the hematoxylin and eosin (H&E) stained sample sections. To evaluate the genetic

background of the samples regarding SSP-related mutations, all samples were separately sub-

jected to mutation-detection analysis, via PCR amplification coupled with Sanger sequencing,

Table 1. The biopsy samples. Mutations known for each sample are listed. SSP-1 to SSP-8 are exome sequenced. Mutations in other samples are tested by OncoCarta3.

BRAF-V600E mutation and KRAS codon 12 and 13 mutations are tested by PCR-sequencing in all samples.

SSP TSA FAP Carcinoma Normal

Patient #1 SSP-1 (BRAF-V600E)

SSP-2 (BRAF-V600E)

SSP-3 (BRAF-V600E)

GU-1

Patient #2 SSP-4 (BRAF-V600E)

Patient #3 SSP-5 (BRAF-V600E)

Patient #4 SSP-6 (BRAF-V600E)

Patient #5 SSP-7 (BRAF-V600E)

Patient #6 SSP-8 (BRAF-V600E)

Patient #7 SSP-9 (BRAF-V600E) TSA-1

Patient #8 TSA-2 (BRAF-V600E; APC-Q1062fs�1) FAP-1 (APC-Q1062fs�1)

Patient #9 FAP-2 (APC-R1450�)

Patient #10 FAP-3 (APC-E1309fs�4)

Patient #11 Ca-1 (BRAF-V600E; APC-S1465fs�3;

JAK3- V722I;

PTEN- K267fs�9)

Patient #12 Ca-2

Patient #13 NA-1, NS-1

Patient #14 NS-2

Patient #15 NA-3

https://doi.org/10.1371/journal.pone.0192499.t001
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specifically for the BRAF-V600E mutation and also the KRAS codon 12 and 13 mutations, the

two mutations previously reported to have connection with SSP. This survey confirmed

BRAF-V600E mutation in all SSP samples and also in one of the carcinoma samples and one

of the TSA samples. Interestingly, the BRAF-V600E positive TSA sample was from the TSA-

FAP pair, in which the FAP sample (isolated from a different section of the same polyp as the

TSA sample) showed APC but not the BRAF-V600E mutation. This TSA-FAP sample pair

provided us with a unique opportunity to study the effect of two distinct colon cancer-related

mutations on the DNA methylation pattern, in a single polyp that provides the same genetic

background and substantially identical tumor microenvironments. As a consequence, we also

include FAP adenomas for comparison sake. Beside SSP-related mutations, to search for other

possible cancer relevant mutations in the samples OncoCarta, a mutation detection panel

based on mass-spectrometry (the Sequenom technology) was applied. Additionally, the FAP

samples were specifically tested by sequencing of APC gene. The results of mutation-detection

analysis for all tested samples are summarized in Table 1.

After defining the background mutation(s) in all samples, they were subjected to bisulfite

treatment (using Zymo EZ DNA methylation kit) followed by DNA methylation analysis by

Infinium 450K methyl-array (Illumina). This methyl-array works based on hybridization and

single nucleotide extension, and is designed to survey total of 485,577 CpGs from the human

genome. These CpGs are distributed over about 99% of the RefSeq genes (including the gene

bodies, 5’ and 3’ UTRs and up to 1.5Kb upstream of the TSSs), and about 94% of the character-

ized CpG islands (CGIs) and their flanking first 2Kb (CGI shores) and second 2Kb (CGI

shelves). We note here that for more accurate results we limited our analysis to only ~82%

(395,899) of the CpGs on the methyl-array as the rest show overlap with known SNPs in the

human genome causing errors in interpretation. However, as the excluded CpGs are almost

evenly distributed over the entire genome their removal from the list will likely have minimal

impact on the analysis.

The data generated by methyl-array, for all samples, were preliminarily processed by Geno-

meStudio software (Illumina). This package was used for calculating the methylation indices

for each CpG site, and for creating the hierarchical clustering of all samples collectively, to

arrange them into distinct groups entirely based on their global methylation patterns. The

main purpose of this analysis was to see whether different SSP samples show similar methyla-

tion patterns when analyzed in a pool with other malignant, premalignant and normal colon

samples. As illustrated in Fig 1 the unbiased hierarchical clustering resulted in clustering of all

SSP samples together, indicating the existence of a reproducible SSP-specific methylation pat-

tern in different individuals.

Interestingly the BRAF-V600E positive TSA and carcinoma samples (both also containing

mutation in the APC gene) clustered closely with SSP, but not FAP or other sample types. This

strongly connects the BRAF-V600E activation mutation to a reproducible unique DNA meth-

ylation signature.

To understand the SSP-specific DNA methylation signature, we performed differential

methylation analysis, to define the gain and loss of methylation at each particular CpG site.

For this purpose, we applied Genomic Suite package (Partek), to compare the methylation

indices from each group of samples to the two normal samples. Comparison of SSP to normal

datasets revealed 42,965 CpGs with gain and 19,019 CpGs with loss of methylation, equal to

10.85% and 4.80%, respectively (Fig 2A). In contrast the total number of CpGs showing meth-

ylation changes in FAP samples was only 58 (52 CpGs with gain and 6 with loss of methyla-

tion) from a total number of 395,899 CpGs tested (Fig 2B).
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The DNA methylation signature represents specific markers for molecular

characterization of SSP

For further validation of the methyl-array results with another technology, and to provide a

comprehensive high-resolution SSP-specific DNA methylome from the entire genome, we

analyzed one of the SSP samples (P1-SSP3), paired with the grossly uninvolved (GU) colon

sample and the blood sample from the same patient, with the whole-genome bisulfite sequenc-

ing (WGBS) approach. The DNA from these samples were subjected to bisulfite treatment

Fig 1. Hierarchical clustering of all CpGs in 450K methyl-array on colon samples. The SSP samples are clustered

together based on DNA methylation. The TSA-2 sample that is mutant for BRAF gene also clustered with SSPs.

https://doi.org/10.1371/journal.pone.0192499.g001

Fig 2. Global methylation changes in SSP and FAP. (a) Comparison of FAP with normal samples shows only few

DNA methylation changes. From 395,899 CpGs tested on the Infinium array, only 52 CpGs show more than 2 fold

increase in methylation in FAP compared to normal colon tissue and 6 CpGs show more than 2 fold reduction in

methylation (p-value<0.05). (b) In contrast comparison of SSP with normal samples shows significant DNA

methylation changes. From 395,899 CpGs tested on the Infinium array, 42,965 (10.85%) show more than 2 fold

increase in methylation in SSP compared to normal colon tissue and 19,019 (4.80%) show more than 2 fold reduction

in methylation (p-value<0.05).

https://doi.org/10.1371/journal.pone.0192499.g002
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followed by 101bp paired-end high-throughput sequencing. The sequencing datasets were

then analyzed with USeq package. The detailed genome-wide analysis of the WGBS results for

SSP, GU and blood samples are presented the section below. Here, in this section, to find the

SSP-specific DNA methylation markers, we used the WGBS results to isolate the regions of the

genome with significant gain of methylation, the enriched methylated regions (EMRs), exclu-

sively in the SSP sample by comparing the methylation status of SSP to the paired GU. To list

the SSP-specific EMRs we considered only EMRs with >10 folds gain of methylation with

FDR< 0.001 in the SSP sample. To ensure the reproducibility, all SSP-specific EMRs obtained

from this single SSP sample were then manually compared with the methyl-array results of

other SSP samples. Those EMRs, in which their CpGs show significant gain of methylation

(have> = 5 CpG on the array, average gain of methylation >10 folds, and FDR < 0.05) in all

tested SSP samples with methyl-array were reported as SSP-specific DNA methylation markers

for molecular characterization of SSPs. We note here that selection of the WGBS output for

generation of the initial marker-list was because of the higher resolution of this approach in

isolation of the regions harboring several CpGs with gain of methylation. Especially, with

Fig 3. The workflow to determine the SSP-specific DNA methylation markers. The workflow shows the steps from

sample collection to determination of the SSP-specific DNA methylation markers.

https://doi.org/10.1371/journal.pone.0192499.g003
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WGBS the CpGs in a single DNA molecule (a single sequencing read) are analyzed together

while the methyl-array reports values for isolated individual CpGs. Regardless, for further vali-

dation of the final marker list, selected EMRs (markers) were evaluated by bisulfite treatment

followed by PCR amplification and Sanger sequencing. The workflow is presented in Fig 3.

The marker list is presented in Table 2.

The SSP-specific DNA methylation pattern shows specific features

For full characterization of the SSP-specific DNA methylation pattern, we applied the USeq

package for comprehensive analysis of the SSP, GU and blood methylome datasets obtained

from WGBS. The conversion rate was calculated about 99% for all three samples, and the

sequencing covered the genome more than 36 fold. SSP genome shows a considerable level of

global loss of methylation. The global level of cytosine methylation in blood and GU is 5.9%

and 5.6% respectively. SSP genome has 45% reduction and shows 3.1% global cytosine methyl-

ation (Fig 4A). In the context of CpG dinucleotide the global level of methylation in blood,

Table 2. DNA methylation markers for SSP characterization and early diagnosis.

Marker ID (a) Coordinate (b) Distance from TSS (c) Fold change (d) FDR

MAP6 chr11:75378716–75380145 20 30 1.9 x 10–127

EOMES chr3:27763797–27764601 2 18.3 7.9 x 10–20

INSM2 chr14:36003398–36004093 498 18.3 9.9 x 10–58

PDGFD chr11:104034199–104034358 556 17.9 2.8 x 10–43

PREX1 chr20:47443621–47444377 420 17.1 4.2 x 10–77

ARHGAP20 chr11:110581500–110582693 676 15.7 5.3 x 10–55

BMP3 chr4:81951793–81953122 339 15.4 3.8 x 10–55

SYNM chr15:99645330–99646614 687 14.6 3.2 x 10–100

TRANK1 chr3:36986263–36986757 37 14.5 1.4 x 10–63

GUCY1A2 chr11:106889458–106890171 565 14.5 1.2 x 10–135

FBXO27 chr19:39522128–39523340 430 14.3 2.4 x 10–49

EPB41L3 chr18:5628896–5630029 473 14.3 1.1 x 10–89

CBS chr21:44494676–44496031 587 13.7 2.1 x 10–68

FLT3 chr13:28674052–28674910 225 13.7 4.5 x 10–65

ELMO1 chr7:37487274–37487986 828 13.4 9.2 x 10–39

NPR1 chr1:153651493–153652565 917 12.8 7.0 x 10–47

NTNG2 chr9:135036756–135037284 313 12.7 1.1 x 10–57

GBX1 chr7:150864018–150864478 386 12.7 5.4 x 10–21

NKAIN2 chr6:124123959–124124509 1051 12.5 7.6 x 10–62

WNT5A chr3:55521138–55521632 55 12.2 2.8 x 10–38

VWC2 chr7:49812570–49813401 271 12.1 2.4 x 10–33

NELL2 chr12:45270250–45270997 9 12 7.2 x 10–54

KCNK13 chr14:90526615–90528500 550 11.8 5.8 x 10–55

ODZ4 chr11:79149255–79150246 493 11.7 7.5 x 10–98

SCARF2 chr22:20791428–20792147 324 11.5 3.1 x 10–21

TBX2 chr17:59477781–59478534 432 11.2 2.5 x 10–67

(a) The marker ID is designated based on the name of the gene in the proximity of the methylated region. For the complete list of markers see the S1 File.

(b) The precise coordinate of the differentially methylated region. The specified regions show >10 fold gain of methylation (p-value<0.001) in P1-SSP-3 sample studied

by WGBS, and an average methylation gain of >10 fold over at least 5 CpGs (p-value <0.05) in all other SSP samples tested by methyl-array.

(c) The distance between the middle of region (EMR) and the TSS of neighboring gene.

(d) Fold change is calculated using methylation fraction values obtained from WGBS of SSP and GU samples (Fold change = SSP/GU).

https://doi.org/10.1371/journal.pone.0192499.t002
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GU, and SSP is 74.7%, 70.0%, and 44.7% respectively which equals to 36.1% reduction in CpG

methylation (Fig 4B). Comparing the SSP genome to GU genome retrieve about 7,000 regions

that showed 3 to 30 fold increase in methylation (enriched methylated regions, EMRs), and

140,000 regions that showed 3 to 20 fold decrease in methylation (reduced methylated regions,

RMRs) (S1 File).

The histogram of methylation fraction shows the genome in both blood and GU tissue con-

tain either unmethylated or highly methylated regions (Fig 4C), while in SSP the genome har-

bor mostly regions with average level of methylation. The histogram from the methyl-array

shows similar results (S2 Fig). The regions that gained methylation in SSP compared to GU

show mostly 15–45% methylation in SSP while they were only 5–15% methylated in GU (Fig

4D), and the regions that lost methylation in SSP, were about 65–90% methylated in GU while

they are only 15–40% methylated in SSP (Fig 4E). This is again showing that in SSP the level of

Fig 4. Global loss of methylation and partial methylation in SSP. (A) Global level of cytosine methylation in SSP, GU and blood. (B) Global level of

CpG methylation in SSP, GU and blood. Histogram of fraction methylation in colon SSP, GU and blood (C-E). (C) In normal tissues most of the CpGs

are either unmethylated or highly methylated (75–95% methylated). In SSP the very high level of methylation is lost and methylation level shows a more

disperse distribution (35–80% methylated). (D) The EMRs show mostly 5–15% methylation in uninvolved colon tissue, while they are 15–45%

methylated in SSP. (E) The RMRs in SSP were originally 65–90% methylated in uninvolved colon but this level is reduced to 15–40% in SSP.

https://doi.org/10.1371/journal.pone.0192499.g004
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methylation is getting close to the average level, as loss of methylation occurs at regions with

high level of methylation, but gain of methylation happens at regions that had very low level of

methylation normally, such as CGIs.

We assessed the level of CpG methylation in SSP and GU colon tissue at different genomic

regions (Fig 5A). Loss of methylation is detected in all regions tested with variable level. The

level of reduction in methylation of CpGs is 38.5% at intergenic regions, 36.8% at repeats, 35%

at introns, 32.9% at coding exons, 28.9% at TSS 4 Kb flanking, and 9.4% at CGIs. CpG methyl-

ation at introns, 3’UTRs and intergenic regions are pretty close to the global level in GU and

SSP. The methylation level at repeats is 79% in GU and 49.9% in SSP that is higher than the

global level. The level of CpG methylation at coding exons is 58.5% in GU and 39.2% in SSP.

In 5’UTR it is 65.7% in GU and 43.9% in SSP. In 4 Kb flanking regions around TSS of tran-

scripts the CpG methylation is 50.7% in GU and 36% in SSP (We used Ensemble transcripts

for this analysis. If the TSSs for Ensemble genes are considered this level will reach 26.6% and

21.8% for GU and SSP respectively). CpG islands show the lowest level of CpG methylation in

the genome. They are 18% methylated in GU and 16.3% methylated in SSP.

Dissecting the TSS flanking regions to regions that have CGIs and the ones without CGIs

shows that only when CGIs are present around TSS these regions have low methylation, as

TSS flanking regions without CGIs are 72.3% methylated at CpGs in GU and 45% methylated

in SSP (Fig 5B) which is close to the level detected in non-promoter regions. This level is only

29% at TSS flanking regions with CGI in GU and 23.7% in SSP. Although this shows that

being part of CGIs dictate the low methylation level in normal state and lower level of methyla-

tion loss in SSP, dissecting CGIs to those that are at TSS flanking sites and those that are not

around TSS shows that being around TSS reduces the level of methylation in CGIs (Fig 5B).

The RMRs are dispersed over the genome while they are retracted from CGIs (S3 and S4

Figs). Despite the RMRs, the EMRs are enriched at CGIs, and there is 12.6 or 14.79 fold enrich-

ment of EMRs over CGIs whether or not they are located at TSS flanking regions. Therefore

lower level of reduction in CpG methylation at CGIs and gene promoters drives from both

lower level of methylation loss and higher level of methylation gain at those regions. EMRs are

enriched 9.94 times at TSS flanking sites when there are CGIs present there, otherwise EMRs

at TSS flanking happen in 0.46 of random frequency, while RMRs can localize there with 1.35

fold enrichment. The enrichment of EMRs at CGIs and the retraction of RMRs from CGIs are

more pronounced as the condensation of CpGs increases at these regions. The pattern of CpG

methylation in 4 Kb TSS flanking regions shows drop of methylation at TSS and increase of

methylation as the distance from TSS increases. Both regions show loss of methylation in SSP,

although the difference between methylation level of TSS and TSS flanking sites is reduced in

SSP. However if we divide the Ensemble transcripts to those with CGI in the 4 Kb flanking

region of TSS and those without CGI in 4 Kb TSS flanking region, these two groups of tran-

scripts show very different methylation level around TSS (Fig 5D and 5E). The methylation at

TSS of transcripts with CGI in 4 Kb flanking regions is about 13% in blood and GU, and 11%

in SSP. This level increases as the distance from TSS increases (Fig 5D). While in transcripts

that there is no CGI in 4 Kb TSS flanking regions, TSSs do not show significant low level of

DNA methylation compared to the flanking regions and the rest of genome (Fig 5E).

The correlation of BRAF-V600E mutation with gene expression profile is

less pronounced, in comparison to its correlation with the DNA

methylation pattern

To study the effect of BRAF-V600E mutation on gene expression profile we performed high-

throughput RNA sequencing (RNA-Seq) on BRAF-V600E positive and negative samples. The
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Fig 5. SSP-specific gain of methylation targets CGIs. (A) The global loss of methylation in SSP genome is detected all over the genome except at CGIs. The CGIs show

the lowest level of DNA methylation in GU tissue, and gain methylation in the SSP tissue. The TSS 4Kb flanking regions and 5’UTRs show lower level of methylation

loss compared to other regions of the genome. (B) TSS flanking regions that are located at CGIs have low level of CpG methylation. Although TSS flanking regions that
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RNA-Seq was performed on all available samples, from the exact same list of samples we evalu-

ated the DNA methylation for (see above). The sequencing datasets were analyzed using the

USeq, DESeq and EdgeR packages, and hierarchical clustering was performed using distance

matrix among samples. The SSP and FAP samples are each clustered together based on RNA

expression (Fig 6), however, they show some similarities in the expression pattern of protein

coding genes. In SSP 796 protein coding genes showed more than 2 fold up-regulation, and

1307 protein coding genes showed more than 2 fold down-regulation (FDR < 0.01). From

these 400 and 486 protein-coding genes are up- or down-regulated, respectively, only in the

SSPs and the rest show a similar trend in up- or down-regulation in both SSP and FAP sam-

ples. This remarkably differs from the DNA methylation differences between these two colon

polyps (see above) (S2 File). Interestingly, while the hierarchical clustering of DNA methyla-

tion profiles grouped all BRAF-V600E positive samples together (Fig 1), clustering of the gene

expression profiles did not result in such robust grouping (Fig 6). This indicates that the

are not part of CGIs show methylation level close to the genomic level. CGIs that are located at TSS flanking regions show lower level of methylation than CGIs that are

not located around TSS. (C) Average of methylation on 4Kb TSS flanking regions of all Ensemble transcripts. (D) Average of methylation on 4Kb TSS flanking regions

of Ensemble transcripts that include CGIs in that 4 Kb. (E) Average of methylation on 4Kb TSS flanking regions of Ensemble transcripts that do not include CGIs in that

4 Kb.

https://doi.org/10.1371/journal.pone.0192499.g005

Fig 6. Gene expression profiling of colon samples. Hierarchical clustering and sample-to-sample distance heatmap

of the expression of protein coding genes. SSP samples are clustered together, FAP samples also clustered together.

Gene expression in TSA-2 that has both APC and BRAF mutation is more similar to the pattern of SSP expression

cluster. The gene expression pattern of FAP show about 50% similarity to the gene expression of SSP, although the

DNA methylation patterns of these two polyp types differ significantly. Therefore studying the DNA methylation

marker can lead to detect SSP more specifically than studying the gene expression.

https://doi.org/10.1371/journal.pone.0192499.g006
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correlation of BRAF-V600E mutation with gene expression profile is less pronounced, in com-

parison to its correlation with the DNA methylation pattern.

The GO term analysis of the genes up-regulated only in SSP show enrichment for genes

which encode extracellular proteins. Analysis of the function of these genes shows enrichment

for the genes expressed in normal or tumor sate of stomach. TFF1 and TFF2 are both highly

expressed in SSP. MUC6 is a gastric mucin that is highly over expressed in SSP. MUC17 is

another mucin gene that is normally expressed in the intestine and is highly expressed in SSP.

Other secretory proteins that are highly over expressed in SSP are SEMG1 and SEMG2. Both

proteins are predominant in semen and have role in making gel matrix. Interestingly NACA2

is also up-regulated in SSP which may be partly incorporating to the mis-regulation of protein

secretion in SSP. Among the genes down-regulated only in SSP there are many genes encod-

ing ion channel or regulators of the channels, such as SCNN1G, CLIC6, CLCA1, KCNV1,

KCNG3, KCNMA1, and SGK1. Another dominant group of genes that are down-regulated in

SSP is encoding cell adhesion and junction proteins such as PCDH20, and GJD3. Interestingly

DACT2 and WNK2 that are inhibitor of WNT signaling, and negative regulator of ERK/

MAPK pathway respectively are both down-regulated in SSP.

Discussion

While pathological examination of colon polyps provide valuable initial insights for screening

and diagnosis, molecular features provide reliable markers for conclusive characterization of

the polyps. Here a, combination of genome-wide mutation detection, DNA methylation analy-

sis and transcriptome profiling on multiple normal and polyp samples revealed that: 1) the

activation mutation BRAF-V600E is the sole recurring somatic mutation in SSPs; 2) there is a

strong connection between BRAF-V600E mutation and a unique SSP-specific DNA methyla-

tion pattern; and 3) this unique DNA methylation profile introduces a panel of biomarkers

with potential applicability for non-invasive early diagnosis and surveillance of SSP-related

CRCs.

Although involvement of BRAF activating mutations in SSPs has been reported previously,

those studies relied primarily on targeted mutation studies of specific DNA segments from

limited number of oncogenes and tumor suppressor genes [2, 16, 17, 32]. This left open the

possibly that other mutations might exist in addition to those know targets. Here, we demon-

strated BRAF-V600E as the major mutation in SSPs using an unbiased comprehensive whole

exome analysis of multiple SSP samples. It is important to note that exclusion of the involve-

ment of uncommon background mutations (i.e. those not shared between different SSP sam-

ples) increases our confidence when connecting the other common molecular features (e.g.

shared DNA methylation signatures) of SSPs to the single BRAF-V600E mutation. In addition,

our whole genome DNA methylation profiling surveys revealed that while in normal colon

samples about 70% of all CpGs are methylated, a significant global loss of methylation in SSP

was evident with about 50% of all CpGs in all tested SSP samples. However, despite the global

loss of DNA methylation, we detected significant gain of methylation reproducibly at specific

CpG islands. Strikingly, all serrated polyp biopsies (with BRAF-V600E mutation) that were

tested by WGBS showed a similar pattern of DNA methylation over the genome distinct from

normal uninvolved colon or other samples such as FAPs (Fig 1A). In addition, the SSP-specific

DNA methylation pattern showed a strong correlation with presence of BRAF-V600E muta-

tion in the polyps. Hierarchical clustering of different samples, based on their DNA methyla-

tion patterns showed that all samples containing the BRAF-V600E mutation (i.e. all SSPs, one

TSA and one carcinoma sample) clustered together. In a striking example, a single TSA sample

was isolated from part of an adenomatous polyp from a FAP patient with mutation in the APC
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gene. The TSA portion of the polyp carried mutations in both BRAF and APC genes. Consis-

tent with a strong link between the BRAF mutation and the coincident methylation changes

only the BRAF-V600E positive portion of the polyp (the P8-TSA-2 sample), but not the APC

mutant portion (the P8-FAP-1 sample) showed the SSP-specific DNA methylation pattern.

Additionally while APC mutant adenomatous polyps showed small DNA methylation

changes, the BRAF-V600E mutant polyps showed profound methylation changes compare to

the normal DNA methylation status.

Previous studies have suggested expression based markers for classifying SSP [33]. Here,

while our survey showed ~50% similarity between gene expression profiles of FAPs and SSPs,

our comprehensive DNA methylation profiling on both sample series revealed a remarkable

difference between these two types of colon polyps. Our results, therefore, show that DNA

methylation is more reliable for conclusive characterization of SSPs. As a result a robust set of

DNA methylation molecular markers, in the context of a panel of methylated fragments, are

introduced here (Table 2), that could be used for characterization of SSPs in different analytical

settings specially via non-invasive protocols such as fecal DNA screening[34–36].

Our working also directly links mutation in a major oncogene with specific consequences

for remodeling the epigenome. It will be of great interest to understand how BRAF-V600E is

connected to the formation of such unique SSP-specific DNA methylation pattern and what

other factors are possibly required to fully develop and maintain this signature. It is possible

that BRAF directly or indirectly regulates DNA methylation/demethylation effectors via down-

stream signaling pathways recruiting components of the chromatin modifying machinery. In

addition, it is possible that this remodeled epigenome is permissive for further tumor

development.

Conclusions

The results presented here provide strong evidence that BRAF-V600E mutation is the main

cause of generation of SSP and SSP-specific DNA methylation pattern. All three SSP separated

from one patient (P1-SSP-1, P1-SSP-2, and P1-SSP-3) show BRAF-V600E mutation while this

mutation was not detected in the GU portion of the colon of this patient, suggesting that the

BRAF mutations happen independently in all three SSP. These SSP specific methylation pat-

terns effectively distinguish SSP from adenomatous polyps which could be important for both

diagnosis and treatment. It also suggests that BRAF-V600E mutation directly or indirectly

results in the remodeling of the epigenome and that this may set a stage for tumor progression.

Supporting information

S1 Fig. Histopathological manifestation of SSP, TSA, and FAP samples. H&E stained sec-

tions of six samples are shown. Samples marked by asterisk (P8-FAP-1 and P8-TSA-2) are

from two different portions of one polyp. The P8-FAP-1 was mutated in APC but not in

BRAF, while P8-TSA-2 was confirmed to contain both APC and the BRAF-V600E mutations.

(PDF)

S2 Fig. Histogram of methylated CpGs in SSP, TSA, FAP, carcinoma and normal samples.

From the methyl array data the CpGs in FAP and normal samples are either unmethylated or

highly methylated, making two peaks of fraction methylation, one close to zero and one above

0.9. However in SSPs, and BRAF mutant TSA and carcinoma samples both of these peaks are

smaller and a third peak appeared around 0.3–0.6 methylation fraction. This confirms the par-

tial methylation feature that is seen by WGBS of SSP compared to normal tissues.

(PDF)
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S3 Fig. CGIs show gain of methylation in SSP. There is about 10 fold enrichment of EMRs at

TSS flanking regions (4Kb) that include CGIs while the fold enrichment of EMRS at TSS flank-

ing regions without CGIs is less than 1. The RMRs occur at TSS flanking regions with CGIs

with fold enrichment less than 1, while the occurrence of RMRs at TSS flanking regions with-

out CGIs is detected with fold enrichment close to 1. EMRs are enriched at CGIs regardless of

whether they are at TSS flanking or outside of TSS flanking regions (about 13 and 15 folds,

respectively), while RMRs are excluded from these regions significantly.

(PDF)

S4 Fig. Regional analysis of CpG methylation changes in SSP. (a) Gain of methylation in

SSP is enriched at CGIs, while the loss of methylation is mostly at regions that are not CGI or

CGI shore and shelf. (b) In SSP CpGs that show gain of methylation are enriched at promoter

regions, while CpGs that show loss of methylation are retracted from promoter regions and

are more localized at introns.

(PDF)

S1 Table. Sequencing primers for BRAF and KRAS mutations. All samples are tested for

BRAF-V600E and KRAS codon 12 and 13 mutations.

(PDF)
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