
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12077  | https://doi.org/10.1038/s41598-020-68853-y

www.nature.com/scientificreports

Cortical network responses 
map onto data‑driven features 
that capture visual semantics 
of movie fragments
Julia Berezutskaya1,2*, Zachary V. Freudenburg1, Luca Ambrogioni2, Umut Güçlü2, 
Marcel A. J. van Gerven2 & Nick F. Ramsey1

Research on how the human brain extracts meaning from sensory input relies in principle on 
methodological reductionism. In the present study, we adopt a more holistic approach by modeling 
the cortical responses to semantic information that was extracted from the visual stream of a feature 
film, employing artificial neural network models. Advances in both computer vision and natural 
language processing were utilized to extract the semantic representations from the film by combining 
perceptual and linguistic information. We tested whether these representations were useful in 
studying the human brain data. To this end, we collected electrocorticography responses to a short 
movie from 37 subjects and fitted their cortical patterns across multiple regions using the semantic 
components extracted from film frames. We found that individual semantic components reflected 
fundamental semantic distinctions in the visual input, such as presence or absence of people, human 
movement, landscape scenes, human faces, etc. Moreover, each semantic component mapped onto a 
distinct functional cortical network involving high-level cognitive regions in occipitotemporal, frontal 
and parietal cortices. The present work demonstrates the potential of the data-driven methods from 
information processing fields to explain patterns of cortical responses, and contributes to the overall 
discussion about the encoding of high-level perceptual information in the human brain.

Semantic processing of audiovisual material is a topic of great interest in cognitive neuroscience. A lot of knowl-
edge has been accrued with studies focusing on the visual object processing, object categorization and processing 
of various semantic attributes of the visually perceived objects1–3. We have come to understand a lot about the 
ventral stream of visual processing in the brain4,5, the object categorization ability of inferior temporal cortex6–8 
as well as the specific roles of fusiform face area9, parahippocampal place area10, the motion processing temporal 
region11 and other areas involved in high-level visual processing4,12–14.

Most studies address the topic with a reductionist approach, with carefully constructed tasks and stimuli to 
investigate a particular aspect of brain function15. With new tools available to investigate high-dimensional phe-
nomena, more holistic approaches become feasible. Complex brain mechanisms may be identified or character-
ized by mapping brain responses onto informational structures that are extracted from non-constrained sensory 
material. More concretely, one can utilize recent advances in computational modeling in different domains such 
as computer vision and natural language processing that are driven by extraction of high-level semantic relations 
directly from the unprocessed input, such as images16,17 and texts18–20. Among the most recent and most power-
ful such advances are deep artificial neural network models. Not only do these models achieve unprecedented 
performance on solving complex tasks (for example, visual object identification or text classification), but there 
is also evidence that these models are capable of making errors in semantic judgements that are similar to the 
errors humans make, thereby mimicking aspects of human cognition21–23.

Both of these factors contributed to an increasing interest towards these models in the cognitive neuroscience 
community. Many have investigated the internal representations extracted by artificial neural networks and used 
them to model, or ‘fit’, the brain activity associated with perception of images24–28, music29 and speech sounds30–32. 
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Multiple studies showed that these models can fit evoked cortical responses better than alternative representations 
of stimuli typically based on hand-engineered filters for low-level perceptual input, for example, Gabor filters 
for pixel or sound spectrogram input32–34. Artificial neural network approaches to modeling language have also 
shown to correlate well with the cortical responses to language related stimuli35–37.

Yet many of these studies used stimuli that were constrained in one way or another to satisfy the specific 
question at hand. We think we can learn more about how the brain makes sense of large amounts of continu-
ously perceived visual information if we examine brain signals in a natural context. In essence, here we present a 
case for feasibility, where we reduce the complexity of natural high-level visual material to key components that 
represent sematic information. This reduction is accomplished by mining visual information from the perceived 
input followed by modelling semantic and language information content. The extracted semantic components 
are used to model the cortical responses driven by high-level processing of perceptual information.

In the present study, we used a large dataset, in which participants watched a short feature film while their 
brain responses were recorded with electrocorticography (ECoG). The data were originally collected for language 
mapping in the patient population. These data were previously analyzed with respect to the auditory process-
ing of the film soundtrack30,32,38. Our previous work also used functional magnetic resonance imaging (fMRI) 
recordings during the same task and in the same subjects. In the present study, we only focus on the ECoG data 
(due to a larger number of subjects available as well as its better temporal resolution and signal-to-noise ratio) 
and only on the visual aspect of the film. We passed the film frames first through a set of algorithms including an 
automatic visual concept recognition system and a language model to extract high-level semantic components. 
The first step provided us with a list of visual objects and concepts present in film frames and the second step 
enriched the extracted representation by incorporating semantic and linguistic ties between words correspond-
ing to extracted visual concepts. The resulting set of key components were then imposed on the ECoG data to 
assess cortical representation thereof. We found that (1) the reduction of the visual data complexity yielded 
principal components that are readily interpretable in terms of semantic concepts, and (2) these components were 
represented in brain signals and distributed functional cortical networks. Our approach shows that processing 
of meaning in the visual stream of the film maps onto brain regions associated with corresponding functional-
ity: lateral fusiform gyrus for processing faces, parietotemporal network for processing movement and lateral 
occipital complex for processing objects, scenes and landscape frames. We believe this approach has potential for 
deepening our understanding about how the human brain extracts meaning from visual information presented 
in an unconstrained natural context.

Results
We investigated whether the visual semantic information obtained from a short film through a bottom-up com-
putational approach could be informative in explaining the associated neural responses. First, we developed a 
semi-automatic bottom-up approach to extract principal semantic components that captured high-level concep-
tual information in the film’s visual stream. The extracted components proved to reflect fundamental semantic 
differences between film frames, such as presence or absence of people, motion versus still/wide-shot frames, 
human faces versus human bodies. Next, the semantic components were used to model the neural data col-
lected from 37 subjects during a film-watching electrocorticography (ECoG) experiment. The model fit showed 
significant prediction accuracy peaking at 320 ms after frame onset primarily in occipitotemporal, parietal and 
inferior frontal cortices. Further analyses showed that the brain areas with significant prediction accuracy could 
be subdivided into distinct cortical networks, each engaged in processing of specific semantic components in 
the film’s visual stream of information.

A semi‑automatic bottom‑up approach to obtain vectors of visual semantics from film 
frames.  In order to extract semantic meaning, we combined the advances in various fields (deep learning, 
computer vision, natural language processing) to obtain visually driven semantic representations that can be 
used to study the neural responses. For this, we devised a pipeline that allowed us to combine recently published 
algorithms and obtain semantic representations.

Our semi-automatic pipeline contained three stages: the visual concept recognition stage (I), the language 
model stage (II) and the dimensionality reduction stage (III, Fig. 1a). In stage I we employed an artificial neural 
network model called Clarifai (www.clari​fai.com), a state-of-the-art commercial computer vision model, to 
obtain labels of the objects and concepts present in each frame. Clarifai processes raw pixel information and 
generates the most likely concept labels together with their probabilities. The outputs of this model are referred 
to as concepts rather than objects because the system is capable of recognizing not only physical items in an image 
but also emotions, qualities, actions and some abstract concepts. The network used a preset dictionary of 5,000 
concept labels and generated 20 concept labels per image frame. Despite the overall remarkable quality of the 
concept recognition system, we performed a manual check on the extracted labels and adjusted all incorrect 
assignments. Therefore, we call our pipeline semi-automatic.

In principle, we could have used the extracted concept labels directly to model neural activity, as has been 
done before39. However, our intention was not to limit the study to a preselected number of concept or object 
labels. Instead, we aimed to exploit the semantic relationships between different labels, including those absent 
in the present stimulus material, such that similar labels would get similar representations and dissimilar labels 
would get dissimilar representations. To achieve this, we subsequently applied a language model that could enrich 
our concept space with complex semantic and language relations between concept words.

To some extent, capturing of semantics of the visually perceived concepts can be achieved through the co-
occurrence of concept labels. However, the label co-occurrence could also lead to false associations. For example, 
the fact that the main character (Pippi) and her horse co-occur in many frames does not necessarily mean than 

http://www.clarifai.com
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they should have similar semantic representations. Likewise, the fact that another character (Mrs. Settergren) 
only appears in the breakfast scene does not mean she should be associated specifically with the meal. Moreover, 
use of a universal space of the language model renders the model more generalizable in that if one were to study 
a different film with a different set of present visual objects, one would be able to project them onto the same 
semantic space as the present film and compare the results.

To extract semantic vectors of each concept label in the frame (stage II of the pipeline), an external language 
model was applied, called fastText40 (www.fastt​ext.cc). It is important to note, that we call it a language model 
here for simplicity and convenience, although strictly speaking here we only use the result of the language model 
training—the learned word embeddings, or semantic vectors. FastText is a shallow artificial neural network (skip-
gram model) that has been trained on a large number of texts to extract word embeddings for each word in the 
language vocabulary based on the word’s context. The model has been shown to capture semantic relationships 
between words20. The idea behind the use of semantic vectors is not only to simplify computations but to create 
a multidimensional representational space where mathematical operations such as addition and multiplication 
should hold. We obtained semantic vectors for each concept in the frame using the pretrained fastText model, and 
averaged the vectors over all concepts in the frame. This resulted in one semantic vector of the visual information 

Figure 1.   Extraction of semantic components from the visual stream of the film. (a) Semi-automatic pipeline 
for extraction of the semantic components. First, a film frame is passed through an automatic visual concept 
recognition system (Clarifai) to extract concept labels. Then, the extracted labels are passed through a language 
model (fastText) to obtain 300-dimensional semantic vectors, or word embeddings. The semantic vectors 
are averaged over all labels assigned to one frame, resulting in one averaged semantic vector per frame. The 
dimensionality of the vectors is further reduced by applying a principal component analysis to the averaged 
semantic vectors. The final result is a set of 50-dimensional semantic components that are used further to 
model the neural responses. (b) Example of how averaging of all concept labels per frame affects the semantic 
representation. Each word in the language model (fastText) can be seen as a point in a 300-dimensional 
semantic space. Neighboring words are assumed to capture similar semantics. Averaging in this space results in 
a new point that is placed in a neighborhood of all the words that are being averaged. Averaging has a capacity 
to represent combined complex meaning. In this example, the new point is in between the individual words 
‘horse’, ‘carriage’ and ‘roof ’, thus combining the meanings of these words together.

http://www.fasttext.cc
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per frame. We also verified that projecting the averaged semantic vector to the fastText space resulted in a point 
that was between, and closest to, the multiple individual concept labels of the frame (see example in Fig. 1b).

The dimensionality of the data was further reduced to (1) represent the semantic space of our film more 
adequately (given that the concepts in the film likely covered only a small fraction of the entire semantic space 
of the fastText language model), and (2) determine the components of the most variance across the semantic 
vectors. To achieve this, we performed a principal component analysis on the previously obtained averaged 
semantic vectors (stage III). We found that projection to a space with just 50 principal semantic components 
accounted for 99.95% of all variance in the original averaged semantic vectors. Thus, from the averaged fastText 
semantic vectors per frame we obtained a smaller number of highly representable semantic components, ranked 
according to the amount of semantic variance they explained.

It is important to note that the extracted concept labels as well at the language word embedding model were 
based on English whereas the soundtrack of the film was in Dutch. However, we do not expect it to have affected 
our semantic representations much. First, several previous studies on word embeddings for machine translation 
showed similarity in the semantic representation across various languages41,42. Second, English and Dutch are 
both Germanic languages and share additional similarities in terms of their phonetical, lexical and grammatical 
structure. Finally, because much of the semantic content in this study is based on the visual stream of informa-
tion, we expect it to generalize well across languages, and better compared to, for example, non-sensory, more 
abstract type of information.

Capturing of fundamental semantic distinctions in the extracted semantic compo‑
nents.  Whether it would make sense to seek a relationship between the extracted semantic components and 
the brain responses depended of the capability of the taken approach to capture meaningful distinctions and 
elements of semantics that drove the difference between various fragments of the film. We were particularly 
interested in exploring the space of the extracted semantic components and determining whether they captured 
interpretable semantic information.

We found that the first five principal semantic components explained ~ 70% of all variance, suggesting that 
most of the semantic variability was captured by five fundamental semantic components. Each of the remaining 
components accounted for less than 5% of variance in the data and most of them (34 out of 45) for less than 1%.

To examine the top five extracted semantic components, we ranked the frames with respect to their values 
along each semantic component. For each component we selected frames corresponding to the bottom and top 
10% of values and visualized them (Fig. 2). In addition, we computed histograms of concept labels associated 
with the selected frames. Thus, the bottom 10% of frames together with their label histograms exhibited low 
values along a specific component, and the top 10% exhibited high values.

We observed that the first semantic component (34% explained variance) represented presence or absence of 
people in the frame. The second component (17% explained variance) differentiated between human movement 
and non-human movement or general nature scenes. The third component (11% explained variance) differenti-
ated between scenes with movement (including travel and walking) and static scenes. The fourth component (9% 
explained variance) reflected differences between scenes with landscapes (including houses, rooms and other 
spaces) and portrait-like scenes (person or animal). Finally, the fifth semantic component (5% explained vari-
ance) captured human faces and differentiated them from scenes with human bodies and frames without people.

To assess the relationship between the semantic components and the labels we performed post-hoc sta-
tistical testing by fitting a linear regression to predict the values along the five semantic components 
using the concept labels per frame. The fit was significant for each of the top five semantic components 
( R2 > 0.99, F(128; 9, 675) = 14, 490, p ≪ 0.001 ) and yielded regression weights for each of the components. 
The highest and lowest weights corresponded well to the histograms of concept labels for the top and bottom 
10%, respectively, in that the highest weights for the first semantic component were assigned to labels ‘people’, 
‘man’, ‘girl’, ‘adult’ and the lowest weights—to ‘park’, ‘tree’, ‘animal’, ‘outdoors’. The highest weights for the second 
component were assigned to labels ‘climb, ‘acrobatics’, ‘music’, ‘agility’ and the lowest weights—to ‘wildlife’, ‘out-
doors’, ‘people’, ‘dark’, etc. Comprehensive lists of highest and lowest weights as well as the 2D visualization of the 
overall structure of the semantic components (based on a t-SNE projection, see Methods for details) are shown 
in Supplementary Material (Figures S1, S2).

High accuracy of predicting the neural responses based on the extracted semantic compo‑
nents.  To assess whether the five semantic components mapped onto the  neural responses to the film 
(Fig. 3), we fitted a neural encoding model42–45 where high frequency band (HFB) neural responses across all 
electrodes were predicted based on the extracted semantic components. Previous studies have shown that the 
HFB amplitude closely correlates with neuronal firing rates on the neocortex and with fMRI blood-oxygenation-
level-dependent response (BOLD)46–49.

To account for the complex multimodal nature of the film prior to fitting a model on the extracted semantic 
components, we first regressed out parts of the neural signal associated with the auditory stream of the film (SI 
Figure S3). A ridge linear regression was then applied on the residual neural data to predict whole-brain HFB 
ECoG responses to the film using the semantic components, with Pearson correlation between predicted and 
observed HFB responses as the performance metric. The reported performance was calculated in the held-out 
test set and was cross-validated (see “Methods” for details).

Given that semantic processing is a high-level cognitive process that has been shown to require a substan-
tial delay relative to the stimulus onset, we also tested which time shift relative to the stimulus onset was best 
for predicting the neural responses (Fig. 4a). A separate ridge linear regression model was fitted at every time 
shift within the range of – 10 to 10 s. The highest accuracy of prediction was found at a lag of 320 ms after the 
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stimulus onset. Even though longer lags displayed progressively lower prediction accuracy, multiple lags around 
the stimulus onset led to a high accuracy of the fit. This was most likely due to the high autocorrelation of the 
semantic data (SI Figure S4).

Considering the cortical map of the prediction accuracy, the best accuracy was achieved for occipitotem-
poral, parietal and inferior frontal cortices (Fig. 4b). The prediction accuracy ranged from r = 0.11 to r = 0.52 
(cross-validated Pearson correlation between predicted and observed HFB responses, 453 electrodes, 16% of all 
electrodes) at p < 0.001 , Bonferroni corrected for the number of electrodes.

Highly specialized cortical networks triggered by individual semantic components.  Given 
that the prediction accuracy was high in a number of brain regions bilaterally, we wondered whether all of the 

Figure 2.   Interpretation of the top five semantic components in the film’s visual stream. For each component 
we selected frames with bottom 10% (negative) and top 10% (positive) values. Thus, these selected frames 
express the range of semantic information captured in each component. The colors are unique identifiers of 
each components that are also used in later figures. The words associated with either bottom 10% or top 10% of 
frames per component are the most frequent concept labels present in these selected frames.
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observed regions were involved in semantic visual processing to the same extent or whether there was a degree 
of specialization for some brain regions in responding to specific semantic components.

Investigation of the β-weights of the linear encoding model at the optimal time shift of 320 ms showed that 
distinct cortical networks were engaged in processing of the visual semantics of the film. Specifically, in order to 
identify groups of electrodes with similar β-weights across 50 components, and thus similar semantic encoding 
profiles, we applied a clustering approach to all β-weights[32,38]. As a result, we identified a number of clus-
ters, each characterized by a distinct cortical network as well as a ratio of contribution of the top five semantic 
components to the activation of that cluster (Fig. 5). Thus, we observed for instance, that cluster 1 comprised 
electrodes in the lateral fusiform gyrus, and the semantic components encoding human presence (first semantic 
component) and human faces (fifth semantic component) contributed most to its activation time course.

Several cortical networks (clusters 2, 3 and 5) responded to the semantic components capturing motion. These 
networks comprised electrodes in supramarginal, precentral and posterior middle temporal gyri. The cortical 
network in cluster 2 seemed to be more specific to hand movement and object interaction (second semantic 
component), whereas the cortical network in cluster 3 seemed be more related to encoding of facial movement 
and facial expressions (combination of first, second and fifth semantic components). Cluster 5 appeared to be 
less sensitive to human presence in the frames but responded to biological motion and the semantic component 
of travel and transportation (third semantic component).

Cluster 4 was associated with presence of landscapes and static shots. Biological movement seemed to cause 
dips in its activation time course. Both clusters that included lateral occipital and dorsal parietal regions (clusters 
4 and 5), favored frames without people presence and were deactivated by frames with human faces.

Not all of the cortical networks uncovered through clustering were as easily interpretable through the analysis 
of their distribution over the top five semantic components. Remaining clusters with contribution from electrodes 
of many subjects still exhibited high anatomical consistency and included electrodes in inferior frontal gyrus 
(mostly pars opercularis) as well as posterior and anterior sites along the superior temporal gyrus (SI Figure S5). 
It is unlikely that these cortical networks can be connected to tracking of the auditory information due to our 
control for interaction between auditory and visual streams of the film. In addition, the activation time courses 
of these clusters do not seem to follow the block design, nor do they exhibit significantly larger correlation with 
the audio envelope compared to other clusters.

Control for the low‑level visual features.  Because the semantic components we used here were based 
on the output on the visual concept recognition model trained on raw image data, we aimed to implement 
some form of verification that the reported results were indeed due to the semantic processing rather than 
processing of lower-level visual features. First, we were able to confirm that pixel-level and Gabor-based vis-
ual features were dissociated from the extracted semantic components (two-sided Wilcoxon signed-rank tests: 
Z = −3, 118, p ≪ 0.001 for pixel values and Z = −5, 928, p ≪ 0.001 for Gabor features). Next, we used low-
level visual features to predict the neural responses to the film with an intention to compare its prediction accu-
racy to the accuracy of the model that used the semantic components at the temporal shift of 320 ms. Overall, 
we observed that the fit based on low-level features was considerably poorer, with prediction accuracy ranging 

Figure 3.   Overview of the ECoG film-watching experiment. (a) Experimental setup. The audiovisual film 
was presented to each participant while their neural responses were collected with ECoG electrodes. (b) Total 
electrode coverage over 37 participants. The panel shows a clear bias toward covering the left hemisphere. Each 
single subject electrode location is projected onto the MNI common brain. (c) The surface representation of the 
coverage density. Each single subject electrode location was assigned a value of one and projected to a regular 
grid in the average Freesurfer space. The resulting overlay shows the density of coverage over all individual 
participants. The panel shows the same bias for the left hemisphere as well as better overall coverage of inferior 
frontal and temporal cortices. Considerable coverage of inferior temporal and fusiform regions can be seen, 
whereas calcarine sulcus and lingual gyrus are covered quite scarcely. See “Methods” for more details about the 
projection to a uniform regular grid on the average surface.
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from rpix = 0.11 to rpix = 0.45 (6% of all electrodes) for colored pixel values and rgab = 0.11 to rgab = 0.41 (7% of 
all electrodes) for Gabor features. The overall difference in the whole-brain prediction accuracy was statistically 
significant: Zsem−pix = 16.13, p ≪ 0.001 and Zsem−gab = 15.27, p ≪ 0.001 , Bonferroni corrected for the number 
of electrodes, as assessed with a one-sided Wilcoxon signed rank test. All electrodes with a significant fit with 
either model ( sem or pix and sem or gab ) were used in the comparison. The medians of the prediction accuracy 
per model over all electrodes used in each comparison are displayed in SI Figure S6.

It is important to note that here we only had limited ECoG coverage in early visual cortex (Fig. 3c). Apart from 
that, the film watching experiment did not have a fixation point in the center of the screen. Thus, unsurprisingly, 
using low-level visual features to predict the neural responses provided a significant fit in a limited number of 
electrodes outside of the early visual cortex. Overall, the brain map for the difference in the fit ( rsem − rpix and 
rsem − rgab , SI Figure S6) showed a similar cortical distribution as the map for the fit using the semantic compo-
nents (Fig. 4b) confirming that the low-level visual features did not affect the results of the semantic encoding.

Emergence of visual semantics from low‑level visual features.  Thus, we have shown that the 
observed prediction accuracy for the whole-brain responses was not due to low-level visual features. Since the 
visual concept recognition model was trained to extract high-level semantic information (concept labels) from 
raw image data, somewhere along the layers of this deep artificial neural network, higher-level semantic visual 
features were bound to emerge. We were curious whether we would be able to track the gradual buildup of these 
semantic representations throughout the visual concept recognition model and whether this buildup would be 
supported by the neural data. To this end, we investigated the relationship between the semantic components 
and each intermediate layer of a publicly available object recognition model called VGG1650, similarly trained to 
recognize objects in images by passing them through a set of convolutional layers. For simplicity, we only con-
sidered the pooling layers of the VGG16 model (see “Methods” for details). We found a gradual increase in simi-

Figure 4.   Fitting the neural responses based on the extracted semantic components. (a) Prediction accuracy 
(measured as Pearson correlation between predicted and observed HFB responses) for various time shifts of the 
semantic components. Prediction accuracy was cross-validated over five folds. Testing different time shifts was 
done to account for a delay in neural processing of the high-level visual information. Top panel shows the mean 
prediction accuracy for all significant electrodes ( p < 1× 10−5 , Bonferroni corrected for the total number 
of electrodes) per time shift. Shading represents standard error of the mean. Bottom panel shows the number 
of electrodes with a significant fit per time shift. The red bar indicates the model with top average prediction 
accuracy as well as highest number of electrodes with a significant fit, which corresponds to a time shift of 
320 ms. (b) Cortical map of the prediction accuracy for the time shift of 320 ms ( p < 1× 10−5 , Bonferroni 
corrected for the total number of electrodes). Left panel shows a volume-based plot. Each cross-validated 
prediction accuracy value was assigned to the center coordinate of the corresponding electrode and projected 
to the MNI common space. Individual electrode locations were normalized to the MNI space using subject-
specific affine transformation matrices obtained with SPM8. For the visualization purposes a 2D Gaussian 
kernel (FWHM = 8 mm) was applied to the coordinate on the MNI brain volume corresponding to the center of 
the electrode, so that the projected values (e.g. prediction accuracy) faded out from the center of the electrode 
toward its borders. Right panel shows a surface-based plot of the cross-validated prediction accuracy at the time 
shift of 320 ms. It shows the same prediction accuracy values as the left panel but projected on the surface 
for a better display of the fit in lateroocipital and fusiform cortices. See “Methods” for more details about the 
projection to a uniform regular grid on the average surface.
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larity between frame representations from the first to the last intermediate layer of the object recognition model 
with the semantic components (Fig. 6a). Interestingly, the fit to neural data based on each individual intermedi-
ate layer of the object recognition model also showed a gradual increase in prediction accuracy (from the first to 
the last layer) together with the spread of the location of the best fitted electrodes from occipital toward temporal 
and parietal cortices (SI Figure S7). In particular, we observed that the activity in the fusiform gyrus was fitted 
better with later layers of the VGG16 (pool4 and pool5), eventually showing little difference with the fit using the 
semantic components compared to a much larger difference at the earlier layers (pool1 and pool2, SI Figure S7).

We then used the last intermediate pooling layer of the object recognition network (layer pool5, which we 
would expect is sensitive to complex patterns of object parts and general object shapes based on the existing 
work25,51) and compared the neural fit on pool5 features to the fit on the semantic components, both estimated 
at same temporal shift of 320 ms. The prediction accuracy ranged from rpool5 = 0.11 to rpool5 = 0.41 (6% of all 
electrodes) for the fit using pool5 features. All electrodes with a significant fit with either model ( sem or pool5 ) 
were used for the comparison of the models. The difference in prediction accuracy between the fit on the semantic 
components and the fit on pool5 features was observed for 28% of all electrodes favoring the fit on the semantic 
components ( rsem − rpool5 > 0.1 , Fig. 6b). The overall difference in the whole-brain prediction accuracy was 
statistically significant: Z = 16.51, p ≪ 0.001 , Bonferroni corrected for the number of electrodes, as assessed 
with a one-sided Wilcoxon signed rank test (Fig. 6c). The medians of the prediction accuracy per model over 
all electrodes used in each comparison are displayed in Fig. 6c. Electrodes in the occipitotemporal, parietal and 
frontal cortices showed a better fit using the semantic components compared to the fit on pool5 features (Fig. 6d).

Overall, these results indicated a gradual emergence of the semantic features from the low-level visual infor-
mation in the object recognition model. At the same time, even the top layer of the object recognition model 
(pool5) provided an inferior fit of the neural data compared to the semantic components. The cortical areas 
with the overall significant difference in the prediction accuracy were high-level cognitive processing regions 
including various subareas of the frontal cortex (superior, middle, inferior frontal gyri and medial orbitofrontal 
cortex), superior and inferior temporal, parietal and motor regions. Of the occipital regions, only cuneus and 
precuneus showed a significant difference.

Contribution of the language model to the extracted semantic components.  Finally, having 
seen that the semantic components provided a better fit for the brain responses throughout high-level cognitive 
areas compared to the top pooling layer of the visual neural network, we wondered whether the language model 
contributed to the model accuracy.

To address this point, we fitted another ridge linear regression model using binary vectors of concept labels to 
predict HFB neural responses. We then compared the prediction accuracy with the model that used the semantic 
components, both estimated at same temporal shift of 320 ms. The prediction accuracy ranged from rlabels = 0.11 
to rlabels = 0.51 for the fit using the binary labels. We found that even though there did not seem to be a specific 
brain region where the accuracy was significantly better for the semantic component model, the model that used 
the semantic components on average provided a better prediction accuracy across the cortex (one-sided Wil-
coxon signed rank test: Zsem−labels = 11.82, p < 0.001 , Bonferroni corrected for the number of electrodes with a 

Figure 5.   Distributed functional cortical networks associated with each individual semantic component. Each 
cluster’s profile contains diverse information including the cortical distribution of the electrodes contributing to 
that cluster (1), distribution over single subjects to show that all reported clusters included multiple subjects (2), 
distribution over cortical areas (3), distribution over the five semantic components (3), activation time course 
of the cluster (4) and frames that trigger and deactivate the cluster (5). Cortical maps are the surface-based 
projections of the similarity of each electrode in the cluster to the cluster exemplar. The similarity is measured 
as Pearson correlation of the β-weights across all electrodes. The β-weights are vectors of regression coefficients 
over 50 semantic components produced by the ridge linear regression fit. Distributions over subjects (inner 
pie charts), per cluster, show a ratio of all electrodes that came from each single subject to the total number of 
electrodes. None of the reported clusters were subject-specific, meaning that no more that 30% of electrodes 
per cluster came from a single subject. Distributions over cortical labels (middle pie charts) are color-coded and 
only five groups of labels are highlighted: frontal, sensorimotor, parietal, temporal and occipital regions. The 
proportion of labels within each color-coded region is also informative, such that in Cluster 1, for example, the 
largest contributing label is the fusiform gyrus, which is a temporal region. It is not additionally color-coded, 
but one can see that among the temporal regions there was only one with the largest contribution (which 
corresponds to the fusiform gyrus). Other times, the contribution can be more equally distributed over multiple 
regions with the same color-coded labels. Distribution over the semantic components (outer pie charts) was 
calculated by performing a signed difference test on the top 10% of frames associated with peaks in the cluster’s 
activation time course and the bottom 10% of frames associated with dips in the cluster’s activation time 
course. Per cluster, the signed difference test (two-sided Wilcoxon ranked test) was performed by comparing 
values along each semantic component between ‘peak frames’ and ‘dip frames’. The pie charts represent the test 
statistic, significant at p < 0.001 (Bonferroni corrected for the number of clusters and semantic components), 
adjusted for the decreasing percentage of explained variance from the first to the fifth semantic component (see 
“Methods” for details). The cluster activation time courses show the dot product of the semantic components 
and the β-weights of the exemplar of each cluster. Shading represents the standard error of the mean calculated 
on the dot product using β-weights of all electrodes of the cluster. Examples of frames associated with peaks in 
the cluster’s activation are displayed above the activation time course. Examples of frames associated with dips in 
the cluster’s activation are shown below the activation time course.

◂
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Figure 6.   Gradual emergence of the semantic information from low-level visual features. (a) Similarity of frame 
representations between each intermediate layer of the automatic visual object recognition model and the semantic 
components used to fit the brain data. We used all so-called pooling layers of the object recognition model as 
intermediate layers. First layer (pool1) is placed quite early in the model (it is preceded by only two convolutional 
layers), whereas the last layer (pool5) is located very deep in the model (followed by two dense layers and a probability 
output layer). The similarity with the semantic components is measured as Pearson correlation of all pairwise frame 
comparisons between each pooling layer and the semantic components (see “Methods” for details). Dark grey line 
shows similarity between each pooling layer and all 50 semantic components, light grey line shows similarity between 
each pooling layer and only top five semantic components. In both cases the shading represents 95th confidence 
interval based on the bootstrapping procedure (sampling of 1,000 frames 10,000 times). (b) Cortical map of the 
difference in prediction accuracy between the fit using features of the last pooling layer (pool5) and the semantic 
components. (c) Scatter plot showing the difference in prediction accuracy between the brain fit using pool5 ( rpool5 ) 
and the semantic components ( rsem ). The results are shown for the models fitted at a 320 ms temporal shift of 
the brain data with respect to the stimulus onset. Each point represents a cross-validated accuracy per individual 
electrode. Red-colored points denote electrodes with rsem − rpool5 > 0.1 , blue-colored points denote electrodes 
with rpool5 − rsem > 0.1 . Red-colored line shows median prediction accuracy over all electrodes with a significant 
fit for the semantic components, blue-colored line shows the same value for pool5. (d) Significant difference in 
the prediction accuracy for individual regions of interest (ROI). Each bar shows a difference in median prediction 
accuracy values ( rsem − rpool5 ) per ROI. Error bars represent 95th confidence interval based on the bootstrapping 
procedure (resampling of the electrode accuracy values per ROI 10,000 times). We only show the ROIs, for which 
the difference in the median prediction accuracy ( rsem − rpool5 ) was above zero (based on the confidence intervals of 
the bootstrapping distributions): pOrb (pars orbitalis), Cu (cuneus), pCu (precuneus), rMFG (rostral middle frontal 
gyrus), pOpr (pars opercularis), ITG (inferior temporal gyrus), SPG (superior parietal gyrus), IPG (inferior parietal 
gyrus), SM (supramarginal gyrus), LOC (lateral occipital complex), STG (superior temporal gyrus), SFG (superior 
frontal gyrus), mOFC (medial orbitofrontal cortex), cMFG (caudal middle frontal gyrus), MTG (middle temporal 
gyrus), prCe (precentral gyrus). All ROIs defined in the Desikan–Killiany atlas (34 regions in total) were used in this 
analysis.
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significant model fit). This difference was significant even though the difference in median accuracy values was 
not large: median(rsem) = 0.14 and median(rlabels) = 0.12 . Importantly, more electrodes were fitted significantly 
well using the semantic components compared to the binary concept labels: 453 electrodes and 338 electrodes, 
respectively (at p < 0.001 , Bonferroni corrected for the total number of electrodes).

Discussion
In the present study we show that the automatically derived semantic properties of the visual narrative in a 
short film are captured in distributed cortical networks, each associated with distinct semantic components. 
In particular, we were able to combine recent advances in both visual object recognition and natural language 
processing to develop a semi-automatic approach to extract semantic components from the visual stream of the 
film. Modelling the associated neural responses on the basis of the semantic components resulted in significant 
prediction accuracy peaking at 320 ms after the frame onset, primarily in occipitotemporal, parietal and infe-
rior frontal cortices. Investigation of the model weights showed that distinct cortical networks were engaged in 
processing of the visual semantics of the film with lateral fusiform gyrus processing faces, supramarginal, motor 
and posterior middle temporal regions processing movement, and lateral occipital regions processing complex 
static scene information.

Fitting neural responses with semantic information derived through automatic processing of 
stimuli.  Previous research on neural encoding models using deep neural network representations shows their 
potential in explaining brain activity. Multiple studies have reported that activation in both early and second-
ary visual cortex reflects similar representations of visual stimuli as the trained artificial neural networks24,25,28. 
High-level semantic distinction and object representation have been traditionally associated with inferior tem-
poral and fusiform cortices6,7,9,52, and it has been shown that activation patterns in these regions exhibit similar-
ity with representations learned by top layers of object recognition neural networks34,53.

Language models that extract semantic properties of words by learning their co-occurrence patterns have 
also been successfully related to neural data through either encoding36 or decoding54,55 approaches. Exploiting 
the co-occurrence patterns to study encoding of meaning in the brain has proven fruitful regardless of whether 
the co-occurrence patterns were extracted through an artificial neural network36,37,55 or simpler corpus-based 
approaches35,56, underlining the importance of contextual information in semantic representation.

Here, an important step forward from this impressive previous work is the combination of the representations 
from different domains for predicting brain responses. We combine advances in both visual object processing 
and natural language processing to obtain rich semantic representations of the film’s visual stream that are 
informed by a language model. We find that this combined approach provides a better fit for whole-brain neural 
responses to a complex audio-visual narrative, than concept labels alone, even after having manually corrected 
their assignment.

It remains an open question whether the concept labels and semantic representations used in this study are 
the optimal way to represent meaning in the visual stream of the film. What it means to be ‘optimal’ should also 
be clearly defined, as one may consider optimal the semantic labeling that best fits the content of each individual 
frame. Alternatively, the semantic labeling can be considered optimal if it best describes the storyline of the video 
or recognizes the content of the situation displayed (for example, who is doing what to whom)57. It can also be 
argued that a linguistic caption, which can also be automatically inferred from the image data58,59, is a better way 
to annotate an image compared to a set of individual labels. Ultimately, as neuroscientists we are interested in the 
semantic labels or representations that above all explain the neural responses in high-level associative cortices. 
Bearing this in mind, in this study, we chose a fairly simple and straightforward model that combined both per-
ceptual and linguistic information for extraction of the semantic representations. At the same time, many other 
frameworks in computer vision (57,60–62 among others) could be used as a basis for neural encoding models, and 
we do not have the evidence to claim that the approach presented here is superior. A comprehensive comparison 
of various image labeling methodologies is beyond the scope of this study but warrants further investigation.

Gradual emergence of the semantic representations from low‑level visual input.  One of the 
main reasons why artificial neural network models are so interesting from the neuroscience point of view is 
their ability to extract hierarchical representations capturing transitions from low-level raw input data, such as 
images, to high-level semantic distinctions.

Previous research in visual neuroscience used data from fMRI, magnetoencephalography (MEG) and ECoG to 
show that increasingly complex representations learned by an image-based deep learning model, translated into 
a gradient along the cortical areas involved in visual object recognition. Along this gradient, responses in early 
visual cortex were fitted best by representations in early layers of the deep learning model, whereas responses 
in fusiform and inferior temporal cortex were fitted best by representations in later, more object- and category-
specific layers of the deep learning model24,27,34,53.

The present study corroborates the evidence that high-level semantic representations emerge gradually 
throughout the deep artificial neural network, and that this gradual shift maps onto neural data as well. That 
is, larger similarity of the later layers of the visual object recognition model with the semantic components was 
reflected in a better fit to the brain responses in high-level areas including occipitotemporal, parietal and frontal 
regions. Our approach seems to provide a better fit compared to the top layer of the visual object recognition 
model in many high-level cognitive areas. This once again underlines the contribution of the use of manually 
corrected labels combined with a language model that captures semantic distinctions between the labels.
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Distributed functional cortical networks each encoding an individual semantic compo‑
nent.  An attempt at combining the visual concept recognition model with a context-based language model 
has previously been made using fMRI36. However, one of the strengths of the present study is the focus on 
exploring the semantic space of the extracted high-level representations, and encoding of individual semantic 
components in the neural responses. Thus, we show that the semantic distinctions observed along each of the 
top principal semantic components are associated with activation of specific functional cortical networks. The 
ability to uncover this mapping and interpret the cortical activity through processing of variance along distinct 
continuous semantic dimensions is the main contribution of this work.

The adopted approach separated the functional cortical networks associated with visual perception of human 
movement, human faces, general movement, landscapes and static scenes. The involvement of the lateral fusiform 
gyrus in processing of human faces has been reported in a large body of previous research6,9, focusing on its 
role in identity perception63,64. Interestingly, here the human faces seemed to be part of a semantic dimension, 
with nature, landscape and movement frames on one end and human faces on the other. This finding resonates 
with theories on existence of a so-called animacy continuum that drives difference in the neural responses to 
various visual stimuli39,65.

Processing of human movement in our study shows involvement of sensorimotor cortex, supramarginal 
gyrus and middle temporal region, or MT. The MT region is the classical area reported in perception of motion 
in general, whether it is movement of humans, objects or dot patterns11,66,67. However, the other two regions are 
reportedly involved in a more abstract level of motion perception. Sensorimotor cortex (pre- and postcentral 
gyri) has been implicated in visual perception of human action68,69. Supramarginal gyrus with an extension to 
anterior intraparietal sulcus has been reported to be involved in perception of spatial relations as well as complex 
human and animal body movements70,71, and of hand movement and interaction67,72.

Another functional cortical network that emerged from this analysis is a combination of the lateral occipital 
cortex with inferior and superior parietal gyri. It is associated with processing of scenes, places, salient regions 
and possibly of multiple objects in general73–75. Involvement of the parietal regions indicates simultaneous encod-
ing of the spatial relations of the objects within a scene5,76. In the present work, coordination of this network with 
the MT region occurs during perception of the movement in a scene or through a specific place, consistent with 
the view on integrative (form-motion) function of the lateral occipital-temporal cortex77.

Using continuous semantic components to map the patterns of neural activity.  The holistic 
approach in the current study complements what has been learned from research using traditional approaches to 
studying visual semantics and object categorization in controlled63,78,79 and naturalistic80–82 experimental para-
digms using a variety of the neural recording techniques (fMRI, MEG, ECoG, stimulation techniques). But, 
rather than addressing hypotheses by formulating specific questions and constraining the experimental para-
digm, the current bottom-up analysis of data obtained in a natural context maps deep structures of visual input 
onto neural activity. Instead of looking to decode pre-selected discrete semantic categories we focused on the 
variance along individual orthogonal semantic axes37,39,83 extracted from the raw input itself. The fact that the 
categories that have traditionally been investigated, such as faces, places, movement and body parts turned out 
to be the principal components in the visual domain of the feature film, underscores the usefulness of a more 
holistic approach for investigating neural substrates of attribution of semantic meaning to visual input. As such, 
the presented findings constitute an indication of the largest contrasts of semantic features that constitute a key 
dimension in the visual input that cortical networks respond to, which may shed some light on how the brain 
attributes semantic meaning in a natural situation.

Using ECoG for studying semantic representations in the human brain.  Notably, the present 
study is among the few that investigate semantic processing in ECoG neural responses84–88. The majority of the 
work we have previously referred to when interpreting our results use fMRI and MEG for studying semantic rep-
resentations in the brain.24,26,78 While combining the two allows for compensating for each modality’s individual 
drawbacks, neither technique samples the brain responses directly from the neural tissue. Intracranial neural 
recordings, such as ECoG, do not only offer both high temporal and high spatial precision of the signal, they are 
also characterized by exceptional signal-to-noise ratio. The latter allows for analysis of the HFB component of 
the neural signal that is often linked to the local spiking rates and is associated with bottom-up local information 
processing.

Despite its numerous advantages, ECoG data are rare. Most ECoG studies report only a limited number of 
subjects (typically below ten), and therefore have rather limited brain coverage that makes it difficult to investi-
gate whole-brain responses to semantic content84–88. Here, we were able to overcome this limitation as we were 
able to collect ECoG data from a large number of participants (37 subjects), which allowed us to investigate 
HFB activity during semantic processing across a large number of brain regions during naturalistic audiovisual 
stimulation. Importantly, despite the high temporal autocorrelation of the semantic data, we were able to show 
a time-locked response to the semantic content in HFB signal. We also observed specialization of the different 
cortical networks in processing specific semantic information. It is difficult to predict how these results would 
compare to analogous recordings with MEG, for example. The current results make a strong case for a possibility 
of studying whole-brain responses to complex naturalistic stimuli by effective processing of a large ECoG dataset 
and the corresponding stimulus data.

Limitations and further directions.  The present study has a number of limitations. For instance, our 
interpretation of the cortical patterns supporting semantic processing is limited by the ECoG coverage. Not all 
cortical regions were sampled uniformly by ECoG electrodes and activity in deep and folded regions was not 
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recorded. Yet, we do not claim to explain full-brain neural activity underlying semantic processing, but rather 
reveal that high-level properties of the visual stream of the film explain part of the variation of cerebral responses 
in distributed cortical networks. Despite the limitation in coverage, the number of ECoG participants (37 sub-
jects) is relatively large for an ECoG study and the reported results are likely to generalize across individuals.

Given the high correspondence of the HFB signal to both the local neural spiking activity46,49, and the BOLD 
signal47,48, combined with the ability of ECoG to capture crisp HFB activity, the present work only focused on 
that component of the neural response. A promising extension of this work would involve focusing on the cross-
frequency coupling during semantic processing of the visual narrative.

Another limitation lies in the experimental material. Being part of the battery of standard clinical tasks 
developed specifically for diagnostic purposes, the experiment did not use material of a full feature film, but 
comprised a reduced subset of 30 s excerpts of a feature film (in total, 6.5 min long), edited together for a coher-
ent story. Such a stimulus accommodated the main purpose of the clinical task to compare the speech and music 
sound blocks of the film (30 s each). We minimized the effects of this stimulus manipulation by regressing out 
the block structure and the auditory envelope from the cortical responses. Nonetheless, this manipulation might 
have still affected our data and overall, the task structure resulted in a limited amount of data compared to using 
a full feature film material.

We also observed that the visual stream of the film was characterized by high consistency of semantic informa-
tion in consecutive frames. Logically, this makes sense as in a real world the information we perceive shares a lot 
of high-level abstract properties over consecutive time points resulting in high autocorrelation of the semantic 
properties of perceived input. Even though it appears to be an inherent feature of naturalistic semantic process-
ing, it made the investigation of the dynamics of semantic processing rather limited.

Finally, the contents of any feature film in general contain material that people like to observe, and logically are 
likely to include people, actions, movement, various locations and so on. This could lead to an inherent bias in the 
type of semantic information that can be extracted from such material. It could also explain the correspondence 
of the semantic components extracted here with features investigated in isolation with traditional approaches 
(faces, movement, places, etc.). More research with more extended stimulus material is needed to estimate the 
bias and its effect on our understanding about the way semantic information is represented in the human brain.

In addition, we would like to note that our three-stage semi-automatic approach for extraction of semantic 
information in the visual stream of the film is only one of the many possible pipelines that make use of automatic 
processing of perceptual and language information for extraction of semantic meaning. Similarly, we do not 
claim that this approach is optimal for semantic labeling of image or film frames. As our main goal was to extract 
meaningful semantic representations and search for their encoding in the neural responses, we performed no 
comparisons with alternative labeling methodologies (57,60–62 among many others). An interesting extension of 
this work could focus on further methodological developments and comparisons with alternative frameworks 
that use more sophisticated language models19, combine linguistic and perceptual information differently if at 
all, or show other ways to estimate the dimensionality of the semantic data. Finally, more complex approaches 
for modeling semantics of the feature film can be created by combining information from both the auditory and 
the visual channels of information.

Conclusions.  In the present study, we combined advances in computer vision and natural language process-
ing to automatically extract complex semantic information from the visual stream of a short feature film. When 
fitted to predict whole-brain neural responses, these continuous semantic features triggered activation of distinct 
functional cortical networks, each associated with an individual semantic component of the visual narrative. 
These results underscore the potential of computational models that extract high-level semantic information 
from input data to offer insight about how the human brain processes visual information and forms semantic 
representations of the perceived world.

Methods
Film stimulus.  For the film-watching experiment we used a 6.5 min short movie, made of fragments from 
“Pippi Langkous” (Pippi Långstrump, 1969) edited together to form a coherent plot. The task was part of the 
standard battery of clinical tasks performed with a purpose of presurgical functional language mapping. There-
fore, here we worked with a dataset originally collected for diagnostic purposes using restricted experimental 
material. The film consisted of 13 interleaved blocks of speech and music, 30 s each (seven blocks of music, six 
blocks of speech). The movie was originally in Swedish but dubbed in Dutch.

A semi‑automatic bottom‑up approach to obtain vectors of visual semantics from film 
frames.  Visual concept recognition model.  In order to obtain concept labels per frame we first extracted 
all frames from the film’s visual stream and converted them to image files. Then, a pretrained commercial deep 
artificial neural network Clarifai ‘General’ (www.clari​fai.com) was used to obtain the concept labels per frame 
image. Frame images with original RGB colors, 768 × 576 in size were input into the Clarifai concept recognition 
model. A preset dictionary of 5,000 unique concepts was used. The output of the Clarifai model contained 20 
most likely concept labels per image (= frame) and a probability score per label. A total of 518 unique labels were 
assigned to frames in our image set.

The output of the visual concept recognition model was then manually corrected. First, we only considered 
labels with a probability more than 90%, and after making sure that this way we are not losing any unique relevant 
labels per frame, we discarded the labels with a lower probability. Then, we removed all the labels, which were 
incorrectly assigned to the images, for example, ‘dog’, ‘piano’, ‘mirror’, ‘battlefield’, ‘zoo’, etc. Then, we removed 
labels that we deemed irrelevant or difficult to interpret, for example, ‘television’, ‘actor’, ‘abstract’, ‘surreal’, 
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‘insubstantial’, ‘illustration’, etc. Finally, we restricted the list of all labels to nouns (such as ‘people’, ‘nature’, ‘horse’, 
‘food’), adjectives describing a well-defined state or relation ( such as ‘seated’, ‘equestrian’, ‘wooden’) and some 
adverbs (such as ‘together’, ‘indoors’, ‘outdoors’). We also kept various labels describing action (such as ‘walk’, 
‘travel’, ‘dance’, ‘climb’, ‘smile’, etc.). However, most labels referred to objects present in the frame, for example, 
‘house’, ‘table’, ‘animal’, ‘rock’ etc. The manual correction procedure resulted in a reduction of the list of unique 
labels to 129 labels (SI Table S1). Finally, we manually checked that frames did not lack any relevant concept 
labels from the refined label list.

Language model.  We used a word embedding model to associate each film frame with a numerical representa-
tion that would capture the combined semantics of all the concept labels per frame. For this, we used a pretrained 
fastText model (www.fastt​ext.cc), which is the extended version of a skip-gram language model, trained by pre-
dicting the context of a target word.

We downloaded the semantic vectors that were learned by the fastText model when trained on English 
Wikipedia40. The downloaded material contained pairs of words and their corresponding numerical semantic 
vectors, or word embeddings. We looked up a corresponding vector for each label of each frame. The obtained 
vectors were of length 300, which means that the semantic space of the fastText language model was organized 
along 300 dimensions, each potentially capturing some relevant language information. Thus, words with similar 
meanings are represented by vectors with similar values along the 300 dimensions.

Then, per frame, we averaged all numerical semantic vectors (averaging over all labels per frame). This way 
we were able to obtain one semantic vector of length 300 per frame.

Principal component analysis.  The principal component analysis was performed on the averaged semantic vec-
tors obtained in the previous step and pursued two goals. First, we aimed to reduce the dimensionality of the 
semantic vectors. Second, we were interested in a transformation of the semantic space that would uncover the 
dimensions of the most variance. We suspected that the semantic data used in the present study only captured a 
small set of the semantic distinctions between all words in the language model because of our focus only on the 
visually perceived concepts and due to the length and the narrative consistency of the film.

We set the number of principal components to 50 as this transformation provided a considerable reduction 
in dimensionality of the data while preserving over 99.9% of all variance.

Interpretation of the extracted semantic vectors.  To offer interpretation for the top five principal 
semantic components we focused on the examples at the minimum and maximum extreme ends per each com-
ponent. We visualized the frames along with histograms of the concept labels per component.

Then, we performed a post-hoc statistical check by estimating an ordinary least squares fit for the semantic 
components based on the binary vectors of concept labels. Having observed that the fit was significant (under 
p ≪ 0.001 , Bonferroni corrected for the number of semantic components) for each of the top five semantic 
components, per semantic component we ranked the labels according to the regression weight values from most 
negative to most positive ones.

In addition, we visualized the multidimensional semantic space of 50 components using a 2D projection 
based on the t-SNE89 algorithm (SI Figure S2). T-SNE is a dimensionality reduction technique that projects high-
dimensional data to a low-dimensional space suitable for visualization (for example, 2D). The algorithm first 
represents each data point in the high-dimensional space through a conditional probability distribution over its 
neighbors (neighbor embeddings). Then it computes the projection to the low-dimensional space that preserves 
these conditional probabilities (neighbor embeddings) by minimizing the Kullback–Leibler divergence between 
the high-dimensional and low-dimensional probability distributions. The t-SNE low-dimensional projection is 
considered one of the optimal techniques for high-dimensional data visualization that preserves relationships 
between data points at different scales89. Here, we used the scikit-learn90 implementation of the t-SNE technique 
with default parameters (nearest neighbors = 30, learning rate = 200, metric = squared Euclidian distance, number 
of iterations = 1,000).

ECoG experiment.  Participants and procedures.  All participants were admitted for diagnostic procedures 
with medication-resistant epilepsy. They underwent subdural electrode implantation to determine the source of 
seizures and test the possibility of surgical removal of the corresponding brain tissue. Research could be con-
ducted between clinical procedures. All patients gave written informed consent to participate in accompanying 
electrocorticography (ECoG) recordings and gave permission to use their data for scientific research. For par-
ticipants under 18, the informed consent was obtained from the participant’s parents and/or legal guardian. The 
study was approved by the Medical Ethical Committee of the Utrecht University Medical Center in accordance 
with the Declaration of Helsinki (2013).

Thirty-seven patients (age 26 ± 12, 24 females) participated in the film-watching experiment. Thirty patients 
were implanted with left hemispheric grids. Most patients had left hemisphere as language dominant, based on 
fMRI, Wada or functional transcranial Doppler sonography tests (Table 1).

All patients were implanted with clinical electrode grids (2.3 mm exposed diameter, inter-electrode distance 
10 mm, between 48 and 128 contact points); one patient had a high-density grid (1.3 mm exposed diameter, 
inter-electrode distance 3 mm). Almost all patients had temporal grid coverage and most had electrodes in 
frontal, parietal and motor cortices. The total brain coverage of the patients can be seen in Fig. 3. Patient-specific 
information about the grid hemisphere, number of electrodes, and cortices covered is summarized in Table 1.

As mentioned above the ECoG data analyzed here came from a film-watching experiment that used a spe-
cific experimental design (interleaved blocks of speech and music), as it was originally created for the clinical 
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diagnostic purposes. However, as the stimulus retained a lot of its naturalistic nature, these data were later suc-
cessfully reused for research purposes targeting auditory processing during watching a film30,38. The present work 
focuses on another aspect of the film stimulus, namely the semantics of the visual narrative.

In the film-watching experiment, each patient was asked to attend to the film displayed on a computer screen 
(21 inches in diagonal). The stereo sound was delivered through speakers with the volume level adjusted for 
each patient.

During the experiment ECoG data were acquired with a 128-channel recording system (Micromed, Treviso, 
Italy) at a sampling rate of 512 Hz filtered at 0.15–134.4 Hz. The film was presented using Presentation (version 
18.0, Neurobehavioral Systems Inc) and sound was synchronized with the ECoG recordings.

ECoG data processing.  All electrodes with noisy or flat signal (visual inspection) were excluded from further 
analyses. After applying a notch filter for line noise (50 and 100 Hz), common average rereferencing was applied 
to all clinical grids per patient (and separately for the one high-density grid). Data were transformed to the fre-
quency domain using Gabor wavelet decomposition at 1–120 Hz in 1 Hz bins with decreasing window length 
(four wavelength full-width at half maximum). Finally, high frequency band (HFB) amplitude was obtained by 
averaging amplitudes for the 60–120 Hz bins and the resulting time series per electrode were down-sampled 

Table 1.   Electrode grid information for all participants. Shown is information about the number of electrodes, 
grid hemisphere, covered cortices, handedness, and language-dominant hemisphere per patient. L left, R right, 
F frontal cortex, M motor cortex, T temporal cortex, P parietal cortex, O occipital cortex, fMRI functional 
magnetic resonance imaging, fTCD functional transcranial Doppler sonography.

Patient N of electrodes Grid hemisphere Cortices covered Handedness Language dominance

1 96 L F, T, P R L (Wada)

2 112 L F, M, T, P, O R L (fMRI)

3 96 L F, M, T, P, O R L (Wada)

4 104 L F, M, T, P R L (Wada)

5 48 L F, M, T, P L L (fMRI)

6 120 L F, M, T R L (Wada)

7 112 L F, M, T, P R L (fMRI)

8 64 L F, M, T R L (fMRI)

9 112 L M, T, P, O R L (fMRI)

10 64 L M, T, P R L (Wada)

11 96 R M, T, P, O L R (Wada)

12 88 L T, P, O R L (fMRI)

13 112 L F, T, P R R (Wada)

14 120 R F, M, T R L (Wada)

15 96 R F, T, P, O L L (Wada)

16 120 L F, T, P, O not available L (Wada)

17 88 L F, M R L (fMRI)

18 96 L F, M, T, P, O L L (Wada)

19 64 R T, P, O R not assessed

20 64 L F, M, T, P R L (fMRI)

21 88 L F, M, P R L (fMRI)

22 80 L F, M, T, P R L (Wada)

23 128 L F, M, T, P, O R L (fMRI)

24 80 R F, M, T, P, O R L (fMRI)

25 64 L M, T, P, O L L (fMRI)

26 64 R T, P, O R L (Wada)

27 64 L F, M, T R L (fMRI)

28 64 L F, M, T R L (fMRI)

29 48 R F, M, T L R (fMRI)

30 112 L F, M, T R R (fMRI)

31 64 L F, M, T R L (fTCD)

32 64 L F, M, T, P R L (fMRI)

33 120 L T, P, O R L (fMRI)

34 72 L F, M L R (fMRI)

35 72 L F, M R bilateral (fMRI)

36 96 L F, M, T R L (Wada)

37 80 L F, M, T R L (fTCD)
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to 25 Hz, which corresponded to the frame rate of the film. Electrode locations were coregistered to the ana-
tomical MRI in native space using computer tomography scans91,92 and Freesurfer (https​://surfe​r.nmr.mgh.harva​
rd.edu/). The Desikan–Killiany atlas93 was used for anatomical labeling of electrodes (closest cortical structure in 
the radius of 5 mm). All electrode positions were projected to Montreal Neurological Institute space using SPM8 
(Welcome Trust Centre for Neuroimaging, University College London).

Brain visualization: volume and surface projections.  For volume-based visualizations, we used electrode projec-
tions to the subject-specific anatomical volume obtained with the electrode localization tool91. Then, individual 
electrode locations were normalized to the MNI space using patient-specific affine transformation matrices 
obtained with SPM8. For the visualization purposes a 2D Gaussian kernel (FWHM = 8 mm) was applied to the 
coordinate on the MNI brain volume corresponding to the center of the electrode, so that the projected values 
(e.g. prediction accuracy) faded out from the center of the electrode toward its borders. All volume-based visu-
alizations were created in MATLAB, version R2018b (https​://www.mathw​orks.com).

For surface-based visualizations we used Freesurfer functions to project the volume-based electrode coordi-
nates to the subject-specific anatomical surface. Then, these coordinates were projected to the subjects’ common 
Freesurfer space for further visualization on the inflated surface.

However, we noticed that raw projections of the electrode center coordinates resulted in quite patchy visu-
alizations, so we decided to apply some smoothing to all of the cortical overlays based on the electrode values. 
Because of the often occurring overlaps in electrode grids within and between subjects as well as irregulari-
ties of grid placement across subjects, in order to ensure a good result we imposed a regular uniform grid on 
the common Freesurfer surface and made projections of each individual electrode to the closest point of the 
regular grid. We used the uniform icosahedron grid of order 5 – ico5, distributed with the Freesurfer package. 
The smoothing was achieved by applying a Gaussian process algorithm94 to transform the values of each single 
subject’s electrodes to the regular grid in the average subject space. Using this approach allowed for a projection 
of all values to a regular grid while taking into account the cortical distances between electrodes. Values coming 
from multiple electrodes projected onto the same regular grid coordinate were combined by considering their 
distances to that coordinate as well. We used the following Gaussian process implementation with an exponential 
kernel for the electrode distance matrices:

where Ds is a matrix of pairwise distances between electrodes of a single subject, Dc is a matrix of pairwise 
distance between electrodes of a single subject and the points of the regular grid ico5 and η and σ are the free 
parameters: η is a noise parameter and σ is the amount of smoothing in the exponential kernel. Vector y repre-
sents values to be projected from the single subject electrode space to the regular grid space. The distance matrices 
Ds and Dc are calculated as great circle distances on the average Freesurfer sphere surface:

where r is the sphere radius, and vectors u and v are the normalized coordinates of the points on the sphere. 
In the case of a subject’s electrodes, the vertex corresponding to the location of the center of the electrode is used, 
and in the case of the regular grid ico5, the point on the grid is used.

Both matrices Ds and Dc are calculated using single subject electrode coordinates projected to the average 
Freesurfer sphere with Freesurfer resampling functions.

All surface-based visualizations were produced using Freesurfer visualization tool Freeview (https​://surfe​
r.nmr.mgh.harva​rd.edu/fswik​i/Freev​iewGu​ide).

High accuracy of predicting the neural responses based on the extracted semantic compo‑
nents.  Neural encoding model based on the semantic components.  We used the previously extracted seman-
tic components to predict the neural responses. A ridge linear regression model was employed. The values of the 
regularization parameter were determined using five-fold nested cross-validation. Pearson correlation between 
predicted and observed HFB responses in a held-out test set was used to evaluate model performance. The 
model performance was cross-validated using five-fold cross-validation. The correlation values were averaged 
across five cross-validation folds and were transformed to t values for determining significance95. The correlation 
values reported here were significant at p < 0.001 , Bonferroni corrected for the number of electrodes.

Because of the possible interaction between auditory and visual streams of the short film, we implemented 
a number of corrections in our model. First, because the auditory stream contained a block design with inter-
leaved blocks of speech and music, we regressed out both the block design and the auditory envelope from both 
the semantic components and the HFB signal. In case of HFB signal, we first determined the optimal lag for 
regressing out block design and audio envelope through linear fitting at multiple lags (block design) or best lag 
of cross-correlation (audio envelope). Both were done independently and separately per each electrode. Cortical 

(1)g = KT
c (Ks + ηI)−1y

(2)Kc = exp

(

−
D2
c

2σ 2

)

(3)Ks = exp

(

−
D2
s

2σ 2

)

(4)duv = r • arcos(uTv)
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maps of regression to the block design and cross-correlation to audio envelope along with the histograms of lags 
and electrode labels are shown in Supplementary Material (SI Figure S3).

Apart from fitting the regression on semantic components to the residuals of the regressions to block design 
and audio envelope, we also made sure that the test set per each cross-validation fold contained time points from 
multiple music and speech blocks. That is the test set of each cross-validation fold was constructed by concatena-
tion of 6 s fragments across multiple music and speech blocks. This was done to avoid block specific effects in 
testing of each cross-validation fold.

Testing various time shifts.  Having finalized the details of the linear regression fit, we then performed the fit at 
multiple time shifts around the stimulus onset to determine the amount of delay in high-level semantic process-
ing of the visual information. Per time shift, we analyzed the average model performance as well as the number 
of electrodes with a significant fit (at p < 0.001 , Bonferroni corrected for the number of electrodes).

Relation of the cortical networks to individual semantic components.  Next, we aimed to investi-
gate the relationship between brain responses and individual semantic components. In a linear regression model 
this relationship is reflected in the sign and magnitude of the regression coefficients, or β-weights. Thus, we 
focused on the β-weights of the neural encoding model fitted on the semantic components at the time shift that 
provided the highest prediction accuracy (~ 320 ms). We selected β-weights only of those electrodes, whose HFB 
responses were predicted significantly well by the model. The selected β-weights were averaged over five cross-
validation folds and z-scored over electrodes per semantic component.

Then, an affinity propagation clustering96 approach was employed to find groups of electrodes with similar β
-weight profiles across the semantic components. This clustering approach was used due to its non-parametric 
nature (no requirement to specify the number of clusters beforehand) as well as the ability to identify cluster 
exemplars, or data points representative of the entire cluster. We varied the value of the preference parameter 
but the main set of clusters (Fig. 5) was found for all clustering configurations. The present results are reported 
for the preference value equal to min(A)− 2 , where A is the affinity matrix. Similarly, we used either Pearson 
or Spearman correlation coefficient for computing the affinity matrix, and found no significant difference. The 
reported results were obtained using Pearson correlations.

The described clustering configuration produced 13 clusters, however we only reported clusters that were 
non-subject-specific, i.e. they contained electrodes from at least one third of all subjects (12/37) and no more 
than a third of all electrodes in the cluster came from a single subject. Thus, we discarded six clusters: cluster 8 
(7 different subjects; 65% electrodes came from a single subject), cluster 9 (7; 36%), cluster 10 (11; 37%), cluster 
11 (4; 75%), cluster 12 (14; 42%) and cluster 13 (12; 70%).

For the remaining clusters we reported full cluster profiles containing information about the distribution 
over subjects, distribution over the cortical regions, the activation time course and the cortical projection map. 
The distribution over cortical regions was obtained by computing histograms over the cortical labels, associated 
with the location of the center of each electrode. The activation time courses were calculated as the dot product 
between the semantic component values and the β-weights of the cluster exemplar, which is the electrode with 
the most representative cluster-specific β-weight profile.

To explore the relationship between each cluster’s activation time course and individual semantic components 
we applied statistical testing to the frames that were associated with the peaks of the cluster’s activation time 
course and the frames associated with its dips. In order to assess the statistical significance of peaks and dips in 
each cluster’s activation time course we shuffled cluster assignments (10,000 times) to obtain a baseline distribu-
tion of activation time courses per each cluster. Per cluster, we plotted its activation time course and highlighted 
the values corresponding to the 2.5th and 97.5th percentiles of the baseline distribution (which corresponds 
to a two-tailed statistical threshold at p < 0.05). For subsequent analyses relating each cluster’s time course to 
the semantic components we only considered peaks and dips of the cluster’s activation time course that were 
outside of the bulk of the baseline distribution. For peaks, we considered frames above the 97.5th percentile, for 
dips we considered frames below the 2.5th percentile. Then, we selected the frames corresponding to the top 
10% of peaks and the bottom 10% of dips in the cluster’s activation time course. Per semantic component, we 
performed a two-sided Wilcoxon signed rank test to compare values along the semantic component in peaks and 
dips of the cluster’s activation profile. The significance of the statistic was set at p < 0.001 , Bonferroni corrected 
for the number of clusters and semantic components. The procedure was repeated for each cluster. The reported 
values of the statistic were corrected by the amount of variance each semantic component explained by dividing 
the statistic over the percentage of the explained variance. This was done to correct for the gradual decrease in the 
magnitude of values along each semantic component due to its decreasing percentage of the explained variance.

Control for the low‑level visual features.  As we sought to implement control for the confounding effect 
of the low-level visual features, we assessed the relationship between low-level visual features, the semantic com-
ponents and the associated neural responses. First, we assessed the difference in the inner representation of the 
film frames in low-level features and the semantic components. As low-level features we used raw colored pixel 
values of the frame images (pixel) and Gabor features (gabor) configured to model retinotopic responses of com-
plex cells in the early visual cortex of the human brain97. Gabor features were extracted from the greyscale pixel 
values by passing them through a Gabor wavelet pyramid with predefined set of filter sizes and orientations. We 
followed the filter specifications used in the previous work97.

Having extracted pixel and gabor features we computed the amount of similarity between each of them and 
the semantic components. For this, we computed pairwise correlations between all film frames using each type 
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of representation: pixel, gabor and semantic components. Then, we assessed the difference between pixel and 
semantic components as well as gabor and semantic components using two-sided Wilcoxon signed rank tests.

Next, we assessed the difference in the prediction accuracy of the neural responses using pixel, gabor and 
semantic components. However, both pixel and gabor feature sets comprised thousands of features (22,500 pixel 
features and 10,920 gabor features), whereas the set of the semantic features only contained 50 components, which 
led to considerable differences in model complexity. To control for this difference, we projected each low-level 
feature set onto a lower-dimensional space of only 50 components using the principal component analysis, similar 
to the approach taken in obtaining the semantic features. Then, the ridge linear regression models using either 
pixel or gabor 50 principal components were fitted following the same procedures as previously described for 
the fit on the semantic components. Similarly, for consistency of the comparison, we fixed the temporal shift for 
these linear models to the best temporal shift reported for the fit using the semantic components—320 ms. The 
difference in the prediction accuracy between the pixel model and the model using the semantic components 
was assessed using a one-sided Wilcoxon signed rank test on prediction values for all electrodes with significant 
performance in either model ( p < 0.001 , Bonferroni corrected for the number of electrodes). The difference 
between the gabor model and the model using the semantic components was assessed in the same way.

In addition, we fitted the ridge linear models using either pixel or gabor features at a temporal shift of 80 ms 
to examine early visual processing responses.

Emergence of the visual semantics from the low‑level visual features.  Next, we assessed the 
relationship of the semantic components with the visual representations across the object recognition neural 
network. Because we previously used a commercial model to obtain the labels, we did not have access to its inter-
mediate layer representations. Instead, here we used intermediate representations of another popular object rec-
ognition network, called VGG1650. VGG16 was pretrained to identify 1,000 object labels in input images. Due to 
a large network size, we limited our analyses to the representations of all the intermediate pooling layers ( n = 5 ) 
of the VGG16 object recognition network. Thus, we passed every film frame through the pretrained VGG16 
model and preserved only the representations of the five pooling layers. Due to a large number of frames, per 
filter of each pooling layer we applied 2D Gaussian smoothing to the frame representations and downsampled 
them along the image x and y dimensions.

Having obtained the frame representations per pooling layer, we calculated the amount of similarity between 
them and the frame representations based on the semantic components. This was done by first computing 
pairwise correlations between all frames per layer, which resulted in l  square matrices of size f × f  , where l  
is the number of layers and f  is the number of frames. Same was done for the frame representations based on 
the semantic components. Then, per layer-specific matrix we took all its values in the upper triangle and cor-
related them with the upper triangle of the matrix based on semantic components. In essence, we performed 
a simplified version of the representational similarity analysis98,99, where the semantic components were the 
target representation and the pooling VGG16 layers were the candidate representations and Pearson correlation 
was used as a similarity measure. For the statistical inference about the change in similarity with the semantic 
components across the pooling layers we performed bootstrapping. This was done by recalculating Pearson 
correlation between the frame similarity in semantic components and each pooling layer in random samples of 
1,000 frames 10,000 times.

Then, we fitted a ridge linear regression (following all the same procedures as previously described) on each 
of the intermediate VGG16 pooling layers to predict HFB ECoG responses. As in the case of the low-level visual 
features, we projected each set of the VGG 16 pooling layer features onto a lower-dimensional space of only 50 
components using the principal component analysis (original number of features: 87,616 pool1 features; 41,472 
pool2 features; 43,264 pool3 features; 18,432 pool4 features; 25,088 pool5 features). Similarly, we fixed the temporal 
shift for these regressions to the best temporal shift reported for the fit using the semantic components—320 ms. 
The prediction accuracy was cross-validated and projected on the brain volume using the procedures outline 
above. We also reported scatter plots showing the difference in prediction accuracy between the fit on pooling 
layers of VGG16 and the fit on the semantic components (Fig. 6c, SI Figure S7). The difference in the prediction 
accuracy was assessed using one-sided Wilcoxon signed rank tests on prediction values for all electrodes with 
significant performance in either a layer-specific model or a model using the semantic components ( p < 0.001 , 
Bonferroni corrected for the number of electrodes).

Contribution of the language model to the extracted semantic components.  Finally, we ana-
lyzed the difference in prediction accuracy between the ridge linear model using the semantic components and 
the ridge linear model using the concept labels for prediction of the associated neural responses. The main dif-
ference between the two models was the usage of a language model in construction of the semantic components. 
In both models we used the manually corrected concept labels. Concept labels were represented as binary cat-
egorical vectors with each value in the vector corresponding to a specific label. Per frame, the value of zero cor-
responded to the absence of the corresponding concept in the frame image and the value of one corresponded 
to its presence. The ridge linear model was fitted following the same procedure as previously described for the 
fit on the semantic components except that the regression of the block design and the audio envelope was not 
applied to the binary label vectors due to the nature of the categorical label data. To make the comparison with 
the model using the semantic components appropriate, we retrained the linear regression model on the semantic 
components without regressing out the block design and the audio envelope from the semantic components data 
as well. Importantly, both models (the one using the binary labels and the other using the semantic components) 
were fitted on the brain data regressed to the audio envelope and block design at an optimal lag per electrode 
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(see the procedures above) to keep the effects of the audio-visual interactions to the minimum. The prediction 
accuracies of both models were compared at the fixed temporal shift of 320 ms.

The difference in the prediction accuracy between the two models was assessed using a one-sided Wilcoxon 
signed rank test on prediction values for all electrodes with significant performance in either model ( p < 0.001 , 
Bonferroni corrected for the number of electrodes).

Data availability
Custom code supporting the results of the current study is available at https​://githu​b.com/Immio​ra/seman​
tic_encod​ing_ecog_clari​fai_fastt​ext. The ECoG data have not been deposited in a public repository due to the 
restrictions on public sharing of the patients’ data but are available from the corresponding author on request.
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