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Ferroptosis is an iron-dependent regulated form of cell death caused by excessive lipid
peroxidation. This form of cell death differed from known forms of cell death in
morphological and biochemical features such as apoptosis, necrosis, and autophagy.
Cancer cells require higher levels of iron to survive, which makes them highly susceptible to
ferroptosis. Therefore, it was found to be closely related to the progression, treatment
response, and metastasis of various cancer types. Numerous studies have found that the
ferroptosis pathway is closely related to drug resistance and metastasis of cancer. Some
cancer cells reduce their susceptibility to ferroptosis by downregulating the ferroptosis
pathway, resulting in resistance to anticancer therapy. Induction of ferroptosis restores the
sensitivity of drug-resistant cancer cells to standard treatments. Cancer cells that are
resistant to conventional therapies or have a high propensity to metastasize might be
particularly susceptible to ferroptosis. Some biological processes and cellular
components, such as epithelial–mesenchymal transition (EMT) and noncoding RNAs,
can influence cancer metastasis by regulating ferroptosis. Therefore, targeting ferroptosis
may help suppress cancer metastasis. Those progresses revealed the importance of
ferroptosis in cancer, In order to provide the detailed molecular mechanisms of ferroptosis
in regulating therapy resistance and metastasis and strategies to overcome these barriers
are not fully understood, we described the keymolecular mechanisms of ferroptosis and its
interaction with signaling pathways related to therapy resistance and metastasis.
Furthermore, we summarized strategies for reversing resistance to targeted therapy,
chemotherapy, radiotherapy, and immunotherapy and inhibiting cancer metastasis by
modulating ferroptosis. Understanding the comprehensive regulatory mechanisms and
signaling pathways of ferroptosis in cancer can provide new insights to enhance the
efficacy of anticancer drugs, overcome drug resistance, and inhibit cancer metastasis.
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1 INTRODUCTION

Cancer is the second leading cause of death globally and is
characterized by the uncontrolled growth of abnormal cells,
invading adjacent sites and spreading to other organs. The
latter process, called metastasis, is the main cause of cancer-
related death. Induction of apoptosis with anticancer drugs
(including targeted therapy, chemotherapy, and
immunotherapy) or radiation therapy is the main strategy for
the treatment of cancer, but innate and acquired resistance can
reduce the therapeutic effect (Yang G. et al., 2021). Induction of
non-apoptotic types of cell death could open new avenues to
eliminate cancer cells and limit drug resistance. Ferroptosis is
morphologically characterized by decreased mitochondrial
volume, reduction or disappearance of mitochondrial cristae,
and rupture of the plasma membrane and mitochondrial
membrane (Dixon et al., 2012). As a newly discovered
programmed cell death pathway, ferroptosis is defined as an
iron-catalyzed regulated necrosis that occurs through excessive
peroxidation of polyunsaturated fatty acids (PUFAs) (Dixon
et al., 2012).

Recent studies have shown that ferroptosis is involved in the
antitumor effects of many anticancer drugs/radiotherapy and
resistance to various treatments, but the specific molecular
mechanism is still not fully understood (Conrad et al., 2016).
For example, approved drugs (such as sulfasalazine and
artemisinin) experimental reagents (such as erastin and RSL3)
and ionizing radiation can induce ferroptosis (Chen et al., 2021a).
But the specific molecular mechanism is still not fully understood
(Conrad et al., 2016). Cancer metastasis and resistance to therapy
are two major obstacles to improving patient survival and quality
of life. A better understanding of the molecular mechanisms of
ferroptosis in these two processes and exploring how to target this
death process could provide useful guidance for improving
patient outcomes. Therefore, we described the mechanisms
and regulators of ferroptosis and elucidated the mechanism by
which ferroptosis is involved in drug resistance and cancer
metastasis and summarized strategies to target ferroptosis to
combat drug resistance and cancer metastasis. Finally, we
provide an outlook for future research on ferroptosis in cancer.

2 MOLECULAR MECHANISM OF
FERROPTOSIS

Ferroptosis was initially proposed in the precision medicine of
Ras-mutant tumors (Dolma et al., 2003; Yang and Stockwell,
2008). Serving as a proto-oncogene, Ras mutations are frequently
detected in human cancers that cause drug resistance. Small
molecule compounds erastin and RAS-selective lethal 3 (RSL3)
can selectively kill Ras mutant cancer cells rather than cancer cells
carrying wild-type RAS (Zhao et al., 2022). Later, the anticancer
activities of erastin and RSL3 were validated to be dependent on a
novel iron-dependent programmed cell death, known as
ferroptosis (Dixon et al., 2012). Ferroptosis used to be
considered a type of programmed cell death that differs from
conventional cell death, such as apoptosis, necrosis, and

autophagy, and the latest evidence has revealed their close
interaction. Direct triggers for ferroptosis remain unclear, and
it is believed that ferroptosis is a highly complicated and strictly
regulated process involving iron accumulation, lipid
peroxidation, and mitochondrial membrane rupture. The
process of ferroptosis can be influenced by epigenetic,
transcriptional, and posttranscriptional and posttranslational
regulation (Dai et al., 2020; Wu et al., 2020). The occurrence
of ferroptosis is iron-dependent (Hassannia et al., 2019), which is
initiated after the impaired capacities to eliminate free radicals in
the human body (Kuang et al., 2020b). Therefore, reactive oxygen
species (ROS) and lipid peroxidation are of great significance in
the regulation of ferroptosis (Dixon et al., 2012; Hayano et al.,
2016).

2.1 ROS Production
ROS act as signaling molecules to trigger various types of cell
death, including ferroptosis (Dixon et al., 2012). ROS and lipid
peroxidation are critical for ferroptosis (Kuang et al., 2020b),
which requires the accumulation of ROS throughout the whole
process (Dixon et al., 2012).

2.1.1 Iron-Induced Production of ROS
Hydroxyl radicals are the most chemically active ROS involved in
ferroptosis and are highly mobile and water soluble. Fenton and
Fenton-like reactions are the main source of hydroxyl radicals,
which are mainly involved in the reaction between H2O2 and
transition metals such as labile iron (Fe2+) (Fenton, 1894; Ayala
et al., 2014). The intracellular free iron level is dynamically
regulated by iron absorption, storage, transport, and
extracellular transport. Any intracellular accumulation of iron
would affect the iron level and ROS production, which ultimately
influences the sensitivity to ferroptosis (Chen et al., 2021c). In
animal models, multilevel interventions, such as increasing iron
absorption, increasing iron storage, and limiting iron efflux, lead
to iron accumulation, and eventually, the integrated signaling
pathways contribute to mediating ferroptosis (Chen X. et al.,
2020).

2.1.2 NOX-Induced Production of ROS
Phagocytes such as macrophages and dendritic cells (DCs) are
able to express nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NOXs), which contribute to the
production of ROS during the process of ferroptosis by
generating O2

�· . Other cells are also capable of expressing
NOXs by generating O2

�· or H2O2 by transporting electrons
across the membrane. There are seven NOXs, including five
NOX proteins (NOX1, CYBB/NOX2, NOX3, NOX4, and
NOX5) and two dual oxidases (DUOX1 and DUOX2). ROS
produced by nitrogen oxides are widely participated in various
physiological and pathological states, such as development,
infection, immunity, and cell death (Bedard and Krause,
2007). NOX is also involved in inducing apoptosis as an
important regulator of lipid raft–derived signals (Jin et al.,
2011). ROS produced by NOX1, CYBB, and NOX4 are also
involved in the ferroptosis in cancer cells, indicating that NOX
plays a broad role in programmed cell death (Xie et al., 2017;
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Yang et al., 2019). Oncogenes and tumor suppressor genes can
affect NOX activity in ferroptosis. For example, inactivation of
the tumor suppressor gene p53 inhibits nuclear accumulation of
dipeptidyl peptidase-4 (DPP4/CD26), thereby stimulating
plasma membrane–associated DPP4-dependent lipid
peroxidation. Formation of the DPP4-NOX1 complex leads to
cell death (Xie et al., 2017). During Ras activation, NOX1-induced
ROS promote iron ptosis by activating the ERK signaling pathway
(Yagoda et al., 2007; Adachi et al., 2008). Currently, more efforts
are needed to explore the potential signaling pathways through
NOX involved in ferroptosis in cancer cells.

2.2 Lipid Peroxidation
Oxidative stress is caused by imbalanced scavenging and the
production of free radicals. ROS-mediated lipid peroxidation is a
key step leading to ferroptosis, including enzymatic and non-
enzymatic lipid peroxidation. PUFAs, especially arachidonic
acids and adrenic acids, are the most prone to lipid
peroxidation, which damages the lipid bilayer and affects
membrane function. Lysophosphatidylcholine acyltransferase 3
(LPCAT3) and acyl-CoA synthetase long-chain 4 (ACSL4) are
necessary for the biosynthesis and remodeling of PUFAs in the
cell membrane. The latter catalyzes the binding of free
arachidonic acid or epinephrine to CoA to form derivatives
AA-CoA or AdA-CoA, which are then esterified by LPCAT3
to form membrane phosphatidylethanolamine to form AA-PE or
AdA-PE (Yuan et al., 2016; Doll et al., 2017). ACSL3 protects
cancer cells from ferroptosis by converting monounsaturated
fatty acids (MUFA) to acyl-CoA esters and binding to
membrane phospholipids. AMP-activated protein kinase
(AMPK)–mediated beclin 1 phosphorylation promotes
ferroptosis by inhibiting glutathione (GSH) production, while
AMPK-mediated acetyl-CoA carboxylase (ACAC)
phosphorylation inhibits ferroptosis by limiting PUFA
production.

2.2.1 ROS-Induced Non-Enzymatic Lipid Peroxidation
Non-enzymatic lipid peroxidation or lipid autooxidation is a
chain reaction driven by free radicals, in which ROS trigger the
oxidation of PUFAs. The formation of lipid free radicals by the
binding of hydroxyl radicals to PUFAs is the first step of iron-
involved lipid peroxidation. Later, lipid free radicals abstract
hydrogens from the adjacent polyunsaturated fatty acids,
which results in the formation of PLOOH and new lipid
radicals. As a result, a novel lipid radical chain reaction
occurs. With the involvement of ferrous ions, lipid
hydroperoxide is converted into alkoxyl radicals (LO•), which
react with adjacent PUFAs to initiate another lipid radical chain
reaction. Catalyzed by iron and oxygen, this autoamplifying
process leads to membrane disruption and cell death when
molecules that prevent lipid peroxidation are inactivated (Reis
and Spickett, 2012; Doll et al., 2017).

2.2.2 ROS-Induced Enzymatic Lipid Peroxidation
ROS can also be catalyzed by ALOX, a dioxygenase that
contains nonheme iron. The ALOX family consists of six
members, namely, ALOX3, ALOX5, ALOX12, ALOX12B,

ALOX15, and ALOX15B. They oxidize polyunsaturated
fatty acids, especially arachidonic acid (AA) and adrenoic
acid (AdA), in a tissue- or cell-dependent manner. Linoleic
acid (LA) and AA are two common substrates of ALOX in
mammalian cells. ALOX5 contributes to the synthesis of 5-
hydropereicosentaenoic acid (5-hpete) through the oxidation
of AA at carbon 5 (Kuhn et al., 2015). ALOX12 and ALOX15
synthesize 12-HPETE and 15-Hpete from AA, 9-hpode, and
LA (Jung et al., 1985). LOX12 and LOX15 can directly oxidize
AA-containing phospholipids (PLs), whereas ALOX5 needs
the cellulolytic phospholipase A2 (cPLA2) to first hydrolyze
the esterified AA on the membrane (Jung et al., 1985;
Takahashi et al., 1993).

2.3 Oxidative Stress in Ferroptosis
Oxidative stress in ferroptosis is a multilevel process.
Antioxidants, such as GSH, coenzyme Q10 (CoQ10), and
tetrahydrobiopterin (BH4), are the main fighters against
ferroptosis and are closely linked with multiple enzymes or
proteins. Some antioxidant proteins, such as peroxiredoxins
(PRDXs) and thioredoxin, can also prevent ferroptosis (Dolma
et al., 2003; Lovatt et al., 2020). Therefore, the oxidative stress
mechanism in ferroptosis remains complicated.

3 REGULATORY MECHANISM OF
FERROPTOSIS

There are two central biochemical events in iron death leading to
ferroptosis, including intracellular iron accumulation and lipid
peroxidation. In addition to the occurrence mechanism, the
regulatory mechanism of ferroptosis is also complicated. In the
following sections, the main regulatory mechanisms and
regulators underlying ferroptosis will be summarized. The
occurrence and regulatory mechanism of ferroptosis are shown
in Figure 1.

3.1 Novel Roles of Different Organelles in
the Regulation of Ferroptosis
Organelles are tiny units necessary for normal cell function.
Notably, organelle dysfunction responsive to stress would
stimulate cell death (Xu et al., 2019). Ferroptosis is a strictly
regulated process involving various signaling pathways and
regulators in different organelles, including mitochondria,
lysosomes, and the Golgi apparatus (Chen et al., 2021b).

In the following sections, we will review the specific functions
of several important organelles in the regulation of ferroptosis.

3.1.1 Role of Mitochondria in Ferroptosis
Mitochondria generate most of the chemical energy required for
biochemical reactions of cells and store it. Cells experiencing
ferroptosis typically exhibit a reduction in mitochondrial cristae,
decrease in mitochondrial size, increased mitochondrial
membrane density, and increased permeability, suggesting the
occurrence of mitochondrial dysfunction during ferroptosis
(Dixon et al., 2012).
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Mitochondria are an important source of ROS during
oxidative phosphorylation in most mammalian cells. Local
production of ROS not only leads to damage of
mitochondria but also affects the redox status of the
remaining components of the cell (Friedmann Angeli et al.,
2014). Since mitochondrial ROS mainly induce apoptosis, they
used to be considered irrelevant to ferroptosis. Later, they were
validated to target ROS scavengers such as Mito-TEMPO (MT)
and Mitoquinone (MitoQ), which are able to inhibit ferroptosis
in multiple types of cells (e.g., cancer cells, cardiomyocytes, and
hippocampal neurons) (Jelinek et al., 2018; Fang et al., 2019).
Inhibition of the mitochondrial electron transport chain or
tricarboxylic acid (TCA) cycle inhibits ferroptosis induced by
cysteine deprivation. Mitochondrial fatty acid metabolism
genes, including acyl-CoA synthase family member 2
(ACSF2) and citrate synthase (CS), may be required for
erastin-induced ferroptosis (Xu et al., 2019). Impaired
mitochondrial iron metabolism also promotes ferroptosis.
Free extracellular iron is taken up by cells and transported
into mitochondria, where it is partially used for the synthesis of
heme and iron-sulfur clusters (ISC) and the remainder is stored
in mitochondrial ferritin. High levels of iron in the
mitochondria can mediate the production of ROS or interfere
with the normal function of enzymes (Chen et al., 2021b).

Therefore, mitochondria are closely associated with the
induction of ferroptosis.

3.1.2 Role of Lysosomes in Ferroptosis
Lysosomes also participate in the induction of ferroptosis. They
are acidic membrane-bound organelles that promote ferroptosis
by activating autophagy and releasing lysosome cathepsin B
(CTSB). In HT1080 cells, lysosomes are the major source of
ROS for erastin-induced ferroptosis. In addition, lysosomes can
also affect intracellular iron supply by attenuating intracellular
transferrin transport or autophagic degradation of ferritin.

Studies on the mechanism of ferroptosis have identified the
release of lysosomal proteases as a cause of ferroptosis. Inhibition
of lysosomal proteases, particularly CTSB, reduces cellular
susceptibility to erastin-induced ferroptosis. STAT3 regulates
the expression level of CTSB in human pancreatic ductal
adenocarcinoma cell lines, and it promotes ferroptosis through
this pathway. Nuclear translocation of lysosomal CTSB has been
reported to lead to DNA damage and subsequent interferon-
response stimulator of interferon response cGAMP interactor 1
(STING1)-dependent ferroptosis (Kuang et al., 2020a). In
addition to inhibiting lysosomal function, silencing of
cathepsin limits erastin-induced ferroptosis in cells (Kuang
et al., 2020a; Nagakannan et al., 2021). Ferroptosis is part of

FIGURE 1 |Mechanism underlying the occurrence and regulation of ferroptosis. (1) Ferroptosis is mainly caused by lipid peroxidation. ROS leading to ferroptosis
are produced by the iron-dependent Fenton reaction, mitochondrial electron transport chain or NOX proteins. Ferroptosis can be triggered by enhancing the synthesis of
lipid ROS. (2) Inhibition of SLC7A11 deprives cells of cysteine, resulting in the loss of GSH and inactivation of GPX4. The latter further leads to the accumulation of lipid
ROS and ferroptosis. The tricarboxylic acid cycle (TCA cycle) and electron carriers (ETC) in mitochondria stimulate GSH deficiency, thus leading to ferroptosis. The
release of Fe2+ in mitochondria increases the level of free Fe2+ in cells and eventually promotes the production of lipid ROS. Lysosomal ROS contribute to the production
of lipid ROS. In lysosomes, STAT3-mediated expression of cathepsin B is essential for ferroptosis via the MEK-ERK signaling pathway. In the Golgi apparatus, the Golgi
stress response can inhibit ARF1, which is an inhibitor of GSH and ACSL4 and an activator of SLC7A11. Silencing ARF1 promotes ferroptosis by increasing cellular ROS
levels.
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cellular autophagy and is executed by sequential contribution of
autophagy-related (ATG) proteins in a hierarchical manner
(Klionsky et al., 2021), while lysosomes are the main
organelles of autophagic degradation of protein aggregates and
have an important role in ferroptosis (Radisky and Kaplan, 1998;
De Domenico et al., 2006). Knockdown of genes such as ATG3,
ATG5, ATG7, ATG13, and ATG6 (also known as BECN1)
inhibited iron uptake and thus ferroptosis in many types of
cancer cells (Gao et al., 2016; Hou et al., 2016). In contrast,
knockdown of ATG2A promoted ferroptosis in the cervical
cancer cell line HeLa by increasing uptake of Fe2+ (Xiong
et al., 2021).

The latest study has developed drugs localized to lysosomes
that inhibit or promote ferroptosis. For example, N,
N-dimethylaniline derivatives localize to late endosomes and
lysosomes, which are able to prevent ferroptosis (Hirata et al.,
2021). Dichloroacetate promotes ferroptosis in colorectal cancer
cells by chelating iron in lysosomes (Sun J. et al., 2021). Taken
together, lysosomes are promising targets for ferroptosis.

3.1.3 Golgi Stress Participates in the Occurrence of
Ferroptosis
Golgi stress plays an important role in ferroptosis (Alborzinia
et al., 2018). Some Golgi stressors, such as AMF-26 (also known
as M-COPA), golgicide A (GCA), and brefeldin A (BFA), can
trigger ferroptosis. Ferroptosis inhibitors protect cells by
preventing the rupture of Golgi apparatus and inhibit protein
secretion to fight against Golgi stressors (Wu et al., 2020). Erastin
at a sublethal concentration is sufficient to alleviate lipid
peroxidation caused by Golgi stress. The trans-sulfuration
pathway is responsible for limiting ferroptosis, serving as a
compensation for cysteine supply after oxidative stress (Garg
et al., 2011; Hayano et al., 2016). The coinduction of
pharmacological inhibitors of the trans-sulfuration pathway
and low-dose erastin abolishes the effect of erastin binding to
Golgi stressors on promoting cell survival. Therefore, it is believed
that the Golgi apparatus is involved in the redox reaction and
regulation of ferroptosis.

3.2 Regulators of Ferroptosis
3.2.1 Role of GPX4 in Ferroptosis
Glutathione peroxidases (GPXs) can relieve ferroptosis caused by
peroxidative damage to the cell membrane (Bochkov et al., 2010).
Among them, GPX4 is an important member in GSH
metabolism, which maintains the homeostasis of intracellular
lipid peroxides. GPX4 can reduce phospholipid hydroperoxide
(AA/AdA-PE-OOH) to the corresponding phospholipid alcohol
(PLOH) by exerting its enzymatic activity, thereby interrupting
the radical-chain reaction and inhibiting the accumulation of
intracellular lipid peroxides (Tang D. et al., 2021). The
detoxifying ability of GPX4 exists even when hydroperoxides
are inserted into biomembranes or lipoproteins. Therefore, GPX4
is considered the only GPX capable of protecting biofilms from
peroxidation. In addition, GPX4 can also maintain the stability of
the bilayer lipid membrane (Maiorino et al., 2018). The depletion
of intracellular GSH inactivates GPXs and induces ferroptosis
(Yang et al., 2014), suggesting that GSH is a cofactor for GPX4 to

catalyze the production of phospholipid alcohol from peroxides
(Xu et al., 2019).

Although GPX4 inhibition is an important downstream signal,
it is not necessary for initiating ferroptosis. For example, TP53
induces ferroptosis by downregulating SLC7A11, in which the
inhibition of GPX4 is not necessary (Chu et al., 2019). The
deficiency of GPX4 or SLC7A11 significantly increases cell
resistance to Golgi stress-induced ferroptosis, suggesting
complicated regulatory mechanisms in ferroptosis (Alborzinia
et al., 2018; Tang D. et al., 2021).

3.2.2 SLC7A11 is a Functional Light Chain Subunit of
the Cystine/Glutamate Antiporter That Takes up
Extracellular Cystine
Low GSH levels, insufficient supply of cysteine, or GPX4
inhibition caused by phospholipid hydroperoxides (PLOOHs)
are one of the important mechanisms to initiate ferroptosis
(Dixon et al., 2012; Homma et al., 2019). Previous evidence
has shown that the cystine/glutamate antiporter SLC7A11 is
associated with the initiation of ferroptosis. SLC7A11 mediates
the uptake of extracellular cystine in exchange for GSH, which
prevents the accumulation of lipid peroxides and ferroptosis. It is
also a key regulator of iron overload/ferroptosis (Liu L. et al.,
2021). Iron overload refers to the excessive deposition of iron in
the body which leads to structural damage and dysfunction of
vital organs. Imbalance in iron homeostasis may be involved in
the development of certain cancers and can also lead to tumor cell
death. In myelodysplastic syndrome (MDS) and acute myeloid
leukemia (AML), iron overload contributes to the production of
ROS, which are involved in leukemic transformation by
producing mutagenic and genotoxic substances (Cadet and
Wagner, 2013). On the other hand, iron overload can lead to
ferroptosis through ROS and consequent lipid peroxidation in
extreme cases (Dixon and Stockwell, 2014). Iron mediates the
expression level of SLC7A11 through the ROS-Nrf2-ARE axis.
Genetically deleting SLC7A11 expression is not sufficient to
induce ferroptosis in mice but promotes iron overload.
Ferroptosis occurs in ion-induced SLC7A11−/− cells, suggesting
that the loss of SLC7A11 is favorable to the induction of
ferroptosis, especially in high iron (Wang et al., 2017).
Impaired cystine uptake and increased production of ROS
contribute to the occurrence of ferroptosis, suggesting that
SLC7A11 may prevent ferroptosis during iron overload.

3.2.3 ATG6 Interacts With SLC7A11 and Inhibits its
Activity
ATG6, also known as BECN1, is a core component of the
phosphatidylinositol 3-kinase III (PI3K-III) complex. During
cell autophagy, it plays a key role in promoting the formation
of autophagosomes. Excessive autophagy can promote ferroptosis
(Liu et al., 2020b; Zhou et al., 2020). Through binding to
cytoplasmic high mobility group protein 1 (HMGB1), BECN1
stimulates autophagy-dependent ferroptosis. In addition to
autophagy-induced initiation of ferroptosis, AMPK-mediated
phosphorylation of ATG6 at Ser90/93/96 also triggers
ferroptosis by inhibiting the activity of SLC7A11 (Adachi
et al., 2008). ATG6 inhibits the activity of SLC7A11 by
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forming complexes by binding to the key component of the
cystine/glutamate antiporter SLC7A11. Knockdown of ATG6
inhibits erastin-induced ferrotoxicity.

3.2.4 ACSL4 is a SpecificBiomarker andDriving Factor
for Ferroptosis
ACSL4 is an enzyme involved in fatty acid metabolism and
considered a specific biomarker and driving factor for
ferroptosis. Overexpression of ACSL4 increases the levels of
PUFAs in phospholipids, which are prone to oxidative stress
and subsequent ferroptosis (Tang D. et al., 2021). Activation of
ACSL4 is an important event in the enzymatic pathway to
produce phospholipid hydroperoxide (Yang et al., 2016; Xie
et al., 2017).

It has been reported that ACSL4 is expressed at low levels in
the ferroptosis-resistant cell lines LNCaP and K562 compared
with the ferroptosis-sensitive cell lines HepG2 and HL60.
However, the expression levels of other ACSL proteins, such
as ACSL1, ACSL3, ACSL5, and ACSL6, are irrelevant to
sensitivity to ferroptosis (Yuan et al., 2016).

A genome-wide functional screen using the clustered regularly
interspaced short palindromic repeat (CRISPR)-Cas9 system
validated ACSL4 as an essential component of ferroptosis.
Knockdown of ACSL4 suppressed erastin-induced sensitivity
to ferroptosis in HepG2 and HL60 cells, while overexpression
of ACSL4 reversed LNCaP and K562 cell susceptibility to
ferroptosis. Furthermore, ACSL4-mediated production of 5-
hydroxyeicosatetraenoic acid (5-HETE) promoted ferroptosis
(Yuan et al., 2016). Co-silencing of GPX4 and ACSL4 resulted
in a marked resistance to ferroptosis and an increase in omega-6
fatty acids on the cell membrane (Doll et al., 2017). It is concluded
that ACSL4 is not only a specific biomarker of iron atrophy but
also an important driver.

3.2.5 Nrf2 Regulates Ferroptosis by Mediating
Oxidative Stress
Nuclear factor E2–related factor 2 (Nrf2) is a stress-inducible
transcription factor that is regulated by three E3-ubiquitin-ligase-
complexes. The intracellular level of Nrf2 remains low under
normal circumstances. Stimulated by an endogenous or
exogenous factor, Nrf2 cannot be timely degraded and then
translocated into the nucleus, where the transcription of
antioxidant responsive element (ARE) initiates. Notably, a
large number of proteins and enzymes inducing ferroptosis
serve as targets of Nrf2. Nrf2 is of significance in iron
metabolism. It controls the intracellular level of free iron by
mediating storage proteins and SLC40A1, which is responsible
for transporting free iron outside the cell, thus regulating
ferroptosis (Gao et al., 2019b). Moreover, Nrf2 is able to
regulate multiple glutathione synthetases and enzymes of
glutathione metabolism (LaVaute et al., 2001; Arosio et al.,
2017). GPX4 is also a transcriptional target of Nrf2 (Gao
et al., 2016; Torii et al., 2016). Thus, Nrf2 is believed to be a
key regulator of lipid peroxidation and ferroptosis (Dodson et al.,
2019).

3.2.6 NFS1 and ISCs Participate in Ferroptosis
Iron–sulfur clusters (ISCs) are synthesized from cysteine
catalyzed by cysteine desulfurase (NFS1) (Alvarez et al., 2017).
ISCs are redox-active protein cofactors that are present in at least
48 enzymes in mitochondria (Imlay, 2006; Stehling et al., 2014).
NFS1 sensitizes cells to ferroptosis by activating the iron-
starvation response by increasing transferrin receptor (TFRC)
and decreasing ferritin heavy chain (FTH) levels. Co-inhibition of
NFS1 and cysteine transport triggers ferroptosis. Deficiency of
ISCs can also activate the iron-starvation response, which, along
with the inhibition of glutathione biosynthesis, induces
ferroptosis. Taken together, NFS1 and ISCs are involved in
ferroptosis (Alvarez et al., 2017; Wu et al., 2020).

3.2.7 Other Regulators of Ferroptosis
Novel regulators of ferroptosis are emerging with in-depth study,
serving as promising therapeutic targets. Arachidonate 5-
lipoxygenase (ALOX5) is an important enzyme that catalyzes
lipid peroxidation reactions and plays an important role in
ferroptosis (Mao et al., 2019). Pharmacological inhibition
using zileuton-inhibited ferroptosis and exerted an indirect
neuroprotective effect on glutamate-treated HT-22 cells (Liu
et al., 2015). Consistent with this result, knockdown of
ALOX5 protected neurons from ferroptosis in hemorrhagic
stroke mice by neutralizing lipid peroxidation
(Karuppagounder et al., 2018). This suggests that ALOX5 is an
important regulator of ferroptosis (Sun Q. Y. et al., 2019).

Metallothionein-1G (MT1G) negatively regulates ferroptosis
in human hepatocellular carcinoma (HCC) cells. Knockdown of
MT1G significantly enhances end-product levels (e.g., MDA) of
lipid peroxidation in cells treated with erastin and sorafenib, thus
inducing ferroptosis by the Fenton reaction and the production of
ROS. Nevertheless, knockdown of MT1G does not significantly
influence the level of Fe2+ or iron metabolism genes such as
FTH1, TFR1, and DMT1. These results indicate that MT1G
inhibits ferroptosis by regulating lipid peroxidation without
influencing the production and metabolism of Fe2+. Genetic
and pharmacological inhibition of MT1G can promote
sorafenib-induced ferroptosis by increasing GSH
depletion–mediated lipid peroxidation. Therefore, MT1G is an
important factor for ferroptosis (Sun et al., 2016).

Sirtuin 6 (SIRT6) also plays an important role in the regulation
of ferroptosis. Sodium sulfide inhibits ferroptosis by upregulating
SIRT6 in the prefrontal cortex of mice with diabetes mellitus
(Wang et al., 2021). Knockdown of SIRT6 promotes ferroptosis in
gastric cancer cells (Cai et al., 2021). Through the Nrf2 signaling
pathway, SIRT6 is of great significance in oxidative stress and
ferroptosis (Pan et al., 2016). Knockdown of SIRT6 increases the
accumulation of ROS (Cai et al., 2021), while its overexpression
reduces ROS levels in podocytes and thus alleviates oxidative
stress (Fan et al., 2019). Inconsistently, it has been reported that
SIRT6 stimulates the release of ROS in papillary thyroid cancer
cells, which may be attributed to the heterogeneity of cell types
(Yu et al., 2019). Therefore, more investigations are needed to
clarify the biological function of SIRT6 in ferroptosis.

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9098216

Liu et al. Targeting Ferroptosis for Cancer Treatment

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 1 | Role of ferroptosis in drug resistance and the strategy to overcome treatment resistance in cancer.

Treatment
strategy

Treatment Cancer type Strategy to overcome
resistance

References

Chemotherapy Cisplatin Head and neck cancer CDDP + erastin and sulfasalazine Roh et al. (2016)
Head and neck cancer CDDP + Artesunate Roh et al. (2017)
Osteosarcoma CDDP + Erastin and RSL3 Liu and Wang (2019)
Ovarian cancer CDDP + Erastin Li et al. (2020)
Gastric cancer CDDP + Erastin Haiyang Zhang et al.

(2020)
Non-small-cell lung cancer CDDP + RSL3 Deng et al. (2021)
Gastric cancer CDDP + erastin RSL3 or antagonist

liproxstatin-1
Dazhi Fu et al. (2021)

Subcutaneous tumor CDDP+11β-hydroxy-ent-16-kaurene-
15-one

Yong Sun et al.
(2021)

Pancreatic adenocarcinoma CDDP + gemcitabine Wei et al. (2022)
Ovarian cancer CDDP + mTOR inhibitor Hua-Wen Li et al.

(2022)
Triple-negative breast cancer CDDP + HLF-knockdown Hengyu Li et al.

(2022)
Oxaliplatin Colorectal cancer Oxaliplatin + RSL3 Changshun Yang

et al. (2021)
Colorectal cancer Oxaliplatin + GPX4 inhibitor Changshun Yang

et al. (2021)
Platinum Non-small-cell lung cancer Platinum + GPX4 inhibitor Wenwen Liu et al.

(2021)
Chemotherapy Docetaxel Ovarian cancer Erastin + Docetaxel Zhou et al. (2019)

Paclitaxel Uterine serous carcinoma Paclitaxel + Sulfasalazine Sugiyama et al.
(2020)

Gemcitabine Pancreatic cancer ARF6 abrogation Zeng Ye et al. (2020)
Pancreatic cancer Gemcitabine + RSL3 Tang et al. (2020)

5-fluorouracil Colorectal cancer Gemcitabine + Ferroptosis inducer Chaudhary et al.
(2021)

Temozolomide Glioblastoma Temozolomide + ALZ003 upregulation Xin Chen et al. (2020)
Targeted therapy Sunitinib Renal cell carcinoma Sunitinib + Artesunate Markowitsch et al.

(2020)
Sorafenib Hepatocellular carcinoma Sorafenib + Metallothionein (MT)-1G

inhibition
Sun et al. (2016)

Gastric cancer Sorafenib + Sirtuins 6 inhibition Cai et al. (2021)
Hepatocellular carcinoma Sorafenib + ABCC5 inhibition Huang et al. (2021)
Hepatocellular carcinoma Sorafenib + Targeting YAP/TAZ or

ATF4
Gao et al. (2021)

Targeted therapy Gefitinib Non-small-cell lung cancer Gefitinib + GPX4 inhibition Viswanathan et al.
(2017)

Cetuximab (anti-EGFR antibody) Colorectal cancer Cetuximab + Vitamin C Lorenzato et al.
(2020)

EGFR-TKIs EGFR-activating mutant lung
adenocarcinoma

EGFR-TKIs + Vorinostat Zhang et al. (2021)

Androgen Receptor inhibitors Prostate cancer Androgen Receptor inhibitors +2,4-
dienoyl-CoA reductase (DECR1)

Blomme et al. (2020)

Prostate cancer Androgen Receptor inhibitors + GPX4
inhibition

Tousignant et al.
(2020)

Prostate cancer Androgen Receptor inhibitors +2,4-
dienoyl-CoA reductase (DECR1)

Nassar et al. (2020)

BRAF inhibitor Melanoma BRAF inhibition + Target SREBF2 Hong et al. (2021)
Vemurafenib Melanoma Vemurafenib + Ferroptosis-inducing

drugs
Tsoi et al. (2018)

Abemaciclib, Sorafenib Hepatocellular carcinoma Sorafenib + PSTK inhibition Chen et al. (2022)
Lapatinib Non-small-cell lung cancer Lapatinib + GPX4 inhibition Ni et al. (2021)

Multi-drug Multi-drug resistance Drug-resistant Breast Cancer Cells Basic therapy + Pt-AuNS prodrugs Del Valle et al. (2020)
Multi-drug Multi-drug resistance Various sensitive and drug-resistant

phenotypes
Standard treatment + Ardisiacrispin B Mbaveng et al.

(2018b)
Various sensitive and drug-resistant cell
lines

Basic therapy + Epunctanone Mbaveng et al.
(2018a)

Various sensitive and drug-resistant cell
lines (leukemia cells)

Basic therapy + Ungeremine Mbaveng et al.
(2019)

(Continued on following page)
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Multidrug resistance–associated protein 5 (MRP5, ABCC5) is
a regulator of ferritin formation in HCC cells, which also
participates in the progression of ferroptosis (Huang et al.,
2021). ABCC5 inhibits ferroptosis by upregulating intracellular
GSH and reducing the accumulation of lipid peroxidation by
stabilizing the SLC7A11 protein. In contrast, knockdown of
ABCC5 induces ferroptosis.

4 FERROPTOSIS AND DRUG RESISTANCE

Drug resistance of cancer cells includes intrinsic and acquired
resistance (Hayes and Wolf, 1990). It remains a huge challenge
that significantly limits the efficacy of anticancer treatment, and
great efforts have been made to overcome drug resistance. A
growing amount of clinical evidence has shown that targeting
ferroptosis may be a promising way to overcome drug resistance
and enhance the therapeutic efficacy of anticancer treatment.
Ferroptosis inducers are able to reverse the acquired resistance of
cancer cells to lapatinib, cisplatin, docetaxel, sorafenib, etc.
(Viswanathan et al., 2017). Inhibition of xCT and GPX4 can
induce cancer cell death to conventional chemotherapy or

radiotherapy (Xie et al., 2016). Inhibition of xCT enhances the
sensitivity of cancer cells to anticancer agents by consuming GSH
by blocking the uptake of cystine (Yoshikawa et al., 2013; Liu
et al., 2017). A high-mesenchymal cell state would decrease the
sensitivity of multiple types of cancer cells. It was found that the
therapy-resistant high-mesenchymal cell state contributes to the
escape from ferroptosis by regulating lipid peroxidation.
Inhibition of GPX4 causes peroxide reactions mediated by
intracellular iron, thus leading to ferroptosis. Therefore,
induction of ferroptosis can effectively eliminate the high-
mesenchymal cell state in cancer cells (Hangauer et al., 2017).

We summarized the mechanisms underlying ferroptosis in
overcoming the drug resistance of currently approved anticancer
agents. The role of ferroptosis in treatment resistance, strategies
to overcome resistance in cancer, and strategies to enhance
treatment efficacy by regulating ferroptosis in cancer are listed
in Tables 1 and 2, respectively.

4.1 Chemotherapy
4.1.1 Platinum Drugs
Cisplatin, also known as DDP, is a classic anticancer drug that is
the most widely used in clinical application. It can be applied to

TABLE 1 | (Continued) Role of ferroptosis in drug resistance and the strategy to overcome treatment resistance in cancer.

Treatment
strategy

Treatment Cancer type Strategy to overcome
resistance

References

Multiple drugs Lapatinib, Erlotinib Breast cancer, Non-small-cell lung
cancer, ovarian cancer, melanoma

Standard treatment + GPX4 inhibition Hangauer et al.
(2017)

Carboplatin, Paclitaxel, Vemurafenib,
Dabrafenib, Trametinib, Dabrafenib

Immunotherapy Anti-PD-1/PD-L1 blockade Mammary carcinoma Anti-PD-1/PD-L1 blockade + TYRO3
inhibition

Zhou Jiang et al.
(2021)

Bladder cancer Anti-PD-1/PD-L1 blockade +
ACSL4activation

Liao et al. (2022)

Radiotherapy Radiation Clinically relevant radioresistant (CRR)
cells

Basic therapy + miR-7-5p knockdown Tomita et al. (2021)

Lung cancer, fibrosarcoma cell, breast
adenocarcinoma cell

Ionizing radiation + Ferroptosis
inducers

Lei et al. (2020)

TABLE 2 | Strategy to enhance therapeutic efficacy of approved treatment through regulating ferroptosis in cancer.

Treatment strategy Treatment Cancer type Combination strategy to
enhance treatment efficacy

References

Chemotherapy Cisplatin Ovarian cancer CDDP + Erastin Cheng et al. (2021)
PDAC CDDP + DHA Du et al. (2021)
Osteosarcoma CDDP + Ursolic Acid Zhen Tang et al. (2021)

Gemcitabine Pancreatic cancer Chrysin + Gemcitabine Zhou et al. (2021)
Doxorubicin Osteosarcoma Doxorubicin + Ferrate Jingke Fu et al. (2021)

Ovarian cancer Doxorubicin + RSL3 Gao et al. (2019a)
Targeted therapy Cetuximab KRAS mutant colorectal cancer Cetuximab + RSL3 Jiawen Yang et al. (2021)

Gefitinib Triple negative breast cancer Gefitinib + GPX4 Inhibition Song et al. (2020)
Everolimus Renal cell carcinoma Everolimus + Erastin/RSL3 Yangyun et al. (2022)
Sorafenib HepG2 cell (hepatoellular carcinomas) Dihydroartemisinin (DHA)+Sorafenib Cui et al. (2022)

Immunotherapy PD-L1 blockade Ovarian cancer PD-L1 blockade + cyst(e)inase Wang et al. (2019)
Multiple cancer types PD-L1 blockade + Low-dose arachidonic acid Liao et al. (2022)

Radiotherapy Radiation Lung adenocarcinoma, glioma Radiation + Ferroptosis Inducers Zeng Ye et al. (2020)
Melanoma Ionizing radiation + ACSL3 KO/cyst(e)inase/SLC7A11 KO Lang et al. (2019)
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many types of solid tumors, such as bladder cancer, ovarian
cancer, testicular cancer, lung cancer, gastric cancer, colorectal
cancer, and head and neck cancer (HNC) (Galluzzi et al., 2014).
Preclinical studies have shown that inhibition of xCT reverses the
resistance of HNC cells to cisplatin by inducing ferroptosis (Roh
et al., 2016). The antimalarial drug artesunate has been
repurposed as an anticancer drug, although its sensitivity in
cisplatin-resistant HNC cells is relatively low. Inactivation of
the Nrf2-ARE pathway increases the sensitivity of drug-
resistant HNC cells to artesunate and reverses the resistance of
drug-resistant cells to ferroptosis (Roh et al., 2017). Cisplatin-
resistant osteosarcoma cells present inhibited ferroptosis after
exposure to low-dose cisplatin, which is reactivated by the
induction of ferroptosis inducers (Liu and Wang, 2019).
Cotreatment with cisplatin and ferroptosis inducers (erastin
and RSL3) significantly increases the sensitivity of drug-
resistant cells to cisplatin. In gastric cancer cells, cisplatin and
paclitaxel upregulate miR-522 and then downregulate ALOX15
in cancer-associated fibroblasts, thereafter leading to acquired
chemoresistance by inhibiting the accumulation of lipid ROS and
ferroptosis (Zhang H. et al., 2020). Therefore, the induction of
ferroptosis is favorable to inhibit the drug resistance of cisplatin
and paclitaxel. ATF3 (activating transcription factor 3) may
induce ferroptosis by blocking the Nrf2/Keap1/xCT signaling
pathway and reverse the sensitivity of gastric cancer cells to
cisplatin (Fu D. et al., 2021). Ent-Kaurane derivatives are
promising in chemotherapy and are capable of reversing the
resistance to cisplatin by dual inhibition of PRDX I/II and GSH
(Sun Y. et al., 2021). Non-small-cell lung cancer (NSCLC)
accounts for approximately 85% of lung cancer cases (Ferlay
et al., 2015). Multicourse cisplatin–based chemotherapy is a
standard adjuvant therapy for NSCLC, although its clinical
benefits are limited by drug resistance. Cisplatin induces
activation of the Nrf2/xCT pathway in different NSCLC cell
lines, and the degree of activation is correlated with the
resistance level to cisplatin. Nrf2 and xCT are significantly
upregulated in cisplatin-resistant NSCLC cells. The classic
ferroptosis inducers erastin and sorafenib significantly induce
ferroptosis in cisplatin-resistant NSCLC cells. Interestingly, low-
dose cisplatin induction combined with erastin/sorafenib
effectively inhibits the in vitro growth of cisplatin-resistant
NSCLC cells, indicating that erastin/sorafenib-induced
ferroptosis may provide a novel option for combating
cisplatin-resistant NSCLC (Li et al., 2020). It has been
reported that the Wnt/Nrf2/GPX4 signaling pathway promotes
acquired chemoresistance by inhibiting ferroptosis and highly
consuming GSH.

GPX4 inhibitors can enhance the therapeutic effect of
platinum-based drugs on drug-resistant lung cancer brain (Liu
W. et al., 2021). Erastin induction also enhances the therapeutic
effect of cisplatin on ovarian cancer through ROS-mediated
ferroptosis, serving as a novel strategy for overcoming cisplatin
resistance (Cheng et al., 2021). The bioactive component ursolic
acid isolated from kiwifruit possesses a strong anticancer effect on
osteosarcoma cells, the combination of which and cisplatin
further presents a synergistic effect on killing osteosarcoma
cells. Consistently, low-dose cisplatin combined with ursolic

acid significantly inhibited the malignant growth of
osteosarcoma in an in vivo xenograft model through
ferroptosis caused by the degradation of ferritin and
accumulation of intracellular ferrous ions. Moreover, ursolic
acidursolic acid enhances cisplatin-induced DNA damage in
osteosarcoma cells. It is suggested that ursolic acid is a
nontoxic adjuvant that enhances the chemotherapeutic effect
of osteosarcoma (Tang Z. et al., 2021).

Oxaliplatin can prolong the median disease-free survival
(DFS) and overall survival (OS) in patients with advanced
colorectal cancer (CRC). However, less than 40% of CRC
patients can benefit from oxaliplatin due to drug resistance
(Sun et al., 2017a; Sun F. et al., 2019). With advanced research
on the pathogenesis and drug resistance of CRC, several
molecular mechanisms underlying the high rate of resistance
have been identified. For example, activation of ABC transporters
and hypermethylation of CpG islands are involved in oxaliplatin
resistance (De Mattia et al., 2015; Sun et al., 2017b).
Unfortunately, the combination therapy of oxaliplatin and
other drugs does not achieve a satisfactory outcome, and long-
term application even aggravates adverse events. It has been
reported that GPX4 is more highly expressed in advanced
CRC specimens than in paracancerous (Méplan et al., 2010).
High-dose RSL3 treatment induces ferroptosis in CRC cells by
stimulating the production of lipid peroxides by downregulating
GPX4 (Sui et al., 2018). It is speculated that high levels of GPX4
may induce the resistance of CRC to oxaliplatin, and its
combination with ferroptosis inducers is expected to overcome
drug resistance (Yang C. et al., 2021).

Taken together, ferroptosis is involved in the resistance of
multiple types of cancers to platinum-based drugs, and targeting
ferroptosis is a promising strategy to overcome resistance to
cisplatin and oxaliplatin.

4.1.2 Docetaxel and Paclitaxel
Docetaxel is a derivative of paclitaxel that has been widely used in
the treatment of ovarian cancer, especially as a first-line
chemotherapy alternative to paclitaxel. It can be used alone or
in combination with other chemotherapeutic drugs, such as
paclitaxel, which arrests cell cycle progression by inhibiting
microtubule growth (Li et al., 2019; Lu and Meng, 2019).
Although docetaxel has a remarkable anticancer effect, drug
resistance to it remains a major challenge in clinical
application. Serving as a ferroptosis inducer, low-level erastin
is able to strongly downregulate SLC7A11 (Sato et al., 2018), thus
preventing the transport of cystine and leading to the depletion of
GSH (Dixon et al., 2012; Yu Y. et al., 2017). A preclinical study
has found that erastin can reverse ABCB1-mediated resistance to
docetaxel in ovarian cancer, indicating that the combination of
erastin and docetaxel is a promising strategy available to
chemotherapy-resistant patients with ovarian cancer (Zhou
et al., 2019). The therapeutic potential of the xCT inhibitor
sulfasalazine (SAS) has been identified in a paclitaxel-resistant
uterine serous carcinoma cell line. Compared with sensitive cells,
SAS is more cytotoxic to paclitaxel-resistant cells by inducing
ferroptosis rather than apoptosis. It is indicated that xCT
inhibitors may be effective for patients with relapsed
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paclitaxel-resistant uterine serous carcinoma (Sugiyama et al.,
2020).

4.1.3 Gemcitabine
Gemcitabine is the basic chemotherapy drug for pancreatic ductal
adenocarcinoma (PDAC), the combination of which and other
drugs, such as cisplatin, has become the most widely applied
therapeutic strategy for PDAC (Heinemann, 2001; Tadros et al.,
2017). However, the acquired resistance of gemcitabine
(Binenbaum et al., 2015) and cisplatin (Galluzzi et al., 2012)
leads to treatment failure. It is urgent to overcome chemotherapy
resistance, thus enhancing the therapeutic efficacy of PDAC.
ARF6 does not directly regulate lipid peroxidation, but it
sensitizes PDAC cells to oxidative stress, especially RSL3-
induced lipid peroxidation. ARF6 also regulates gemcitabine
resistance by downregulating DCK and hENT1 (Ye Z. et al.,
2020). Through analyzing the correlation between ferroptosis-
related genes (FRGs) and the sensitivity of anticancer drugs using
Lasso penalized Cox regression analysis, it was found that
spermidine/spermine N1-acetyltransferase 1 (SAT1)
significantly influences resistance to cisplatin and gemcitabine.
In vitro data revealed that gemcitabine combined with cisplatin
can induce ferroptosis in AsPC1 cells by upregulating SAT1 (Wei
et al., 2022). RNA sequencing in 31 types of cancer specimens
showed that 14/31 are highly sensitive to ferroptosis inducers.
Serving as the main target of ferroptosis, xCT is upregulated in
gemcitabine-resistant PDAC cells (Tang et al., 2020). The
combination of immunotherapy and ferroptosis inducers is
considered a promising option for the treatment of PDAC.
The sensitivity to ferroptosis in PDAC patients has been
found to be correlated with the high infiltration of CD8+

T cells, type II interferon responses, and immune checkpoints.
Human carbonyl reductase 1 (CBR1) protects cells from oxidative
stress. Through the immunohistochemical staining of pancreatic
cancer (PCA) samples in the GEPIA database, CBR1 was found to
be upregulated in PCA and significantly correlated with the
clinical characteristics of PCA patients. Knockdown of CBR1
inhibits the proliferation of PCA cells by regulating the
production of ROS. Moreover, knockdown of CBR1
contributes to enhancing the sensitivity of PDAC cells to
gemcitabine. The flavonoid chrysin can directly bind to CBR1,
which inhibits its enzymatic activity at the molecular and cellular
levels, thereby increasing ROS levels and ROS-dependent
autophagy. It induces ferroptosis in PCA cells by degrading
ferritin heavy polypeptide 1 (FTH1) and enhancing the
intracellular free iron levels, which ultimately increases the
sensitivity to gemcitabine (Zhou et al., 2021).

4.1.4 5-Fluorouracil
Surgery is the first-line treatment for CRC, and postoperative
adjuvant chemotherapy of 5-fluorouracil (5-FU) and oxaliplatin
is applied to patients with stage III and IV CRC. However, drug
resistance develops inmost CRC patients. Lipocalin 2 is a secreted
glycoprotein that regulates iron homeostasis (Playford et al.,
2006). It is upregulated in many types of tumors, although the
oncogenic mechanism remains unclear. Overexpression of
Lipocalin 2 leads to the resistance of CRC to 5-FU by

inhibiting ferroptosis in vitro and in vivo, which is attributed
to the reduction in intracellular iron levels and upregulation of
GPX4 and xCT. The Lipocalin 2 monoclonal antibody is capable
of suppressing chemotherapy resistance and transformation in
xenograft mice. Moreover, the expression level of Lipocalin 2 is
positively correlated with that of xCT in human CRC specimens.
Lipocalin 2 is a potential therapeutic target for overcoming 5-FU
resistance by regulating ferroptosis (Chaudhary et al., 2021).

4.1.5 Temozolomide and Doxorubicin
Temozolomide (TMZ) is a methylated antitumor triazene
compound that induces apoptotic and autophagic cell death
through postreplicative mismatch repair (D’Atri et al., 1998).
However, at least 50% of patients treated with TMZ do not
respond to TMZ. Therefore, increasing the efficacy of TMZ is of
great important in cancer treatment (Lee, 2016). The expression
of xCT is closely related to the malignancy of brain tumors. The
activity of temozolomide on glioma cells was shown to be
dependent on the expression of xCT and could be promoted
through ferroptosis (Sehm et al., 2016). Erastin and sorafenib are
partial xCT inhibitor that induces ferroptosis in a variety of tumor
cells. Glioma cells overexpressing xCT tolerated erastin and
sorafenib-induced cell death in a concentration-dependent
manner, whereas knockdown of xCT increased the toxicity of
erastin and sorafenib to glioma cells. More importantly, the
combined use of erastin and TMZ enhanced the efficacy,
suggesting that combination with ferroptosis inducers is an
effective strategy to enhance the efficacy of the first-line
treatment agent TMZ (Sehm et al., 2016).

Doxorubicin is a common chemotherapy drug used to treat
many cancer types, including breast cancer, bladder cancer,
Kaposi’s sarcoma, lymphoma, and acute lymphocytic leukemia
(Carvalho et al., 2009). Doxorubicin has poor activity against
drug-tolerant drug-tolerant persister cancer cells (PCCs). This
may be related to EMT. Targeting the ferroptosis pathway has
high activity to eliminate cells in the EMT state. A study in a
Doxorubicin (Dox)-resistant human ovarian cancer model found
that RSL3 encapsulated in the polymer micelles was able to
induce ferroptosis in PCCs by targeting GPX4, thereby
overcoming resistance to doxorubicin. Following the rapid
release of cargo upon initiation of free radicals in the tumor
microenvironment, RSL3-loaded micelles induced lipid
peroxidation and decreased intracellular glutathione level,
which in turn decreased CD133+ and aldehyde dehydrogenase
(ALDH+) PCCs population (Gao et al., 2019a). Hypoxic
microenvironment promotes cancer resistance to
chemotherapy. A recent study found that targeting ferroptosis
can enhance the therapeutic effect of doxorubicin in hypoxic
osteosarcoma by activating ferroptosis, showing great potential to
overcome hypoxia-induced drug resistance. The authors
integrated ferrate and doxorubicin into biocompatible hollow
mesoporous silica nanoplatforms. When the system was activated
with ultrasound, ferrate and doxorubicin were released together.
The released ferrate efficiently reacts with water as well as
hydrogen peroxide and glutathione in tumor cells for TME-
independent reoxygenation and glutathione depletion.
Reoxygenation downregulates the expression of HIF 1α and
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P-glycoprotein in tumor cells, sensitizing the anticancer effects of
doxorubicin. Furthermore, glutathione depletion inactivated
GPX4, which inhibits lipid peroxides, and enhanced
ferroptosis, demonstrating the potential to overcome drug
resistance by inducing sensitized apoptosis and collaborative
ferroptosis of tumor cells (Fu J. et al., 2021).

4.2 Targeted Therapy
4.2.1 Sorafenib
Sorafenib is an inhibitor of multiple oncogenic kinases, which has
been approved for the treatment of advanced renal cell carcinoma
(Escudier et al., 2007). It is also the only systemic therapy
approved for patients with advanced HCC who cannot be
operated (Siegel et al., 2010). The therapeutic efficacy of
sorafenib on multiple types of solid tumors has been validated
(Meyer et al., 2014; Mammatas et al., 2020). However, drug
resistance to sorafenib results in the poor prognosis of HCC
(Llovet et al., 2008; Cheng et al., 2009). Expanded studies have
shown that targeting ferroptosis is an effective method to
overcome sorafenib resistance.

MT-1G is a negative regulator of ferroptosis in human HCC
cells, which is upregulated in drug-resistant cancer cells and
considered the cause of acquired resistance (Bahnson et al.,
1991). MT-1G is a key regulator of sorafenib resistance.
Metallothioneins (MTs) have a high affinity for divalent heavy
metal ions, which are important to prevent heavy metals and
oxidative injury. Sorafenib targets the mRNA and protein levels
of MT-1G by activating the transcription factor Nrf2. MT-1G
inhibits ferroptosis by regulating lipid peroxidation rather than
the production and metabolism of Fe2+. The genetic and
pharmacological inhibition of MT-1G promotes ferroptosis in
sorafenib-resistant cells and enhances the anticancer activity of
sorafenib both in vitro and in vivo. Therefore, regulating MT-1G
and targeting ferroptosis are expected to effectively reverse
acquired resistance to sorafenib (Sun et al., 2016).

SIRT6, a member of the sirtuin family, is an NAD+-dependent
enzyme essential for various biological functions (Michishita
et al., 2005). SIRT6 has been reported to be upregulated in
sorafenib-resistant GC cells and inhibits ferroptosis by
upregulating GPX4 and activating the Keap1/Nrf2 signaling
pathway (Cai et al., 2021). Targeting the SIRT6/Keap1/Nrf2/
GPX4 signaling pathway facilitates ferroptosis in cancer cells,
and this property may be may be one of the potential strategies to
address the resistance of cancer cells to sorafenib.

ABCC5 induces acquired resistance to sorafenib in vitro by
inhibiting ferroptosis. It is upregulated in sorafenib-resistant
HCC cells, and knockdown of ABCC5 significantly reverses
the sensitivity to sorafenib (Huang et al., 2021). As a result,
ABCC5 is a regulator of ferroptosis that may be useful to
overcome the acquired resistance of HCC to sorafenib.

YAP/TAZ also plays a key role in the resistance of sorafenib to
HCC. It induces the expression of SLC7A11 in a TEAD-
dependent manner and maintains the homeostasis of
intracellular GSH, thereby suppressing sorafenib-induced
ferroptosis in HCC cells. Inhibition of the antioxidant pathway
regulated by YAP/TAZ and ATF4 may resensitize drug-resistant
HCC to sorafenib (Chen et al., 2022). In addition,

dihydroartemisinin (DHA) can enhance the anticancer effect
of sorafenib by downregulating GSH-related proteins in the
iron metabolism pathway, thereby enhancing the function of
sorafenib in inducing ferroptosis in HepG2 cells (Cui et al., 2022).

4.2.2 EGFR Inhibitor
4.2.2.1 EGFR-Tyrosine Kinase Inhibitor
Epidermal growth factor receptor (EGFR) is the most common
mutation driving the carcinogenesis of lung adenocarcinoma
(LUAD), with a mutation rate of up to 55% in Asian LUAD
patients (Zhang et al., 2021). Serving as the first-line treatment of
EGFR-mutant LUAD, acquired resistance to EGFR-tyrosine
kinase inhibitors (EGFR-TKIs) remarkably reduces therapeutic
efficacy. Moreover, approximately 20–30% of EGFR-mutant
LUAD patients possess intrinsic resistance to EGFR-TKIs
(Wang et al., 2016). It has been reported that cells with
intrinsic or acquired resistance to EGFR-TKIs exhibit higher
responses to ferroptosis inducers than EGFR-TKI-sensitive
cells. The histone deacetylase (HDAC) inhibitor vorinostat
promotes ferroptosis through downregulating xCT, resulting in
a dramatic increase in hydroperoxides in EGFR-mutant lung
cancer cells (Zhang et al., 2021). It is favorable to overcome the
resistance of lung cancer cells to first-, second- and third-
generation EGFR-TKIs (Zang et al., 2020).

Gefitinib is an oral EGFR TKI for the treatment of advanced
NSCLC (Yang et al., 2017). However, acquired therapeutic
resistance to gefitinib inevitably develops. Compared with
parental HCC4006 cells, those with a high mesenchymal cell
state and gefinitib resistance are highly sensitive to the inhibition
of GPX4 (Ware et al., 2013). The loss of function of GPX4 induces
ferroptosis in mesenchymal-state cells rather than epithelial-state
cells (Viswanathan et al., 2017).

Drug resistance remarkably limits the application of gefitinib
in triple-negative breast cancer (TNBC). TNBC cells are sensitive
to erastin-induced ferroptosis (Yu H. et al., 2017). Later,
expanded studies have shown that GPX4 negatively regulates
ferroptosis in gefitinib-resistant TNBC cells, contributing to
enhancing the anticancer effect of gefitinib (Song et al., 2020).

4.2.2.2 Cetuximab
The long-term efficacy of the EGFR-targeting antibody
cetuximab in advanced CRC patients is limited by the
emergence of drug resistance (Diaz et al., 2012). High-dose
vitamin C has the potential to induce ferroptosis, serving as a
prooxidant therapeutic agent to fight against EGFR-resistant
cancers (Chen et al., 2007). Cetuximab-resistant CRC cells are
easily influenced by vitamin C-induced oxidative stress by
altering the homeostasis of iron. The combination of
cetuximab and vitamin C delays the emergence of drug
resistance, which is a promising approach to alleviate
cetuximab resistance in CRC.

The small molecule RSL3 is able to kill Ras-mutant cancer cells
(Yang and Stockwell, 2008) and activate ferroptosis in them
(Chen et al., 2021a). As a potent ferroptosis inducer, it
promotes ferroptosis in cancer cells by directly inhibiting
GPX4 (Shintoku et al., 2017). Therefore, induction of
ferroptosis may be an effective strategy for the treatment of
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KRAS-mutant CRC. The combination of RSL3 and cetuximab
synergistically stimulates the death of the KRAS-mutant CRC cell
lines HCT116 and DLD-1. Cetuximab promotes lipid
peroxidation and thereafter enhances RSL3-induced ferroptosis
by targeting the Nrf2/HO-1 axis by activating the p38 mitogen-
activated protein kinase (Yang J. et al., 2021). It is believed that the
combination of RSL3 and cetuximab is favorable for the
therapeutic efficacy of inducing ferroptosis in KRAS-
mutant CRC.

4.2.3 Androgen Receptor Inhibitors
In developed countries, Prostate cancer (PC) is the most common
male cancer (Blomme et al., 2020). Many PC cases are androgen-
sensitive and require the androgen receptor (AR) signaling
pathway. Therefore, despite the fact that androgen deprivation
therapy (ADT) leads to a high recurrence rate and may even
exacerbate fatal castration-resistant prostate cancer (CRPC), it
has long been considered the standard of care for advanced PC.

Selective AR inhibitors (ARIs) have shown promising
therapeutic efficacy on PC, which significantly improve the
clinical outcomes (Watson et al., 2015). The first-generation
AR antagonist bicalutamide and the subsequent AR
antagonists enzalutamide and apalutamide have achieved
acceptable clinical benefits. Reactivation of the AR signaling
pathway is a major driver of CRPC progression, which is
responsible for mediating the metabolism of PC cells (Massie
et al., 2011). It has been reported that persisting PC cells are
GPX4-dependent and present hypersensitivity to ferroptosis,
which is closely linked with lipid remodeling, increased lipid
uptake and PUFA enrichment of membrane lipids. Furthermore,
the activities of lipase and fatty acid desaturase are essential for
GPX4-dependent development of persister cells (Tousignant
et al., 2020).

Fatty acid β-oxidation (FAO) is a major bioenergy metabolism
pathway in PC, serving as a promising therapeutic vulnerability.
In vitro experiments demonstrated the therapeutic effect of
targeting FAO on PC. 2,4-dienoyl-CoA reductase (DECR1) is
a rate-limiting enzyme for the oxidation of PUFAs. It is also a
negative regulator of AR-targeted genes, which stimulates the
resistance of PC cells to AR-targeted therapy. DECR1 is
significantly upregulated in PC tissues, the high level of which
is correlated with poor recurrence-free survival of PC.
Knockdown of DECR1 selectively suppresses the β-oxidation
of PUFAs and the proliferation and migration of PC cells.
Moreover, knockdown of DECR1 leads to the intracellular
accumulation of PUFAs, which further triggers mitochondrial
oxidative stress, lipid peroxidation and ferroptosis. Therefore,
DECR1-mediated oxidation of PUFAs is a therapeutic target for
overcoming drug resistance in PC (Nassar et al., 2020).

An activated AR signaling pathway is detected in ARI-
resistant cells, and the presence of ARI resistance is linked to
cell metabolism. Proteomic and metabolomic analyses have
shown remarkable changes in glucose and lipid metabolism in
ARI-resistant cells, in which the AR signaling pathway drives
metabolic reprogramming. DECR1 is able to maintain lipid
homeostasis in CRPC cells, and its deficiency causes ER stress
and sensitizes CRPC cells to ferroptosis by enhancing PUFA

levels. Knockdown of DECR1 impairs lipid metabolism and
inhibits the growth of CRPC in vivo (Blomme et al., 2020). In
conclusion, DECR1 plays a key role in the development of drug
resistance in CRPC, serving as a vital therapeutic target.

4.2.4 BRAF Inhibitors
Mutations in the oncogene v-raf murine viral oncogene homolog
B1 (BRAF) are detected in many types of tumors. BRAF
inhibitors have been approved for the treatment of melanoma
(Davies et al., 2002). It has been reported that the combination of
BRAF andMEK inhibitors rapidly shrinks BRAF V600E-mutated
melanoma, although almost all cases suffer recurrence due to
drug resistance (Hong et al., 2021). Melanoma cells are strongly
invasive and present strong resistance to clinical interventions,
except for immunotherapy and BRAF-targeted therapy. A recent
study demonstrated that primary melanoma cells are affected by
ROS, while their subsets are resistant to ROS and keep alive in the
circulatory system highly enriched with oxygen (Piskounova
et al., 2015). Circulating tumor cells (CTCs) in melanoma
patients synergistically activate adipogenesis and ion
homeostasis, resulting in intrinsic and acquired resistance to
BRAF inhibitors. Furthermore, sterol regulatory element-
binding protein (SREBP)-induced adipogenesis is significantly
upregulated in in vitro cultured CTCs. It contributes to reducing
intracellular iron pools, ROS levels, lipid peroxidation and
ferroptosis by inducing the transcription of the iron carrier
transferrin (TF). Vemurafenib induction upregulates
endogenous SREBP in in vitro cultured CTCs, and knockdown
of TF suppresses tumor formation by melanoma CTCs.
Therefore, targeting SREBP may be a potential therapeutic
strategy to inhibit resistance and metastasis of melanoma
(Hong et al., 2021). The effect of reversing drug resistance or
enhancing targeted therapy and chemotherapy through targeted
ferroptosis is shown in Figure 2.

4.3 Radiotherapy
Radiotherapy is a vital option for cancer patients (Delaney et al.,
2005), which breaks double strands in DNA through high-energy
ionizing radiation (IR). The degree of DNA damage and the
ability to repair DNA are the most critical factors in determining
the death of inherent tumor cells from IR (Morgan and Lawrence,
2015). However, various types of cancers develop resistance to
radiotherapy (Gerszten et al., 2009; Tang et al., 2017), which are
associated with the activation of DNA repair and inhibition of cell
apoptosis (Willers et al., 2013; Kim et al., 2015). In addition,
targeting ferroptosis has emerged as a novel strategy to overcome
radiotherapy resistance (Ye L. F. et al., 2020). Small molecules
that activate ferroptosis by inhibiting xCT or GPX4 exert a
synergistic effect on anticancer treatment alongside
radiotherapy, in which DNA damage is not aggravated.
Ferroptosis inducers contribute to expand the therapeutic
efficacy of radiotherapy in a murine xenograft model and
human patient-derived models of lung adenocarcinoma and
glioma, suggesting that ferroptosis inducers may be potent
radiosensitizers to expand the indication of radiotherapy (Ye
L. F. et al., 2020). In a melanoma mouse model, knockout of
ferroptosis suppressor ACSL3/SLC7A11 or using cyst(e)inase was
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found to significantly enhance the anticancer effect of
radiotherapy (8 Gy, single fraction) by promoting tumor lipid
oxidation and ferroptosis. Furthermore, immunotherapy
sensitizes tumors to radiotherapy by promoting tumor-cell
ferroptosis through IFNγ-induced SLC7A11 suppression,
suggesting that ferroptosis may serve as a determinant of
synergy between radiotherapy and immunotherapy (Lang
et al., 2019). Clinically relevant radioresistant (CRR) cells are
resistant to anticancer agents and H2O2, in which miR-7-5p is
upregulated. Knockdown of miR-7-5p downregulates iron
storage genes and upregulates the ferroptosis marker ALOX12,
thus enhancing ROS levels and lipid peroxidation in CRC cells.
Therefore, knockdown of miR-7-5p leads to increased sensitivity
of CRR cells to ferroptosis, which is favorable to overcome
resistance to radiotherapy (Tomita et al., 2021). IR induces
ROS production and activates the ferroptosis marker ACSL4,

which stimulates lipid peroxidation and ferroptosis. However, as
an adaptive response of cells, IR also activates ferroptosis
inhibitors such as SLC7A11 and GPX4, which may contribute
to resistance to radiotherapy. Inactivation of SLC7A11 or GPX4
with ferroptosis inducers is able to sensitize radioresistant cancer
cells and xenograft tumors to IR. Collectively, the combination of
radiotherapy and ferroptosis inducers may synergistically
produce a more pronounced anticancer efficacy (Lei et al.,
2020). The mechanism by which radioresistance is reversed by
targeting ferroptosis is shown in Figure 3.

4.4 Immunotherapy
Immune checkpoint blockade (ICB) therapy has been validated for
its acceptable clinical efficacy on many types of cancers. However,
only a few patients are responsive to ICB therapy, and its clinical
benefits are largely limited by innate and acquired resistance.

FIGURE 2 | Reversing resistance or enhancing the efficacy of targeted therapy and chemotherapy by targeting the ferroptosis pathway. (A) Targeted drugs exert
antitumor effects by blocking oncogenic signaling pathways, but innate or acquired resistance reduces their efficacy. (B)One of the mechanisms of resistance is reduced
susceptibility to ferroptosis. Targetingmultiple pathways in ferroptosis to restore their response to ferroptosis could eliminate resistance or improve the efficacy of existing
standard treatments, including chemotherapy and targeted therapy. System Xc− and GPX4 have critical roles in preventing ferroptosis and potential targets to
reverse treatment resistance. Other factors that regulate the redox of intracellular lipid are also have critical roles in anticancer treatment resistance. Many approved drugs
target those potential targets and may reverse the resistance by exploiting ferroptosis pathway.
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Ferroptosis is involved in resistance to ICB therapy. In a syngeneic
mouse tumor model and patients receiving anti-PD-1/PD-L1
therapy, tumors expressing a high level of tyrosine-protein kinase
receptor (Tyro3) present resistance to anti-PD-1/PD-L1 therapy by
inhibiting ferroptosis (Jiang Z. et al., 2021). Tyro3 upregulates genes
that inhibit ferroptosis (e.g., SLC40A1, SLC7A11, SLC3A2, GPX4,
FTH1, BLVRB) but downregulates those that promote ferroptosis
(e.g., SLC5A1, TFRC). Moreover, Tyro3 also contributes to the
generation of a microenvironment that is favorable to tumor growth
by reducing the ratio of M1/M2 macrophages. The combination of
anti-PD-1 antibodies with Tyro3 inhibitors can reverse the
responsiveness of resistant tumor cells by stimulating ferroptosis.
Therefore, Tyro3 serves as a promising biomarker for predicting the
efficacy of ICB therapy and overcoming resistance. IFN-γ released by
CD8+ T cells downregulates SLC3A2 and SLC7A11, thereby
inhibiting cystine uptake and promoting lipid peroxidation and
ferroptosis. Induction of an engineered enzyme that degrades both
cystine and cysteine enhances the immunity of ICB and ferroptosis
in a mouse tumor model. In human melanoma tissues, both
SLC7A11 and LC3A2 are negatively correlated with the number
of CD8+ T cells, the expression level of IFN-γ and patient outcome.
Those expressing a low level of SLC3A2 present a better
responsiveness to nivolumab therapy. It is indicated that
metabolic changes induced by cytotoxic T cells affect ferroptosis,
and targeting this pathway is a potential therapeutic strategy to
enhance the efficacy of ICB (Wang et al., 2019).

IFN-γ synergistically promotes tumor ferroptosis along with
fatty acids in the tumor microenvironment through ACSL4. It
contributes to the upregulation of ACSL4 via the STAT1 and
IRF1 signaling pathways, which also enhances the incorporation
of AA into C16 and C18 acyl chain-containing phospholipids.
Low-dose AA enhances anticancer immunity and the therapeutic
efficacy of PD-L1 blockade by enhancing ferroptosis. The
expression level of ACSL4 in bladder cancer and melanoma
patients was positively correlated with their survival, which
was also parallel to the expression levels of CD8A and IFN-γ
and the T-cell signature. Cancer patients expressing a high level of
ACSL4 who are treated with ICB therapy present higher overall
survival and progression-free survival. Therefore, the ACSL4
signaling pathway that targets ferroptosis in the tumor
microenvironment is favorable to enhance the therapeutic
efficacy of ICB (Liao et al., 2022). The mechanism by which
targeted ferroptosis in immunocytes or cancer cells reverses
immunotherapeutic resistance or enhances treatment is shown
in Figure 4.

5 FERROPTOSIS AND CANCER
METASTASIS

Metastasis is a critical stage of tumor progression and remains a
major challenge in treating cancer. Metastasis of various cancers,

FIGURE 3 | Reversal of radioresistance by targeting ferroptosis. Radioresistance remains a major factor in radiotherapy failure. Radiation therapy can lead to the
production of massive ROS and upregulate the expression of ACSL4, promote lipid peroxidation and eventually cause ferroptosis. However, radiotherapy also induced
an adaptive response in tumor cells. The expression of ferroptosis suppressors, including SLC7A11 and GPX4, was also significantly upregulated, which promoted
cancer cell survival and radioresistance after radiotherapy. FINs that inhibit SLC7A11 or GPX4 can enhance the sensitivity of radioresistant cancer cells to IR-
induced ferroptosis and reverse radioresistance. miR-7-5p controls radioresistance via ROS generation that leads to ferroptosis. Knockdown of miR-7-5p increased
ROS and reversed radioresistance.
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including prostate cancer (Norum and Nieder, 2017; Peng et al.,
2017), triple-negative breast cancer (Gaffan et al., 2006; Pei et al.,
2015), cervical cancer (Ferlay et al., 2013), causing a considerable
number of patients to relapse after treatment. There is large
heterogeneity between metastases and primary tumors. Due to
the lack of effective prevention or treatment strategies (Li et al.,
2016), the survival rate of patients after conversion is significantly
reduced.A growing amount of evidence supports the involvement
of ferroptosis in cancer metastasis. Here, we review the influence
of ferroptosis as a regulator of cancer metastasis.

5.1 NF2
Neurofibromin 2 (NF2/Merlin) is a typical tumor suppressor
encoded by NF2, which locates in the plasma membrane, cell
cortex and cytoskeleton, linking extracellular signals with
intracellular communication (Meng et al., 2021). Notably,
mutations of NF2 are a major cause of neurofibromatosis type
2 and multiple malignancies, including mesothelioma,
melanoma, breast cancer, and colorectal cancer (Ferlay et al.,

2013; Petrilli and Fernández-Valle, 2016). The E-cadherin-
Merlin-Hippo-YAP axis is frequently mutated in cancer, and
malignant alterations of multiple members in this signaling axis
all makes cancer cells sensitive to ferroptosis, and Merlin (NF2) is
an important member of this axis (Wu et al., 2019). Once
E-cadherin, Merlin, and Hippo are inhibited, the activity of
YAP, a proto-oncogenic transcriptional coactivator, is
enhanced, which further promotes ferroptosis by upregulating
ferroptosis regulators such as ACSL4 and TFRC (Wu et al., 2019).
E-cadherin-mediated cell-to-cell interactions activate the Hippo
signaling pathway (Okada et al., 2005; Kim et al., 2011), in which
NF2 and the kinase cascade consisting of MST1, MST2, LATS1,
and LATS2 are involved. NF2 has been validated to activate the
Hippo signaling pathway by inhibiting the CRL4DCAF1 complex
(Li et al., 2012; Li et al., 2014).

The deficiency of NF2 often drives mesothelioma (Bueno et al.,
2016). In xenograft models of athymic nude mice subcutaneously
injected with shNT-GPX4-iKO cells and shNF2-GPX4-iKO cells,
knockdown of NF2 upregulates TFRC, ACSL4 and nuclear YAP,

FIGURE 4 | Targeting the ferroptosis pathway in immune cells or cancer cells reverses immunotherapy resistance or enhances therapeutic efficacy. (A) The
ferroptosis signaling pathway in immune cells regulates antitumor immune function. Gpx4 protects activated Treg cells from lipid peroxidation and ferroptosis. Loss of
Gpx4 leads to excessive accumulation of lipid peroxides and ferroptosis of Treg cells after TCR/CD28 co-stimulation. Gpx4-deficient Treg cells upregulate the
production of IL-1β and TH17 responses, increasing the number and killing activity of intratumoral CD8+ T cells. Knockdown of Gpx4 in Treg cells inhibited tumor
growth and simultaneously enhanced antitumor immunity. (B) TYRO3 expressed by tumor cells leads to resistance to anti-PD-1/PD-L1 therapy by inhibiting tumor
ferroptosis. Some molecules produced by apoptotic cells in the tumor microenvironment activate the AKT/NRF2 axis after binding to TYRO3, thereby promoting the
transcription of ferroptosis-inducing genes and inhibiting the expression of ferroptosis-inducing genes, leading to anti-PD-1/PD-L1 therapy resistance. Inhibition of
TYRO3 promotes tumor ferroptosis and sensitizes resistant tumors to anti-PD-1 therapy. (C,D) CD8+ T cell-derived IFN-γ in the tumor microenvironment promotes lipid
peroxidation and ferroptosis in tumor cells. Drugs that promote ferroptosis enhance the antitumor efficacy of immunotherapy. (C) IFN-γ promotes lipid peroxidation and
ferroptosis in tumor cells by inhibiting the expression of SLC3A2 and SLC7A11. (D) IFN-γ activates the JAK/STAT1 signaling pathway in tumor cells, which in turn
promotes the expression of ACSL4 through interferon regulatory factor 1 (IRF1). Supplementation with low-dose AA promotes ferroptosis in tumor cells and enhances
the antitumor activity of checkpoint therapy.
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and doxycycline-induced GPX4 knockdown is able to eliminate
cancer lesions. NF2 is also involved in the regulation of
metastasis. In the orthotopic mouse model of mesothelioma,
shNF2-GPX4-iKO cells grew more aggressively than shNT-
GPX4-iKO cells. Bioluminescence imaging showed multiple
metastases in mice administered shNF2-GPX4-iKO cells, while
no metastases were found in those administered shNT-GPX4-
iKO cells, suggesting that NF2 deficiency stimulates cancer
metastasis (Wu et al., 2019). Reduction of NF2 activity also
promotes the efficient metastasis of breast cancer and
melanoma cells (Pan, 2010; Lamar et al., 2012).

5.2 Regulators of EMT
Epithelial–mesenchymal transition (EMT) is a process in which
epithelial cells lose their cell-cell adhesion capacity and acquire a
morphology and intercellular phenotype similar to that of
fibroblasts. EMT mediates tumor metastasis by enhancing the
migratory and invasive abilities of tumor cells by generating
cancer stem cells. In addition, EMT also leads to resistance to
therapy. Regulation of these processes by EMT is stimulated by
transcription factors such as ZEB1, SNAI1, and TWIST1.
Therefore, they are potential targets for inhibiting metastasis
and drug resistance (Chen et al., 2021a). Through a series of
metastatic changes, including local invasion, intravasation,
circulation, extravasation, formation of micro-metasatsis and
overt colonization, cancer cells present different E/M
phenotypes to struggle in the microenvironment (Yang J. et al.,
2020). The latest evidence has shown that a high-mesenchymal cell
state relies on the GPX signaling pathway. Therefore, inhibiting
GPX4 leads to ferroptosis in cancer cells, thus suppressing
metastasis. Metadherin (MTDH) is a newly discovered cancer-
associated protein that promotes EMT, invasion and metastasis in
various types of cancers, including breast cancer (El-Ashmawy
et al., 2019; Jin et al., 2019). MTDH enhances cell sensitivity to
ferroptosis by downregulating GPX4 and SLC3A2, reducing
cysteine and GSH levels and enhancing glutamate levels.
Interestingly, increasing the expression of SNAI1, TWIST1 or
ZEB1 restored sensitivity to ferroptosis (Wu et al., 2019). ZEB1,
a transcription factor associated with EMT-mediated tumor
metastasis, has been shown to promote ferroptosis by directly
inhibiting GPX4 activity, as well as in part through ZEB1-induced
upregulation of PPARγ, a master regulator of hepatic lipid
metabolism. ZEB1 has been shown to play an important role in
cellular lipid metabolism, which regulates lipid uptake,
accumulation, and mobilization, and affects EMT-related plasma
membrane remodeling, which occurs from lipoxygenase-mediated
PUFA oxidation place (Viswanathan et al., 2017). As a result,
multiple regulators of EMT may be favorable to cell sensitivity to
ferroptosis (Bi et al., 2019). The first step in EMT involves breaking
the contacts between epithelial cells. ECAD-mediated intercellular
interactions in epithelial cells prevent ferroptosis bymodulating the
intracellular Merlin-Hippo signaling pathway. EMT can
antagonize the aforementioned signaling axis and then release
the activity of the proto-oncogene transcriptional coactivator
YAP to stimulate ferroptosis (Wu et al., 2019). These are
possible mechanisms for EMT leading to high susceptibility to
ferroptosis (Viswanathan et al., 2017).

5.3 xCT
Clinical studies have found that the recurrence rate of xCT-
positive tumors is significantly higher than that of xCT-negative
tumors, and the expression level of xCT is correlated with
metastasis (Sugano et al., 2015). Overexpression of xCT has
been identified as an indicator of poor prognosis in several
types of cancers, including hepatocarcinoma (Chen et al.,
2009; Lee et al., 2018). Malignant glioma cells kill surrounding
neurons by xCT-released glutamate, thus providing a favorable
condition for metastasis. The xCT antagonist S-(4)-CPG or
sulfasalazine dose-dependently inhibits cancer cell migration
by controlling the release of glutamate. Chronic inhibition of
xCT-mediated glutamate release can effectively reduce tumor
volume and the aggressiveness of tumor cells (Lyons et al., 2007).
Therefore, the role of xCT in tumor invasion and metastasis
should be considered.

5.4 HIF
The proliferation rate of cancer cells is much faster than that of
the development of the vasculature system, leading to the lower
oxygen supply rate in cancers than that of the oxygen
consumption rate and thus causing hypoxia (Brahimi-Horn
et al., 2007). The hypoxic microenvironment in cancer cells
triggers the activation of hypoxia-related genes, including
hypoxia-inducible factor (HIF) (Semenza, 2012). It is a major
regulator of hypoxia that can enhance the invasion andmetastasis
of cancer cells (Rankin and Giaccia, 2016). HIF consists of an
oxygen-labile α subunit (including HIF-1α, HIF-2α, and HIF-3α)
and a constitutively expressed β subunit (HIF1β, also known as
ARNT) (Keith et al., 2011). Under hypoxic conditions, HIF-1α
promotes exosome discharge in gastric cancer cells and tissues. In
addition, the positive feedback of HIF-1α/miR-301a-3p/PHD3
contributes to promoting the proliferation, invasion, migration,
and EMT of gastric cancer cells (Xia et al., 2020). HIF-1α is
upregulated in many types of cancers and is closely correlated
with poor prognosis (Keith et al., 2011).

HIF has a dual role in regulating ferroptosis in cancer cells.
Activated HIF-2α upregulates lipid- and iron-regulated genes in
mouse CRC cells, thus enhancing their sensitivity to ferroptosis.
In addition, activation of HIF-2α leads to ferroptosis by
enhancing lipid peroxidation of PUFAs through irreversible
cysteine oxidation (Singhal et al., 2021). However, in the
fibrosarcoma cell line HT-1080, hypoxia-induced HIF-1α
improves cellular uptake of fatty acids and lipid storage and
inhibits subsequent lipid peroxidation and ferroptosis by
upregulating fatty acid-binding proteins 3 (FABP3) and
FABP7 (Yang et al., 2019). Therefore, HIF is of great
significance in the regulation of ferroptosis, serving as a
potential target for preventing cancer metastasis. The links
between ferroptosis and tumor metastasis are shown in Figure 5.

5.5 Noncoding RNAs Regulate Ferroptosis
During Metastasis
Previous studies have mainly focused on relevant genes, enzymes
and signaling pathways associated with ferroptosis, including
p53, GPX4, ACSL 4, SCL7A11, NFS1, etc. Recent studies have
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shown that some noncoding RNAs (e.g., miR-9 and miR-137) are
also involved in the regulation of ferroptosis in cancer cells (Liu Y.
et al., 2021), serving as oncogenes or tumor suppressor genes by
indirectly mediating signaling pathways in the tumor micro-
environment (Zhang et al., 2019). Here, we summarize the
regulatory effect of RNAs on ferroptosis during carcinogenesis
and cancer metastasis. Noncoding RNA modulate iron death in
tumor metastasis is summarized in Table 3.

5.5.1 Lnc-RNAs Regulate Ferroptosis During
Metastasis
Preclinical studies have demonstrated the role of lnc-RNAs in
the metastasis of various types of cancers by regulating
ferroptosis via multiple mechanisms. For example, lncRNA
PVT1 promotes ferroptosis by upregulating TFR1 and TP53
after targeting miR-214, forming a positive feedback loop of
lncRNA PVT1/miR-214/p53 (Lu et al., 2020). It also triggers the
metastasis of NSCLC (Qi and Li, 2020), gastric cancer (Niu et al.,
2020) and oral squamous cell carcinoma (Zhu et al., 2020). The
expression level of lncRNA ZFAS1 is positively correlated with
that of SLC38A1, which is an important regulator of lipid
peroxidation. Knockdown of lncRNA ZFAS1 inhibits
ferroptosis by preventing intracellular lipid peroxidation by
downregulating SLC38A1 (Yang Y. et al., 2020). MiR-150 is
the target of lncRNA ZFAS1, which is an independent
prognostic factor for nasopharyngeal carcinoma and is
closely linked with its metastasis and poor prognosis (Liu
et al., 2018).

5.5.2 Circ-RNAs Regulate Ferroptosis During
Metastasis
Circ-RNAs are also involved in regulation of ferroptosis during
metastasis. CircTTBK2 promotes the metastasis of NSCLC by
negatively regulating miR-761, which further inhibits ferroptosis
by targeting ITGB8. Knockdown of circTTBK2 significantly
alleviates the proliferation and invasion of glioma cells and
induces ferroptosis (Zhang H. Y. et al., 2020). Compared with
those of healthy volunteers, miR-761 levels in serum and tissues
of NSCLC patients are both upregulated. The ectopic expression
of miR-761 stimulates the proliferation and metastasis of H460
cells, and its knockdown reduces the proliferative and metastatic
rates in H23 cells. The promotive effect of miR-761 on ferroptosis
has been validated by relying on the targets ING4 and TIMP2
(Yan et al., 2015).

5.5.3 miRNAs Regulate Ferroptosis During Metastasis
A growing number of miRNAs have been identified to be
involved in ferroptosis. Dysregulated miR-214 is closely linked
with osteolytic bone metastasis in breast cancer (Liu et al., 2017).
Overexpression of premiR-214 stimulates erastin-induced
ferroptosis by enhancing ROS levels and reducing GSH levels
in vitro. SLC7A11/xCT is the target of miR-5096. The restoration
of xCT inhibits miR-5096–induced ferroptosis and anticancer
effects on human breast carcinoma cells by mediating lipid ROS,
iron accumulation and GSH levels. A preclinical trial reported
that miR-5096 contributes to inhibiting the colony formation,
invasion and migration of cancer cells, while anti-miR-5096

FIGURE 5 | Ferroptosis and cancer metastasis. (1) Various changes in the E-cadherin-Merlin-Hippo-YAP axis are associated with ferroptosis. When E-cadherin,
Merlin, and Hippo are inhibited, YAP is activated to further induce ferroptosis, while NF2/Merlin Deficiency drives cancer metastasis. (2) EMT is favorable to the survival of
cancer cells and metastasis, which blocks E-cadherin-induced cell–cell interactions and activates YAP, thus leading to ferroptosis. MTDH contributes to ferroptosis by
reducing intracellular GSH levels by downregulating GPX4 and SLC3A2. (3)HIF has a dual role in regulating ferroptosis in cancer cells. Activated HIF-2α upregulates
lipid and iron-regulated genes and enhances lipid peroxidation of PUFAs, thus enhancing their sensitivity to ferroptosis. In contrast, it prevents ferroptosis in cancer cells
by improving the cellular uptake of fatty acids and lipid storage by upregulating FABP3 and FABP7.
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significantly stimulates these carcinogenic features (Yadav et al.,
2021). At present, the interaction among miRNAs, ferroptosis
and cancer metastasis has not been fully elucidated, which
requires further in-depth research.

6 CONCLUSION

The role of ferroptosis in cancer and the strategies of exploiting
ferroptosis to overcome cancer drug resistance and treat
metastasis have attracted the interest of many researchers over
the past few years. As described in this study, the discovery and
exploration of ferroptosis has opened up a new platform for the
field of cancer therapy, and its clinical significance in cancer
therapy resistance and metastasis is gradually emerging. The
combined use of ferroptosis inducers can improve the efficacy
of many FDA-approved anticancer drugs including platinum
drugs, docetaxel, paclitaxel, temozolomide, sorafenib, and
cetuximab, showing great potential for suppressing drug
resistance. Furthermore, the induction of ferroptosis is also
associated with the control of cancer metastasis. These
findings raise high expectations for the role of ferroptosis in
cancer treatment. However, there are more issues that need
further clarification. Which chemotherapeutic agents can
improve drug resistance by combining ferroptosis inducers? Is
there anything in common between these drugs? How can

potential adverse events due to ferroptosis be avoided? How to
exploit the potential relationship between ferroptosis and cancer
metastasis to prevent cancer metastasis? In order to further
enhance the efficacy of anticancer drugs, overcome drug
resistance, and inhibit cancer metastasis, more detailed studies
on the mechanism of ferroptosis and the mechanism of
ferroptosis-inducing agents combined with anticancer drugs
are required.
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TABLE 3 | Noncoding RNAs regulate ferroptosis in cancer metastasis.

RNAs Targets Functions in cancer
metastasis

Referencs

Lnc-RNAs
PVT1 miR-214 PVT1 promotes ferroptosis by downregulatingmiR-214, which promotes themetastasis of

NSCLC, gastric cancer and oral squamous cell carcinoma
Lu et al. (2020)

ZFAS1 miR-150-5p ZFAS1 inhibits ferroptosis by downregulating SLC38A1 by suppressing miR-150-5p level.
MiR-150 is closely correlated with the metastasis of nasopharyngeal carcinoma

Liu et al. (2018), Yanni Yang et al.
(2020)

MIR503HG EMT-related proteins Overexpression of MIR503HG inhibits cancer metastasis by downregulating EMT-related
proteins like ZEB1 and N-cadherin

Qiu et al. (2019)

GAS5 miR-23a-3p GAS5 upregulates PTEN by sponging miR-23a-3p, thus inhibiting osteosarcoma cell
invasion via the PI3K/AKT pathway

Liu et al. (2020a)

Circ-RNAs
TTBK2 miR-761 and miR-1283 CircTTBK2 promotes ferroptosis by modulating ITGB8 by sponging miR-761 in glioma.

Knockdown of circ-TTBK2 inhibits proliferation, migration, invasion of glioma cells by
mediating miR-1283 and CHD1

Han et al. (2020), H-Y Zhang
et al. (2020)

RNAs Targets Functions in cancer metastasis Refs
IL4R miR-541-3p/GPX4 and

miR-761
CircIL4R promotes ferroptosis in CRC cells via the miR-541-3p/GPX4 axis. It promotes the
proliferation and metastasis of CRC by activating the PI3K/AKT signaling pathway via the
miR-761/TRIM29/PHLPP1 axis

Xu et al. (2020), Tao Jiang et al.
(2021)

mi-RNAs
miR-

103a-3p
GLS2 and TPD52 Knockdown of miR-103a-3p triggers ferroptosis in gastric cancer by downregulating

GLS2. MiR-103a-3p promotes the metastasis of salivary adenoid cystic carcinoma by
targeting TPD52

Niu et al. (2019), Fu et al. (2020)

miR-
214-3p

ATF4 MiR-214 reduces the volume and weight of xenograft tumor tissues by enhancing Erastin-
induced ferroptosis and downregulating ATF4. Plasma miR-214-3p level is significantly
associated with tumor stage, recurrence and metastasis of nasopharyngeal carcinoma

Bai et al. (2020), Wang et al.
(2020)

miR-137 SLC1A5 and KDM1A MiR-137 negatively regulates ferroptosis by directly targeting glutamine transporter
SLC1A5 inmelanoma cells. Knockdown ofmiR-137-3p promotes the invasiveness of CRC
by upregulating KDM1A/LSD1

Luo et al. (2018), Ding et al.
(2021)

miR-
23a-3p

DMT1 HUCB-MSCs-exosomes inhibits ferroptosis by downregulating DMT1 via miR-23a-3p.
Knockdown of miR-23a promotes the metastasis of cutaneous melanoma

Guo et al. (2017), Song et al.
(2021)
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GLOSSARY

DECR1 2,4-Dienoyl-CoA reductase

5-FU 5-Fluorouracil

5-hpete 5-Hydroperoxyeicosatetraenoic acid

5-HETE 5-Hydroxy-eicosatetraenoic acid

ALOX5 Arachidonate 5-lipoxygenase

ACAC Acetyl-CoA carboxylase

ACSF2 Acyl-CoA synthetase family member 2

ACSL4 Acyl-CoA synthetase long-chain 4

AdA Adrenic acid

AMPK AMP-activated protein kinase

AR Androgen receptor

ARE antioxidant responsive element

ARIs AR inhibitors

AA Arachidonic acid

MRP5, ABCC5 ATP-dependent multidrug resistance protein-5

ATG Autophagy-related

BFA Brefeldin A

CBR1 Carbonyl reductase 1

CRPC Castration-resistant prostate cancer

CTSB Cathepsin B

CTCs Circulating tumor cells

DDP Cisplatin

CRR Citrate clinically relevant radioresistant

CS citrate synthase

(CRISPR)-Cas9 Clustered regularly interspaced short palindromic
repeats

CoQ10 Coenzyme Q10

CRC Colorectal cancer

NFS1 Cysteine desulfurase

cPLA2 Cytosolic phospholipase A2

DCs Dendritic cells

DHA Dihydroartemisinin

DPP4 Dipeptidyl-peptidase-4

DFS Disease-free survival

EGFR-TKIs EGFR-tyrosine kinase inhibitors

ETC Electron carriers

EGFR Epidermal growth factor receptor

EGFR-TKIs Epidermal growth factor receptor-tyrosine kinase inhibitors

EMT Epithelial–mesenchymal transition

FAO Fatty acid β-oxidation

FABP3 Fatty acid-binding proteins 3

FTH1 Ferritin heavy polypeptide 1

FRGs Ferroptosis-related genes

GSH Glutathione

GPXs Glutathione peroxidases

GCA Golgicide A

HNC Head and neck cancer

HCC Hepatocellular carcinoma

hnRNPA1 Heterogeneous nuclear ribonucleoprotein A1

HMGB1 High mobility group protein 1

HDAC Histone deacetylase

HIF Hypoxia-inducible factor

ICB Immune checkpoint blockade

IRF1 Interferon regulatory factor 1

IR Ionizing radiation

ISCs Iron-sulfur clusters

LA Linoleic acid

LUAD Lung adenocarcinoma

LPCAT3 Lysophosphatidylcholine Acyltransferase 3

MTDH Metadherin

MT1G Metallothionein-1G

MTs Metallothioneins

MitoQ Mitoquinone

MT Mito-TEMPO

MUFAs Monounsaturated fatty acids

NF2 Neurofibromatosis type 2

NADPH Nicotinamide adenine dinucleotide phosphate

NSCLC Non-small-cell lung cancer

OS Overall survival

NOXs NADPH oxidases

PC Prostate cancer

PDAC pancreatic ductal adenocarcinoma

PUFAs polyunsaturated fatty acids

PRDXs Peroxiredoxins

PLOH Phospholipid alcohol

PLOOHs Phospholipid hydroperoxides

PLs Phospholipids

PSTK Phosphoseryl-tRNA kinase.

PCA Pancreatic cancer

RSL3 Ras-selective lethal 3

ROS Reactive oxygen species

STAT3 Signal transducer and activator of transcription 3

SIRT6 Sirtuin 6

xCT SLC7A11

SREBP Sterol regulatory element-binding protein
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STING1 stimulator of interferon response cGAMP interactor 1

SAS Sulfasalazine

BH4 Tetrahydrobiopterin

TF Transferrin

TFRC Transferrin receptor

TGF-β1 Transforming growth factor-beta1

TCA Tricarboxylic acid

TNBC Triple-negative breast cancer

Tyro3 Tyrosine-protein kinase receptor

USP7 Ubiquitin-specific protease 7
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