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1  | INTRODUC TION

Surgeons have been focused on colorectal cancer for a long time, 
and lots of scientific researches have been focused on the devel-
opment and progression of colorectal cancer. Nevertheless, there 
are some differences in aetiology between colon cancer and rectal 
cancer.1 Bailey et al2 demonstrated that the age-related incidence 
rates of rectal cancer are dramatically increased in the United States 
over the past 25 years. Also, it has been estimated that by 2030, 

22.9% of all rectal cancers will be diagnosed in patients under the 
screening age compared to 9.5% in 2010. Plus, the incidence rates 
of rectal cancer increased from 6.51 and 7.68 to 8.28 and 11.45 per 
100 000 in females and males in China, respectively.1 Therefore, it 
is meaningful to put more concentration on molecular changes to 
uncover the biological process of rectal cancer.3

Metabolic reprogramming has increasingly become a hot topic 
recently. Catabolic and anabolic metabolism is essential for can-
cer cells to ensure their energy supply and biomass synthesis by 
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Abstract
Metabolic reprogramming has become a hot topic recently in the regulation of tu-
mour biology. Although hundreds of altered metabolic genes have been reported to 
be associated with tumour development and progression, the important prognostic 
role of these metabolic genes remains unknown. We downloaded messenger RNA 
expression profiles and clinicopathological data from The Cancer Genome Atlas and 
the Gene Expression Omnibus database to uncover the prognostic role of these met-
abolic genes. Univariate Cox regression analysis and lasso Cox regression model were 
utilized in this study to screen prognostic associated metabolic genes. Patients with 
high-risk demonstrated significantly poorer survival outcomes than patients with 
low-risk in the TCGA database. Also, patients with high-risk still showed significantly 
poorer survival outcomes than patients with low-risk in the GEO database. What is 
more, gene set enrichment analyses were performed in this study to uncover signifi-
cantly enriched GO terms and pathways in order to help identify potential underlying 
mechanisms. Our study identified some survival-related metabolic genes for rectal 
cancer prognosis prediction. These genes might play essential roles in the regulation 
of metabolic microenvironment and in providing significant potential biomarkers in 
metabolic treatment.
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reprogramming their microenvironments.4–7 Previous studies8–10 
have been discussed the emerging importance role of dysregulated 
metabolism for cancer biology. However, the underlying processes 
and molecular alterations of metabolic programming in cancers 
have not been well elucidated yet, especially in rectal cancer.

In this study, we thought to focus on the important metabolic 
alterations in rectal cancer through analysing data downloaded from 
the TCGA database and validated the conclusions by the GEO da-
tabase. The significant prognostic role of metabolic genes in rectal 
cancer has been conducted in this study.

2  | METHODS

2.1 | mRNA expression profiles and clinical 
information

We downloaded mRNA expression profiles and corresponding clini-
cal information from The Cancer Genome Atlas (TCGA) database, 
which contains a total of 91 cases. We then downloaded 363 cases 
from the GEO database and obtained the gene expression matrix 
of the GSE87211 series.11 The metabolic genes were obtained from 
the GSEA website (http://softw are.broad insti tute.org/gsea/index.
jsp), downloads section. GSEA v4.0.3 for Windows and c2.cp.kegg.
v7.0.symbols.gmt were downloaded from the GSEA website for the 
further extraction analyses.

2.2 | Extraction of metabolic genes from the TCGA 
database and GEO database

Genes enriched in metabolism pathways of the KEGG database were 
utilized in this study as metabolic genes. The mRNA expression of 
metabolic genes in the TCGA database and GEO database was ex-
tracted, respectively. Then, an adjustment was given to adjust differ-
ent mRNA expression levels of metabolic genes between TCGA and 
GEO databases by ‘sva’ package12,13 in R software (version 3.6.1). 
Genes were selected as candidate metabolic genes for the follow-
ing analysis if: (a) they have the same expression pattern in TCGA 
database and the GEO database; and (b) they were listed in the met-
abolic-associated pathways.

2.3 | Identification of differentially expressed 
metabolic genes

Candidate metabolic genes have the same expression pattern both 
in the TCGA and GEO databases were selected. We utilized the 
R package ‘limma’ to screen the differentially expressed meta-
bolic genes.14 The expression of candidate metabolic genes in 
the TCGA database was used to identify differentially expressed 
metabolic genes. The screening criteria were set as |logFC| > 0.5 
and P-value < .05.

2.4 | Identification of prognostic associated 
metabolic genes

Univariate Cox regression analysis was utilized in this study to iden-
tify prognostic associated metabolic genes in the TCGA database. 
Genes with HR < 1 have better overall survival outcomes, while 
genes with HR > 1 have worse overall survival outcomes. Genes with 
P < .05 were regarded as prognostic associated metabolic genes.

2.5 | Construction of lasso Cox regression model

Prognostic associated metabolic genes screened by univariate Cox 
regression analysis were utilized to construct the lasso Cox regres-
sion model.15 Lasso Cox regression model was constructed aimed to 
calculate the risk score of every patient. The formula of risk score 
was as follows: riskscore = the sum of each coefficient of mRNA 
multiple each expression of mRNA. Patients were divided into two 
groups based on the median risk score of each patient.

2.6 | Survival analysis based on the stratification of 
low- and high-risk scores in TCGA database

Patients were divided into two groups based on the median risk 
score. Survival analysis was performed by the Kaplan-Meier method. 
Risk score curves were generated based on the risk score of each 
patient.

2.7 | Validation of TCGA survival analysis by 
utilizing data from the GEO database

In order to validate the survival data in the TCGA database, we 
downloaded survival data from the GEO database to perform 
Kaplan-Meier analysis.

2.8 | Validation of risk score in the TCGA database 
by univariate and multivariate Cox analysis

The clinicopathological characteristics and risk score were included 
in univariate and multivariate Cox regression analysis to validate 
whether the risk score can be regarded as an independent risk factor 
to predict overall survival outcome. ROC curve was used to assess 
the constructed model.

2.9 | GO and KEGG analyses by GSEA

We utilized GESA software16 (version 4.0.3, permutations was set 
as 1000) to perform GO and KEGG analyses. ftp.broadinstitute.
org://pub/gsea/gene_sets/c2.cp.kegg.v7.0.symbols.gmt and ftp.

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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broadinstitute.org://pub/gsea/gene_sets/c5.all.v7.0.symbols.gmt 
were selected as gene sets databases, respectively.

3  | RESULTS

3.1 | Extraction of metabolic genes from the TCGA 
database

We downloaded a total of 91 cases from the TCGA database. A total 
of 804 metabolic genes were extracted from the TCGA gene expres-
sion matrix, including 375 up-regulated metabolic genes and 429 down-
regulated metabolic genes. We then downloaded 363 cases from the 
GEO database and obtained the gene expression matrix of the s series.

3.2 | Identification of differentially expressed 
metabolic genes

After screening, we identified 154 differentially expressed meta-
bolic genes in the TCGA database under the screening criteria 
(|logFC| > 0.5 and the P-value < .05), including 65 up-regulated 
metabolic genes and 89 down-regulated metabolic genes. The top 
10 differentially up-regulated metabolic genes and the top 10 dif-
ferentially down-regulated metabolic genes were demonstrated in 
Table 1. The heatmaps of these top differentially up-regulated and 
down-regulated metabolic genes were demonstrated in Figure 1.

3.3 | Identification of prognostic associated 
metabolic genes

A total of 18 prognostic associated metabolic genes were 
identified, including PYGM, NOS1, DGKB, PDE7B, INPP5A, 
DGAT2, SMPD1, POLR2H, AOC3, SULT2B1, POLR1D, POLR2J, 
ACO2, GOT2, UAP1, GPD1L, MTHFD1L and ACADM. Among 
them, PYGM, NOS1, DGKB, PDE7B, INPP5A, DGAT2, SMPD1, 
POLR2H, AOC3, SULT2B1, POLR1D and POLR2J were associ-
ated with higher risks of poor overall survival outcomes, while 
ACO2, GOT2, UAP1, GPD1L, MTHFD1L and ACADM were 
associated with lower risks of poor overall survival outcomes 
(Figure 2).

3.4 | Construction of lasso Cox regression model

A total of 11 prognostic associated metabolic genes were in-
cluded in the lasso Cox regression model, including PYGM, DGAT2, 
INPP5A, POLR1D, POLR2H, DGKB, SULT2B1, SMPD1, GOT2, 
MTHFD1L and ACADM. The riskscore = 2.0420*expression of 
PYGM + 0.2823*expression of DGAT2 + 0.1504*expression of 
INPP5A + 0.0954*expression of POLR1D + 0.0876*expression 
of POLR2H + 0.0854*expression of DGKB + 0.0291*expression 
of SULT2B1 + 0.0208*expression of SMPD1-0.0449*expression 
of GOT2-0.2101*expression of MTHFD1L-0.3224*expression of 
ACADM.

Gene ConMean TreatMean LogFC P-value

Up-regulated genes

CA9 0.05829499 8.192816882 7.134843859 .033573543

CYP2S1 0.19855646 25.30546893 6.993756099 .040879028

SRM 1.25746506 21.03853542 4.064444057 .016589274

PYCR1 1.18208029 17.66674515 3.901636332 .017854753

PSAT1 1.935826165 14.78036715 2.932660796 .022172087

LDHA 6.66345163 39.9240846 2.582917745 .031392164

PAFAH1B3 3.133727225 17.60374774 2.489931092 .016589274

GPX1 9.032856135 47.70557092 2.400903613 .049687304

POLD2 3.962352605 17.59980148 2.151129981 .022172087

TSTA3 5.428126315 20.66517161 1.928675146 .038373038

Down-regulated genes

PTGS1 23.26466006 7.223703527 −1.687329518 .016589274

AOC3 30.80712967 9.283017238 −1.730598569 .019204026

UGT2A3 19.3533035 5.643672461 −1.77787368 .02553134

GPX3 32.28367394 8.139981238 −1.987707395 .020641585

CA4 44.02872034 10.31134722 −2.094212075 .035912432

CA7 27.33950795 5.604131221 −2.286424636 .016589274

ADH1C 66.74952942 11.75626673 −2.505327669 .019204026

ADH1B 27.03287165 4.085192341 −2.726238864 .016584958

CA1 151.8035669 9.806519947 −3.952320623 .016588842

CA2 209.5200422 12.62820428 −4.052366847 .016589274

TA B L E  1   The top 10 up-regulated and 
top 10 down-regulated genes
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3.5 | Validation of TCGA survival analysis by 
utilizing data from the GEO database

Kaplan-Meier analysis demonstrated that high-risk group had a 
worse overall survival outcome compared with the low-risk group 
(Figure 3A). Also, data from the GEO database showed that high-risk 
group had a worse overall survival outcome (Figure 3B).

3.6 | Validation of risk score, survival status 
distribution and heatmap of the TCGA database by 
utilizing data from the GEO database

On top of Figure 4A,B, every patient was ranked from left to right ac-
cording to the risk score. The risk score was elevated from left to right 
in both TCGA and the GEO database. Also, in the middle of Figure 4A,B, 
every patient was ranked from left to right according to the risk score. 
The distribution of the survival status of each patient has demonstrated 
accordingly. Plus, at the bottom of Figure 4A,B, the heatmaps demon-
strated the differential expression of metabolic genes in high-risk and 
low-risk groups in the TCGA database (Figure 4A) and GEO database 
(Figure 4B).

3.7 | Univariate and multivariate Cox analysis in the 
TCGA database

Univariate Cox regression analysis demonstrated that the risk score 
was associated with the overall survival of rectal cancer patients. 
With the increasing risk score, the risk of poor survival outcomes el-
evated (Figure 5A). The results of the multivariate Cox regression 
analysis showed that the risk score could be treated as an independ-
ent risk factor to predict overall survival outcome in rectal cancer pa-
tients (Figure 5B). The results of the ROC curve demonstrated that the 

F I G U R E  1   The heatmaps of differentially expressed genes. A, The heatmap of the top 10 up-regulated genes. B, The heatmap of the top 
10 down-regulated genes

F I G U R E  2   The forest plot of the prognostic related metabolic 
genes screened by univariate Cox regression analysis
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constructed predictive model has robust predictive value in predicting 
overall survival (Figure 5C).

3.8 | GO and KEGG analyses by GSEA

The results of GO analysis demonstrated that genes were mainly en-
riched in antibiotic metabolic process, arachidonic acid metabolic pro-
cess and icosanoid metabolic process (Figure 6A). The results of KEGG 
analysis showed that alpha-linolenic acid metabolism, arachidonic acid 

metabolism, drug metabolism cytochrome p450, glycerophospholipid 
metabolism, linoleic acid metabolism, metabolism of xenobiotics by 
cytochrome p450 and sphingolipid metabolism pathways (Figure 6B).

4  | DISCUSSION

The standard treatment for rectal cancer remains the total meso-
rectal excision.17 Nevertheless, patients are requesting gradu-
ally for better-tailored managements for rectal cancer due to the 

F I G U R E  3   Survival analyses for the prognostic metabolic genes in rectal cancer. A, The Kaplan-Meier curve showed the survival of 
patients was significantly poorer in patients with high-risk in the TCGA database. B, The Kaplan-Meier curve showed the survival of patients 
was significantly poorer in patients with high-risk in the GEO database

F I G U R E  4   The risk score analysis, survival status distribution analysis and heatmap for metabolic genes in rectal cancer. A, The risk 
score analysis, survival status distribution analysis and heatmap in the TCGA database. B, The risk score analysis, survival status distribution 
analysis and heatmap in the GEO database
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developments of neoadjuvant therapy and multidisciplinary team 
management.18–20 Since rectal cancer surgery often accompanied by 
high morbidity and poor oncologic outcomes, surgeons are gradually 
focusing on the molecular alterations in rectal cancer in order to find 
some valid targets in the treatment of rectal cancer.21–23

Recently, metabolic reprogramming has become a hot topic.24 
Accumulating evidence demonstrates the influence of metabolic al-
terations in neoplastic cells, mainly focused on the different cellular 
components of the cell microenvironment, like the regulation of tu-
mour-infiltrating immune cells.25–27 Therefore, the identification of 
novel metabolic genes in cancer to predict mortality risk of cancer 
has become a hotspot. In this study, we screened novel metabolic 
prognostic related genes from the TCGA database and validated the 
efficiency by data downloaded from the GEO database. The low-risk 
and high-risk patients were effectively stratified based on the dif-
ferent overall survival outcomes. The efficacy was further validated 
by data from the GEO database, which indicates a robust prognostic 
value of the prediction efficacy of these metabolic-related genes.

GSEA was utilized in this study to uncover the enriched GO 
terms and pathways in rectal cancer. Most GO terms and path-
ways were metabolism-related. On the one hand, the results 
enriched in GO terms and pathways proved the robust connec-
tion of the screened metabolic-related genes and indicated the 

underlying dysregulated metabolic microenvironment in rectal 
cancer. Patients with high-risk were more likely to be associated 
with the metabolism GO terms, like antibiotic metabolic process, 
arachidonic acid metabolic process and icosanoid metabolic pro-
cess. Plus, patients with high-risk were more likely to be con-
nected with the metabolism pathways, including alpha-linolenic 
acid metabolism, arachidonic acid metabolism, drug metabolism 
cytochrome p450, glycerophospholipid metabolism, linoleic acid 
metabolism, metabolism of xenobiotics by cytochrome p450 
and sphingolipid metabolism pathways. Therefore, we hypothe-
sized that high-risk patients might benefit more from metabolic 
therapy and metabolic-related management. Also, these results 
uncovered the underlying molecular mechanisms of these prog-
nostic metabolic genes. However, many works are needed to fur-
ther validate the relationship between these genes and metabolic 
treatment and related managements. Here, Peng et al8 showed 
that the expression of the metabolic genes is correlated with the 
mutations and copy number changes that occur in many cancers 
include those of the rectum. Sinkala et al9 showed that colorec-
tal cancer cell lines with alterations to genes of various meta-
bolic pathways tend to be more responsive to multiple anticancer 
drugs than those without alterations to the metabolic genes. 
Competently to these findings, Peng et al8 further showed that 

F I G U R E  5   Forrest plot of the univariate and multivariate Cox regression analysis and evaluation of receiver operating curve (ROC) 
analysis in rectal cancer by TCGA database. A, Forrest plot of the univariate Cox regression analysis. B, Forrest plot of the multivariate Cox 
regression analysis. C, The efficacy of the multivariate Cox regression analysis was evaluated by ROC analysis

F I G U R E  6   The GO terms and KEGG pathways enriched by GSEA were demonstrated. A, Three representative metabolic-associated GO 
terms in high-risk patients. B, Seven representative metabolic-associated KEGG pathways in high-risk patients
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the metabolic expression subtypes of cancers are informative 
about drug sensitivities.

A total of 11 prognostic associated metabolic genes were included 
in the lasso Cox regression model, including PYGM, DGAT2, INPP5A, 
POLR1D, POLR2H, DGKB, SULT2B1, SMPD1, GOT2, MTHFD1L 
and ACADM. The risk score formula was as follow: 2.0420*expres-
sion of PYGM + 0.2823*expression of DGAT2 + 0.1504*expression 
of INPP5A + 0.0954*expression of POLR1D + 0.0876*expression 
of POLR2H + 0.0854*expression of DGKB + 0.0291*expression 
of SULT2B1 + 0.0208*expression of SMPD1-0.0449*expression 
of GOT2-0.2101*expression of MTHFD1L-0.3224*expression of 
ACADM. We have classified these 11 genes into three groups. The 
first group is the reported colorectal cancer-associated metabolic 
genes group. The second group is a cancer-associated metabolic 
gene group. The third group is the unreported gene group. The genes 
in the reported colorectal cancer group include POLR1D, DGKB, 
SULT2B1 SMPD1 GOT2, MTHFD1L and ACADM. The genes in the 
second group include DGAT2, INPP5A and POLR2H. Nevertheless, 
only one metabolic gene, PYGM, among these 11 genes has not 
been reported to be associated with the development and progress 
of cancer.

POLR1D has been reported to be associated with the promotion 
of colorectal cancer progression and prediction of poor prognosis of 
patients.28 Zhou et al29 demonstrated that the DGKB gene region was 
only opened in SW620-AA cells. Li et al30 showed that SULT2B1 was 
significantly elevated in colorectal cancer tissues than in normal tissues. 
Also, they found that SULT2B1 played a crucial role in the oestrogen 
metabolic pathway and to be associated with colorectal cancer risk and 
survival. SMPD1 could be treated as the critical prognostic biomarker in 
colorectal cancer.31 GOT2 was reported by Du et al32 that ectopic ex-
pression of GOT2 could attenuate the SOX12 knock-down-induced sup-
pression of colorectal cancer progression. Plus, MTHFD1L was reported 
by Agarwal et al33 that involved in the progression of colorectal cancer. 
Also, ACADM might be involved in the regulation of the overall survival 
of colorectal cancer.

DGAT2 has been reported to be associated with hepatocellular 
carcinoma malignancy by regulation of the cell cycle-related gene 
expression.34 Also, DGAT2 has been reported to be associated with 
the regulation of the development of prostate cancer.35 INPP5A 
could be treated as the target of miR-181a-5p in regulation on the 
progression of cervical cancer.36 POLR2H was reported to be asso-
ciated with the progression of prostate cancer.37

Our results have identified some prognostic related metabolic 
genes for predicting survival outcomes of rectal cancer based on 
TCGA data. Some results could be validated by data downloaded 
from the GEO database, which reflected that these genes might be 
involved in the dysregulation of the metabolic microenvironment 
and might be treated as novel biomarkers for metabolic therapy.
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