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Abstract
Ovarian cancer is the most lethal gynaecological cancer, and resistance of platinum-
based chemotherapy is the main reason for treatment failure. The aim of the present 
study was to identify candidate genes involved in ovarian cancer platinum response 
by analysing genes from homologous recombination and Fanconi anaemia pathways. 
Associations between these two functional genes were explored in the study, and 
we performed a random walk algorithm based on reconstructed gene-gene network, 
including protein-protein interaction and co-expression relations. Following the ran-
dom walk, all genes were ranked and GSEA analysis showed that the biological func-
tions focused primarily on autophagy, histone modification and gluconeogenesis. 
Based on three types of seed nodes, the top two genes were utilized as examples. 
We selected a total of six candidate genes (FANCA, FANCG, POLD1, KDM1A, BLM 
and BRCA1) for subsequent verification. The validation results of the six candidate 
genes have significance in three independent ovarian cancer data sets with platinum-
resistant and platinum-sensitive information. To explore the correlation between 
biomarkers and clinical prognostic factors, we performed differential analysis and 
multivariate clinical subgroup analysis for six candidate genes at both mRNA and 
protein levels. And each of the six candidate genes and their neighbouring genes with 
a mutation rate greater than 10% were also analysed by network construction and 
functional enrichment analysis. In the meanwhile, the survival analysis for platinum-
treated patients was performed in the current study. Finally, the RT-qPCR assay was 
used to determine the performance of candidate genes in ovarian cancer platinum 
response. Taken together, this research demonstrated that comprehensive bioin-
formatics methods could help to understand the molecular mechanism of platinum 
response and provide new strategies for overcoming platinum resistance in ovarian 
cancer treatment.
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1  | INTRODUC TION

Ovarian cancer is the leading killer of gynaecological malignancy 
in women worldwide. In spite of debulking surgery and medical 
treatment of platinum, drug resistance is still the stumbling block 
to ovarian cancer therapeutics.1 Patients who have evidence of 
disease progression on primary therapy or after a treatment-free 
interval of less than 6 months are considered platinum resistant, 
and those with evidence of relapse or develop progression after a 
treatment-free interval of exceeding 6 months can be called plat-
inum sensitive.2 After standard treatment, although more than 
70% of patients respond to chemotherapy with cisplatin, a large 
number of patients will relapse and develop drug resistance within 
two years, with a survival rate of about 40%.3 Hence, exploring 
the molecular mechanisms underlying chemoresistance and iden-
tifying risk signatures are the key strategy to accelerate advance-
ment in ovarian cancer therapy.4

Resistance to platinum-based treatment can be intrinsic or 
acquired, and it is caused by a variety of mechanisms in ovar-
ian cancer.5 The researchers have performed a large amount of 
low-throughput experiments to analyse the resistance-related 
mechanism and identify potential biomarkers for overcoming 
platinum resistance in ovarian cancer. For example, Wu et al dis-
covered that Akt inhibitor SC66 was used in a NOD-SCID xe-
nograft mouse model and a group of eight ovarian cancer cell 
lines. They found that SC66 regulated collagen type XI alpha 1 
chain by inhibiting Akt/mTOR signalling, and it could enhance 
cell sensitivity to drugs and inhibit proliferation/invasion.6 An 
additional study by Hu et al discovered that interleukin 17 re-
ceptor B (CRL4) was significantly increased in cisplatin-resis-
tant ovarian cancer cells, and knocking down CRL4 with shRNA 
reversed cisplatin resistance in ovarian cancer cells. CRL4 has 
been proved to play an important role in apoptosis and drug re-
sistance by targeting baculoviral IAP repeat containing 3 (BIRC3) 
in ovarian cancer cells.7 However, these studies were performed 
at the low-throughput level for identifying single gene signature. 
Moreover, it remains unclear whether the mechanism is universal 
in all patients, because of the small number of tissue samples in 
researches.8,9 Therefore, it is necessary to employ a large num-
ber of tissue samples and integrate multiple sets of data for anal-
ysis in the research.

Homologous recombination (HR) and Fanconi anaemia (FA) are 
two of the major DNA repair pathways, and some researches have 
indicated that both of these pathways are related to platinum re-
sistance in ovarian cancer. It is well known that the main target of 
platinum agents is DNA, which mainly plays a role in DNA dam-
age, thereby activating the DNA damage response.10 However, if 
DNA fails to repair the damage, tumours or activated cell death will 
occur. Moreover, changes in these repair pathways will contribute 
to the tumour sensitive or resistant to platinum agents.11 HR is an 
error-free DNA repair system that is activated in the case of DNA 
double-stranded damage.12 In the past few years, more than 50% of 
patients with high-grade serous ovarian cancer have been proven to 

have defects in HR repair. Because of the existence of this defect, this 
tumour type has a very high sensitivity to platinum agents.13 Studies 
have shown that patients with HR deficiency have clinical manifes-
tations of visceral recurrence, slightly younger age at diagnosis and 
better sensitivity to platinum agents.14 As for FA, it is a hereditary 
disease that can cause cancer susceptibility. FA pathway facilitates 
the monoubiquitination of the complementation of FA complemen-
tary group D2-FA complementary group I heterodimer, thereby ac-
tivating DNA damage response. Previous studies have revealed that 
the mutations in the FA gene result in the cell being highly sensitive 
to platinum agents.15 A recent research demonstrated that acquired 
disruption of FA pathway bought about chromosomal instability and 
hypersensitivity to cisplatin in ovarian tumours. Destruction of this 
pathway could create cisplatin sensitivity, and recovery of it would 
generate cisplatin resistance.16 However, the inner associations be-
tween HR and FA pathways, and key risk genes within these func-
tions were not explored.

Recently, many researches were performed based on global 
network to explore the complex biological mechanism involved in 
ovarian cancer. Through public databases, Wang et al obtained the 
data on lncRNAs, mRNAs and miRNAs with differential expression, 
compared with normal ovarian tissue and epithelial ovarian can-
cer. They used the bioinformatics method to predict interactions 
of lncRNAs, mRNAs and miRNAs and then built the LINC00284-
related ceRNA network. Based on biological function analysis, they 
found that the LINC00284-related ceRNA network was related to 
epithelial ovarian cancer carcinogenesis, and finally confirmed that 
LINC00284 was a new potential prognostic biomarker for epithe-
lial ovarian cancer.17 In another study, authors downloaded three 
sets of expression profiles from the Gene Expression Omnibus 
(GEO) database, containing information on ovarian cancer tissues 
and normal tissues. A total of 190 differentially expressed genes 
were identified. The protein-protein interaction (PPI) network 
was constructed by the identified differentially expressed genes. 
Ultimately, the study identified the 17 most closely related genes 
among differentially expressed genes from the PPI network.18 
Network-based random walk algorithm was developed to identify 
candidate genes by use of a global network distance measure.19 
This algorithm not only provides an improved method for risk gene 
selection but also added core seed genes integration framework in 
global mechanism exploration.

In this study, we first acquired the HR-related pathway genes and 
FA-related FANC-BRCA pathway genes in the Molecular Signatures 
Database (MsigDB) and classified these genes into three types, in-
cluding HR only gene(HO-G), HR/FA common gene (HFC-G) and 
FA only gene (FO-G). Secondly, we randomly walked three types of 
genes and seed nodes in the complex disease-specific gene-gene 
network to optimize risk genes. According to the random walk re-
sults, the top two genes from each seed node were selected as in-
stances of candidate genes' verification analysis. Finally, a total of 
six candidate genes were analysed and verified to different degrees 
in multiple databases. Notably, the quantitative real-time poly-
merase chain reaction (RT-qPCR) assay was performed to verify the 
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differential expression of mRNA levels in cisplatin-resistant and cis-
platin-sensitive ovarian cancer cell lines.

2  | MATERIAL S AND METHODS

2.1 | Publicly expression data sets and signature 
genes

The expression data sets were downloaded from the public data-
base, TCGA database (https://portal.gdc.cancer.gov/) and GEO da-
tabase (https://www.ncbi.nlm.nih.gov/gds/). The TCGA database 
covers the molecular characteristics of more than 20,000 primary 
cancers. It analyses and provides genome sequence, expression, 
methylation and copy number variation data of more than 11 000 
individuals in redundant 30 different types of cancer.20 The expres-
sion matrix with ovarian tumour type was directly obtained TCGA 
database to construct the ovarian cancer-specific co-expression 
network.

The GEO database archives microarrays and other forms of 
high-throughput functional genomics data. We searched for the 
keyword ‘ovarian cancer’ in it to obtain relevant studies with plat-
inum-resistant and platinum-sensitive information. The inclusion 
criteria included: (a) The number of samples was not less than 8, and 
after grouping, each group of samples was no <4; (b) the sample was 
treated with platinum and did not undergo neoadjuvant chemother-
apy; and (c) the classification of the sample was reliable. (The classi-
fication method had literature support.)

And finally, the three GEO data sets were screened out as valida-
tion sets. The access number of three GEO data sets was GSE45553, 
GSE51373 and GSE15622. The normalized expression data in a se-
ries matrix format and relevant clinicopathological information were 
retrieved from GEO. GSE45553 had 8 samples, including 4 plati-
num-resistant samples and 4 platinum-sensitive samples. GSE51373 
had 28 samples, including 12 platinum-resistant samples and 16 
platinum-sensitive samples. GSE15622 contained 69 samples, of 
which 33 patients used carboplatin, 18 sensitive samples and 15 
resistant samples. The probe set without specific gene annotation 
was filtered for each sample. For all the expression data, the aver-
age expression value was calculated as the final value for duplicated 
samples. The HR genes and FA-related genes were obtained from 
the C2 class of MsigDB v7.0 (https://www.gsea-msigdb.org/gsea/
msigd b/genes ets.jsp).

2.2 | The integrated complex network

We integrated the PPI network and ovarian cancer co-expression net-
work to form the complex network. The data of PPI networks21 were 
obtained from previously contained 12 databases, including BioGRID, 
DFCI_NET_2016, HI-II network, HPRD, InnateDB, INstruct, IntAct, 
KinomeNetworkX, MINT, PhosphositePlus, PINA and SignaLink2.0. In 
addition, we constructed the integrated networks with the interaction 

from at least two databases. This PPI network contained 15 913 gene 
nodes and 256 197 interaction edges. We further constructed the co-
expression network based on the TCGA ovarian cancer data set. For 
each gene pair, we calculated the Spearman correlation value and set 
the absolute 0.6 as the cut-off. Then, the ovarian cancer-specific co-
expression network was formed which contained 11 105 gene nodes 
and 173 488 co-expression edges. The final integrated network con-
tained 15 913 nodes and 429 685 edges.

2.3 | Random walk algorithm based on 
integrated network

Based on the global combined network which contained both PPI in-
teraction and co-expression relations, we further performed a global 
risk impact analysis to optimize mRNAs by using the random walk 
algorithm. The random walk algorithm was developed and utilized 
for multiple types of disease mechanism analysis and displayed more 
advantages in risk or prognostic genes identification19,22,23 on the 
basis of the global network. Based on the reconstructed network 
mentioned above, the functional genes from HR/FA pathways were 
regarded as seed nodes. Considering the difference between these 
two functions, we, respectively, annotated each of the three types 
of genes (HO-G, HFC-G and FO-G) into this global network and the 
corresponding annotated genes were treated as seed nodes. The 
random walk algorithm was then used to evaluate the global risk im-
pact of seed nodes on each component as follows:

where W is the column-normalized adjacency matrix of the global inte-
grated network, which consisted of 0 and 1. Pt was a vector, in which a 
node in the global network held the probability of finding itself in this 
process up to step t. The initial probability vector P0 was constructed in 
such a way, where equal probabilities were assigned to all seed nodes 
and the sum of their probabilities was equal to 1. Additionally, the re-
start of the walker at each step was the probability r (r = .7). When 
the difference between Pt and Pt+1 fell below 10−6, the probabilities 
reached a steady state. Finally, each gene in the global network was 
given a score according to the values in the steady-state probability 
vector P∞. In this study, the random walk process was performed three 
times to, respectively, obtain different optimization order for all genes.

2.4 | Enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis was performed with GSEA function 
in clusterProfiler R package.24 The ordered gene list after random 
walk algorithm was treated as an input file, which reflected the 
comprehensive impact of seed nodes based on network topology. 
And false-discovery rate adjusted P values were calculated by using 
Benjamini-Hochberg correction.

P
t+1

= (1 − r)WP
t
+ rP

0,

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
http://GSE45553
http://GSE51373
http://GSE15622
http://GSE45553
http://GSE51373
http://GSE15622
https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp
https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp
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2.5 | Oncomine analysis

Oncomine (www.oncom ine.org) is a database with powerful func-
tions for analysing expression differences, which includes 715 
gene expression data sets from 86 733 cancer tissues and normal 
tissues.25 In this study, TCGA, Yoshihara, Adib, Bonome, Welsh, 
Hendrix and Lu Ovarian26-32 were used to analyse the differential 
expression of the six candidate genes. The raw data downloaded 
from the Oncomine database were plotted as box plots using 
GraphPad Prism 7, and the P < .05 was considered to be signifi-
cantly different.

2.6 | UALCAN analysis

UALCAN (http://ualcan.path.uab.edu/) is a database for deep min-
ing of TCGA and Clinical Proteomic Technology Assessment for 
Cancer data, which can be utilized to analyse gene or protein ex-
pression levels and correlations.33 UALCAN allows querying the 
expression pattern of the gene between tumour and normal tis-
sues. It can also analyse the relative expression in different can-
cer stages, different populations and tumour subgroups and other 
clinicopathological features. In this study, we employed the analy-
sis function of the UALCAN database to compare the grades and 
other clinical features for the six candidate genes at both mRNA 
and protein levels.

2.7 | cBio Cancer Genomics Portal analysis

The cBio Cancer Genomics Portal (c-BioPortal) (http://cbiop ortal.
org) is an open-access resource for interactive exploration of multi-
ple cancer genomics data sets.34 In the TCGA PanCancer Atlas study, 
we searched the parameters of mutations, CNV and mRNA expres-
sion and then performed an in-depth analysis of the six candidate 
genes. The Network tab visualized the interaction network of the 
six candidate genes and their neighbouring genes. We also selected 
the neighbouring genes with a mutation frequency greater than 
10% for enrichment analysis using DAVID webtool (https://david.
ncifc rf.gov/home.jsp). And the GO biological process (BP) and KEGG 
were considered in enrichment analysis. Cytoscape (version 3.5.1) 
was utilized to build and visualize the gene-function networks of en-
richment analysis results by DAVID.

2.8 | KM-Plotter database

Kaplan-Meier Plotter (KM-Plotter) database (http://kmplot.com/
analy sis/) is widely used to analyse the clinical effects of individual 
genes on the survival rate of different cancer types, mainly for the 
survival discovery and validation of meta-analytic markers.35 We 
explored the research on ‘ovarian cancer’ in the database. In this re-
search, we analysed the clinical effects of both overall survival and 

disease-free survival for six candidate genes. It is worth noting that 
we compared the survival analysis of all patients in the study with 
those who had undergone platinum-based chemotherapy. In all sur-
vival analysis, we considered P < .05 as a significant result.

2.9 | Cancer cell lines and culture

Human ovarian cancer cell line A2780 and cisplatin-resistant 
cell line A2780DDP were purchased from Shanghai Chuanqiu 
Biotechnology Co., Ltd. The A2780 and A2780DDP cell lines were 
cultured in RPMI (Beijing Labgic Technology Co, Ltd) 1640 with 
10% foetal bovine serum in a humid incubator containing 5% CO2 
at 37°C.

2.10 | RT-qPCR

The mRNA expression of candidate genes of the human ovarian 
cancer cell line (A2780 and A2780DDP) was determined by RT-
qPCR. The total RNAs were isolated by nucleic acid purification 
kit (AxyPrepTM Multisource Total RNA Miniprep Kit; Corning 
Life Science Co., Ltd) according to the manufacturer's instruc-
tions. One milligram of RNA was synthesized to cDNA using a 
Transcriptor First Strand cDNA Synthesis Kit (Cat. No. 04 879 
030 001; RocheMolecular Systems, Inc). To quantify mRNA ex-
pression, qPCR was performed with the StepOnePLusTM Real-
Time PCR System (Applied Biosystems) and SYBR-Green assay kit 
(Roche Diagnostics Gmbh) following the manufacturers' instruc-
tions. GAPDH was used as an internal control. Each of the 40 PCR 
cycles consisted of 10 min of pre-denaturation as well as 15s of 
denaturation at 95°C and 1 min of annealing and extension at 
60°C. The primer sequences are provided in Table S1. We calcu-
lated the level of expression of six candidate genes in the cells by 
the 2−ΔΔCT method.

3  | RESULTS

3.1 | Optimization of candidate genes based on HR/
FA function and integrated network

To investigate platinum resistance in ovarian cancer, 56 genes of 
the FA-associated genes and 53 genes of HR-associated genes 
were extracted and intersected. As a result, 15 of these genes 
shared by FA and HR were regarded as HR genes (HFC-G), indicat-
ing the close relationship between these two functions. Forty-one 
genes were only associated with FA-associated genes, but not with 
HR (FO-G), and 38 genes were reversed (HO-G). Furthermore, we 
integrated the PPI network from 12 databases and gene co-ex-
pression network calculated based on TCGA data set (see Section 
2). The robustness of PPI interactions was investigated using inte-
grated networks with the interaction from at least two databases. 

http://www.oncomine.org
http://ualcan.path.uab.edu/
http://cbioportal.org
http://cbioportal.org
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
http://kmplot.com/analysis/
http://kmplot.com/analysis/
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Finally, these three types of genes were, respectively, regarded as 
seed genes and annotated into the integrated network. The ran-
dom walk algorithm was performed three times to select the can-
didate genes (see Section 2). And detailed random walk results are 
provided in Table S2. The overall workflow of this study is shown 
in Figure 1.

3.2 | GSEA functional analysis of candidate genes

Each gene involved in the network scored from 0 to 1 after the ran-
dom walk, suggesting the association with seed functions. To fur-
ther understand the biological functions driven by seed nodes, all 
genes were ranked in descending order and then the genes with a 
score of 0 were eliminated. Functional analysis of BP and KEGG to 
the ordered gene using GSEA analysis was subsequently performed. 
As shown in Figure 2A, the result revealed that three types of or-
dered genes were all enriched in many important BP terms, including 
autophagy, autophagy mechanism, histone modification and active 
regulation of catabolic processes. These biological functions are 
closely related to the examination of platinum resistance in ovar-
ian cancer.36 As shown in Figure 2B, the result of KEGG, there were 
many significant biological pathways from FO-G, such as inositol 
phosphate metabolism, glycolysis/gluconeogenesis, cysteine and 
methionine metabolism. Some researchers have studied the plati-
num resistance of ovarian cancer from the perspective of glucose 
metabolism and found that the glucose metabolism pathway has an 

important effect on overcoming platinum resistance of ovarian can-
cer.37 The similar KEGG results were also observed for HFC-G and 
HO-G (see Figure S1).

3.3 | Independent validation of candidate genes in 
GEO database

Three independent GEO validation sets with available information of 
platinum response (see Section 2) were obtained to test the perfor-
mance of the candidate genes from three types of seed nodes. We 
calculated the –log(P) mean of the three types of candidate genes in 
each data set, respectively. Based on the average of the three sets 
of data sets, we comprehensively obtained the average again. It can 
be seen from Figure S3 that the top ten genes all displayed good 
effects. The results of the genes ranked 1, 2, 4, 8 were significant, 
and the scores of the 5th and 6th genes were close to meaningful. 
As the good results were provided with the top two genes, we took 
the top two genes from three types of seed node as examples for the 
subsequent verification of candidate genes.

FA complement group A (FANCA), FA complement group G 
(FANCG), DNA polymerase delta 1 (POLD1), lysine demethylase 1A 
(KDM1A) human RecQ helicase (BLM) and breast cancer suscepti-
bility gene 1 (BRCA1) were the these six candidate genes, and the 
detailed results are shown in Figure 2C-E. It was recognized that 
compared with the resistant group, the expression level of the six 
candidate genes was increased in the sensitive group, indicating that 

F I G U R E  1   The overall workflow
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these candidate genes were platinum-sensitive genes. Additionally, 
we plotted the direct interaction network for two genes, FANCA and 
POLD1, as an example. As shown in Figure 2F,G, the most interaction 

genes of FANCA and POLD1 were also the seed genes. Therefore, 
these seed genes produced more impacts on each other from both 
co-expression relations and PPI interactions.

F I G U R E  2   Functional analysis and verification of six candidate genes. (A) Enrichment analysis results of BP, (B) enrichment analysis 
results of FO-G KEGG pathway. (C) FANCA and FANCG in the verification set GSE45553 and GSE51373, (D-E) POLD1, KDM1A, BLM and 
BRCA1 in the verification set GSE15622, GSE51373 and GSE45553, and PPI direct interaction network of FANCA (F) and POLD1 (G)

TCGA Bonome Yoshihara Adib Welsh LU Hendrix

BLM 3.95E-6 1.31E-5 5.42E-8 1.50E-2 4.35E-4 4.78E-2 1.31E-7

BRCA1 6.00E-3 2.00E-3 8.21E-5 - - - -

FANCA 7.55E-5 2.28E-7 2.76E-10 1.50E-2 1.01E-6 - 1.42E-2

FANCG 1.43E-4 1.00E-3 3.10E-5 2.50E-2 - - -

KDM1A 8.51E-5 2.14E-8 - - - - -

POLD1 4.92E-7 1.98E-4 3.74E-10 4.0E-2 1.01E-6 1.19E-2 -

TA B L E  1   Six candidate genes' 
transcription in Oncomine database

http://GSE45553
http://GSE51373
http://GSE15622
http://GSE51373
http://GSE45553
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3.4 | mRNA- and protein-level differential 
expression analysis of candidate genes

The differential expression analysis for the six candidate genes 
was employed by the Oncomine and UALCAN databases. A total 
of seven available studies were in the Oncomine database, and 
distinct studies have been conducted for different these genes. All 
the results are shown in Table 1. In detail, BLM was overexpressed 
in ovarian cancer tissues in the seven studies (see Figure 3). BRCA1 
showed significant differences between ovarian cancer tissues 
and normal tissues in TCGA, Bonome and Yoshihara. FANCA 
was overexpressed in six databases other than LU, and POLD1 
was highly expressed in in cancer tissues in six databases other 
than HENDRIX. According to Table 1, the expression of FANCG 
was significantly different in TCGA, Bonome, Yoshihara and Adib 
Ovarian. KDM1A up-regulated in ovarian cancer tissues of TCGA 
and Bonome, and the difference in Bonome was the most obvious, 
with the P value of 2.14E-8.

Furthermore, by using the UALCAN database, we performed a 
multivariate clinical pathology subgroup analysis, and the detailed 
results of four candidate genes are demonstrated in Figure 4. Taking 
KDM1A as an example, the protein expression level of KDM1A in 
ovarian cancer tissues was significantly higher than that in normal 
tissues (Figure 4C). As shown in Figure 4A, there were significant 
differences between the three groups in the stage. It could not be 
confused from Figure 4B that the two groups were significantly dif-
ferent in the ethnic grouping. And compared with the 80-100-year-
old group, KDM1A mRNA expression was decreased at the age of 
21-40 years old (Figure 4D). In conclusion, the differential expression 

analysis from both mRNA and protein levels indicated that these can-
didate genes are important biomarkers for predicting unfavourable 
biological behaviour in ovarian cancer formation and development.

3.5 | Mutation-driven network and survival 
analysis of candidate genes

Next, we made a thorough inquiry to the bio-interaction network and 
survival analysis of the six candidate genes. In the current study, the 
‘network’ function in the c-BioPortal database was used to screen 
out neighbouring genes which mutations exceeded 10% of the six 
candidate genes, whereas BP and KEGG enrichment analyses were 
also assessed for these genes by DAVID software (Tables S3 and S4). 
The results showed that three of the candidate genes (BLM, BRCA1 
and KDM1A) were mainly located in nucleosome tissues, and they 
were mainly involved in chromatin assembly, chromatin assembly or 
disassembly and nucleosome assembly. FANCA, FANCG and POLD1 
were mainly involved in DNA metabolism processes (see Figure 5A). 
In the KEGG pathway analysis, there were more than three genes 
enriched in these pathways in mismatch repair, DNA replication, 
Fanconi anaemia pathway, systemic lupus erythematosus and alco-
holism (see Figure 5B).

To assess the association between candidate genes and the 
prognosis of ovarian cancer patients, we utilized the KM-Plotter 
database to analyse all ovarian cancer patients and patients with 
platinum. As shown in Figure 5, we observed that patients with 
overexpression BRCA1 and FANCA had better overall survival. After 
platinum treatment, their significance P value was higher than the 

F I G U R E  3   BLM transcription in Oncomine database
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overall patient with ovarian cancer in the database. Patients with 
high FANCG expression had significantly higher overall survival than 
patients with low expression. Patients who overexpressed FANCG 
treated with platinum had lower overall survival than all patients in 
the database, and the P value was .00012. Overexpression of BLM 
after platinum treatment had higher overall survival than patients 
with low expression with the P value of .032. By comparison, these 
four candidate genes were found to have better overall survival in 
patients with overexpression. Regarding disease-free survival, we 
can discover from Figure S2 that patients treated with platinum ex-
pressing FANCA, FANCG and BLM had more significant specific P 
values than overall patients with ovarian cancer.

3.6 | Low-throughput RT-qPCR analysis of 
candidate genes

Ultimately, to further verify the expression difference of the six 
candidate genes in ovarian cancer platinum response, we tested 
the mRNA levels of six candidate genes in ovarian cancer cell lines, 
A2780 and A2780DDP by RT-qPCR (see Section 2). As shown in 
Figure 6, the six candidate genes all displayed meaningful results 

in RT-qPCR assay. For example, compared with two cell lines, BLM 
was overexpressing in A2780, and the P value was 1.67E-4. BRCA1 
expression was lower in A280DDP than A2780, with the P value of 
4.17E-2. FANCA's result was the most meaningful, and the P value 
was 1.49E-6. KDM1A expression in A2780DDP was down-regulated 
compared with A2780, and the P value was 1.03E-4. The P value 
of FANCG was 1.07E-4. As for POLD1, decreased expression was 
significantly in A2780DDP, with the P value of 1.64E-2. The results 
of the low-throughput experiment confirmed that these six candi-
date genes were all highly expressed in platinum-sensitive cell lines, 
which is highly consistent with our previous results from GEO vali-
dation. This suggests that candidate genes are expected to become 
new biomarkers for overcoming platinum-resistant issues for ovar-
ian cancer.

4  | DISCUSSION

Platinum is the main chemotherapy for advanced ovarian cancer; 
however, the drug resistance still deeply afflicts most patients and 
clinicians. Therefore, it is urgent to overcome the platinum-based 
chemotherapy resistance of ovarian cancer and identify platinum 

F I G U R E  4   Four candidate genes' protein and transcription in multivariate clinicopathological subgroup analysis using UALCAN. (A-
D) protein and mRNA expression of KDM1A in normal and ovarian cancer samples with different stages, races and ages. (E-G) protein 
expression of BLM in normal and ovarian cancer samples with different stages and races. (H) mRNA expression of BRCA1 in normal and 
ovarian cancer samples of different ages. (I-K) protein and mRNA expression of POLD1 in normal and ovarian cancer samples with different 
stages, races and grades. *P < .05; **P < .01; ***P < .001
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F I G U R E  5   Enrichment analysis of neighbouring genes with mutations greater than 10% and prognosis analysis. The gene-function 
network (A) BP and (B) KEGG. (C-M) KM-Plotter of candidate genes in all ovarian cancer patients and platinum-treated patients
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response-related biomarkers. In this study, considering that HR and 
the FA-related FANC-BRCA pathway have been previously exten-
sively quested to be associated with ovarian cancer platinum re-
sponse mechanisms, we utilized these two pathways as the origin. 
These genes were further classified into three groups for subse-
quent network optimization. To date, we provided high-throughput 
network optimization algorithms to analyse platinum-response stud-
ies in ovarian cancer.

We performed the random walk algorithm based on these three 
types of genes as seed genes, integrated network (including PPI and 
co-expression relationships) and established three scoring matrices 
for candidate gene selections. The GSEA functional analysis was em-
ployed for enrichment analysis of three types of genes. And it is grat-
ifying that the GSEA enrichment results (including BP and KEGG) for 
three types of random walk results were consistent, which were also 
related to platinum response in ovarian cancer.

Through the scoring matrix, we screened out the three types 
of seed nodes as candidate genes and detected the differential ex-
pression in three data sets with ovarian cancer platinum response 
information from GEO database. The top ten genes revealed reliable 
results to varying degrees. From Figure S3, it was not difficult to 
observe that the first and second genes displayed a rising polyline, 
whereas the third gene had a lower biological significance than the 
top two, showing a declining polyline. Therefore, we served the top 
two genes in the three scoring matrices as instances. And the six 

candidate genes were selected for verification and analysis. The re-
sults obtained in the current study demonstrated that expression 
levels of the six candidate genes were different in the most valida-
tion set, unfortunately, because FANCA and FANCG had no expres-
sion values in GSE15622 and not verified in this data set.

Many researchers have studied in six candidate genes to vary-
ing degrees in ovarian cancer. BRCA1 is one of the most common 
ovarian cancer genes in the process of HR repair of double-stranded 
DNA breaks.38 Increasing numbers of studies have demonstrated 
that BRCA1 mutations increase the risk of ovarian cancer.39 The 
study has pointed out that serous ovarian cancer was sensitive to 
platinum because of a functional defect caused by insufficient 
BRCA1 levels. Patients lacking BRCA1 had a better chemotherapy 
response; however, reactivation of BRCA1 mutations might be the 
basis of platinum resistance in end-stage patients.40 Genetic and 
functional evidence has suggested that BRCA1 is the major determi-
nant of platinum response in HR DNA repair systems, and functional 
HR systems and intact BRCA1 functions are usually associated with 
platinum chemotherapeutic agents and PARPi enzyme inhibitors 
that in HGSOC cells.41 Giovanna and Massimo stated that a back 
mutation in the BRCA1 mutant gene or a deletion in the gene could 
restore the protein reading frame, thereby producing a functional 
protein and regaining HR levels, thus making the cell resistant to cis-
platin and PARP inhibitors.11 In addition, Ganzinelli et al performed 
a univariate analysis in 171 cases of ovarian tumours, which showed 

F I G U R E  6   RT-qPCR analysis of six candidate genes in the chemosensitive ovarian cancer cell lines (A2780) and A2780 cisplatin-resistant 
cell lines (A2780DDP)

http://GSE15622
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that the increased expression of BRCA1 was associated with pro-
gression-free survival. In patients with BRCA1 overexpression, it 
can be observed that there is an improvement in progression-free 
survival in patients treated with platinum compared with patients 
treated with platinum and paclitaxel. However, patients with higher 
BRCA1 levels who were treated with platinum and paclitaxel had a 
longer overall survival compared with patients who were only given 
platinum.42

There is increasing evidence that the resistance to cross-link-
ing agents (such as cisplatin) is related to the functional status of 
the FA/BRCA pathway in cancer cells. The different absence of 
FA core components makes the cells have distinct sensitivities 
to cross-linking agents.43 FANCA is the most mutated gene in FA 
cases, and FANCA acts as a multifunctional protein in the physio-
logical role of FA/BRCA1 pathway repair interchain cross-linking 
and HR.44 The researchers found that carriers of FANCA muta-
tions were significantly associated with breast and ovarian can-
cer risks.45 In the study, the expression of 11 genes involved in 
the DNA repair pathway, including FANCA, was detected by RT-
qPCR. The results showed that FANCA expression was higher 
in stage I ovarian cancer than in stage III. Almost all DNA repair 
genes have low expression in stage III, indicating that as the dis-
ease progressed, while maintaining the metastatic potential, the 
different regulation of these genes leads to reduced expression.42 
In the research of Kramer et al, it was shown that by jointly in-
hibiting DNA repair and cell cycle control mechanisms, HSP90 
inhibitor ganetespib blocked the degradation of FANCA and the 
imbalance of nuclease DNA2. On this basis, ganetespib enhanced 
the anti-tumour efficacy of carboplatin, thereby triggering over-
all chromosomal destruction, abnormal mitosis and cell death in 
ovarian cancer cells.46 It has been reported that heterozygous car-
riers of FA gene mutations will not cause FA phenotype, but may 
increase the risk of cancer. In addition to mutations, the epigenetic 
silencing of wild-type FA gene expression appears to be important 
in certain cancer types. The report pointed out that FANCG and 
FANCA heterozygous mutations were susceptible to haematolog-
ical malignancies and pancreatic cancer. And the lack of FANCA 
and FANCG expression was also associated with these two spo-
radic cancers.47 The FANCG gene mutation is the third most com-
mon type of FA mutation.48 FANCG and HR also have a certain 
functional relationship, and FANCG inactivation will reduce HR 
repair function.49

BLM is one of the genes responsible for Bloom syndrome and 
belongs to the RecQ family of DNA helicases.50 The enzyme is able 
to participate in HR and is a key way to repair double-stranded DNA 
breaks.51 BLM mutations can cause genome instability and increase 
the risk of cancer.52 Many reports have indicated that nonsense mu-
tations in the BLM gene can increase the risk of prostate cancer.53 
Not only that, but BLM expression also has a certain correlation with 
ovarian cancer. Recently, studies have shown that increased expres-
sion of BLM is associated with platinum in ovarian cancer. Birkbak 
et al showed that the average expression level of BLM in carbopla-
tin-sensitive ovarian cancer was significantly higher from an ovarian 

cancer gene expression data set. And loss of RAD51 expression at 
the site of DNA damage made BLM overexpressing cells sensitive 
to cisplatin. Ultimately, the result represented that BLM was one of 
the potential predictive biomarkers for platinum sensitivity in ovar-
ian cancer.40

KDM1A (also known as LSD1) is the first histone demethylase 
to be discovered.54 As an epigenetic regulator, it regulates normal 
cell differentiation, gene activation, tumorigenesis and progres-
sion.55 Several articles have reported that the biological behaviour 
of KDM1A has a strong correlation with various types of cancers.56 
Studies on ovarian cancer have indicated that KDM1A is overex-
pression in tumour tissue. It is associated with FIGO stage or lym-
phatic metastasis, and patients with lower expression have a shorter 
overall survival time.57,58 Furthermore, KDM1A plays an important 
role in proliferation, invasion and metastasis in ovarian cancer.56,59,60 
Some studies have suggested that inhibiting the chemical activity 
of KDM1A may be a candidate method for cancer treatment.57 For 
example, the combination of trichostatin A and decitabine inhibits 
KDM1A expression and weakens the migration and invasion of ovar-
ian cancer cells.61 Previous reports have pointed out that the reduced 
expression of KDM1A could prompt autophagy activation.62 S2101, 
one of the most effective KDM1A inhibitors, can suppress ovarian 
cancer cell viability and stimulate apoptosis and autophagy by reg-
ulating the expression level of signalling pathways.63 Therefore, ac-
cording to our research and previous evidence, KDM1A may be a 
novel candidate signature for the mechanism of platinum response 
in ovarian cancer.

POLD1 belongs to the family of human DNA polymerases, with 
a 3′-5′ exonuclease activity.64 Some studies publicly have proved 
that POLD1 is involved in the regulation of cell proliferation and cell 
cycle.65 And it plays a central role in chromosomal DNA replication, 
repair and recombination.66 Through the molecular phenotype of 
DNA hypermutation, germline or somatic mutation of POLD1 can 
cause DNA repair defects and carcinogenesis.67 Previous reports 
have pointed out that POLD1 genetic mutations are inseparable 
from colorectal cancer,68 endometrial cancer69 and epithelial can-
cer.70 A study of platinum-based chemotherapy in non-small cell lung 
carcinoma showed that continuous signals were observed in POLD1 
in the nucleotide excision repair pathway. SNPs in POLD1 were sig-
nificantly associated with overall survival and neutropenia.71 It was 
proposed that POLD1 was directly or indirectly related to platinum 
resistance in mesothelioma.72 It has been reported that POLD1 is 
expressed in a variety of tumour cells, such as breast cancer,73 he-
patocellular carcinoma,74 head and neck cell cancer75 and cervical 
cancer.76 As for oesophageal squamous cell carcinoma, POLD1 me-
diated the chemical resistance to cisplatin through the regulation of 
HSP90/ERK signalling.77

We employed equal weight and random walk algorithm in com-
plex disease-specific networks so that the analysis results were not 
biased. The six candidate genes were verified in the multiple val-
idation sets, making these results more accurate. Further explo-
ration of six candidate genes revealed that the mRNA and protein 
expression levels possessed significant differences in the analysis 
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of clinicopathological factors. Notably, there were also meaningful 
relationships between these genes and both overall survival and dis-
ease-free survival. The RT-qPCR assay further confirmed that the 
expression levels of the six candidate genes in platinum-sensitive 
ovarian cancer cell line were higher than those in platinum-resistant 
cell line. Therefore, these reliable results show that our analytical 
method is of great significance in identifying platinum response bio-
markers for ovarian cancer.

However, our research still exists some limitations and disad-
vantages. The RT-qPCR assay is a sensitive, accurate test method, 
which can detect the gene expression (ie mRNA) level and perform 
quantitative analysis.78 The Western blotting is the most widely 
used experimental technique in protein expression and analysis. 
Strong specificity, high sensitivity and easy operation are its advan-
tages.79 In our research, we detected the mRNA expression level 
and did not verify the protein expression level of the six candidate 
gene in cisplatin-resistant and cisplatin-sensitive ovarian cancer cell 
lines. The two types of functional genes were used as seed nodes, 
which have certain limitations. In subsequent studies, we will in-
crease the variety of functional genes as seed nodes and examine 
the protein expression level of six candidate genes in cell lines. The 
tissues of ovarian cancer patients with platinum response infor-
mation will be collected as the research samples. We will strive to 
provide more valuable research on the mechanism of platinum re-
sponse in ovarian cancer.

5  | CONCLUSION

We applied the random walk algorithm based on reconstructed in-
tegrated network and analysed the global impact of genes from HR 
and FA functions. Besides, GSEA enrichment analysis was performed 
to evaluate the function of the three types of functional genes. The 
candidate genes were identified and further verified in the three 
data sets from the GEO database. Moreover, we also performed 
differentially expressed analysis, clinicopathological multivariate 
analysis, functional evaluation of mutation neighbouring genes and 
survival analysis for six candidate genes. Finally, the RT-qPCR assay 
was performed to further support the above findings. In conclusion, 
our research can provide new understandings of the mechanism of 
platinum response in ovarian cancer patients and identify candidate 
genes for clinical usage.
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