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Deep neural networks for accurate predictions of
crystal stability
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Predicting the stability of crystals is one of the central problems in materials science. Today,

density functional theory (DFT) calculations remain comparatively expensive and scale

poorly with system size. Here we show that deep neural networks utilizing just two

descriptors—the Pauling electronegativity and ionic radii—can predict the DFT formation

energies of C3A2D3O12 garnets and ABO3 perovskites with low mean absolute errors (MAEs)

of 7–10meV atom−1 and 20–34meV atom−1, respectively, well within the limits of DFT

accuracy. Further extension to mixed garnets and perovskites with little loss in accuracy can

be achieved using a binary encoding scheme, addressing a critical gap in the extension of

machine-learning models from fixed stoichiometry crystals to infinite universe of mixed-

species crystals. Finally, we demonstrate the potential of these models to rapidly transverse

vast chemical spaces to accurately identify stable compositions, accelerating the discovery of

novel materials with potentially superior properties.
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The formation energy of a crystal is a key metric of its
stability and synthesizability. It is typically defined relative
to constituent unary/binary phases (Ef) or the stable linear

combination of competing phases in the phase diagram (Ehull, or
energy above convex hull)1. In recent years, machine learning
(ML) models trained on density functional theory (DFT)2 cal-
culations have garnered widespread interest as a means to scale
quantitative predictions of materials properties3–7, including
energies of crystals. However, most previous efforts at predicting
Ef or Ehull of crystals5,8–12 using ML models have yielded mean
absolute errors (MAEs) of 70–100meV atom−1, falling far short
of the necessary accuracy for useful crystal stability predictions.
This is because approximately 90% of the crystals in the Inorganic
Crystal Structure Database (ICSD) have Ehull < 70 meV atom−113,
and the errors of DFT-calculated formation energies of ternary
oxides from binary oxides relative to experiments are ~ 24 meV
atom−114.

We propose to approach the crystal stability prediction
problem by using artificial neural networks (ANNs)15, i.e.,
algorithms that are loosely modeled on the animal brain, to
quantify well-established chemical intuition. The Pauling elec-
tronegativity and ionic radii guide much of our understanding
about the bonding and stability of crystals today, for example,
in the form of Pauling’s five rules16 and the Goldschmidt tol-
erance factor for perovskites17. Though these rules are quali-
tative in nature, their great success points to the potential
existence of a direct relationship between crystal stability and
these descriptors.

To probe these relationships, we choose, as our initial model
system, the garnets, a large family of crystals with widespread
technological applications such as luminescent materials for
solid-state lighting18 and lithium superionic conductors for
rechargeable lithium-ion batteries19,20. Garnets have the gen-
eral formula C3A2D3O12, where C, A and D denote the three
cation sites with Wyckoff symbols 24c (dodecahedron), 16a
(octahedron) and 24d (tetrahedron), respectively, in the pro-
totypical cubic Ia3d garnet crystal shown in Fig. 1a. The distinct
coordination environments of the three sites result in different
minimum ionic radii ratios (and hence, species preference)
according to Pauling’s first rule. We further demonstrate the
generalizability of our approach to the ABO3 perovskites
(Fig. 1b), another broad class of technologically important
crystals21–25.

In this work, we show that ANNs using only the Pauling
electronegativity26 and ionic radii27 of the constituent species as
the input descriptors can achieve extremely low MAEs of 7–10
meV atom−1 and 20–34 meV atom−1 in predicting the formation
energies of garnets and perovskites, respectively. We also intro-
duce two alternative approaches to extend such ANN models
beyond simple unmixed crystals to the much larger universe of
mixed cation crystals—a rigorously defined averaging scheme for
the electronegativity and ionic radii for modeling complete cation
disorder, and a novel binary encoding scheme to account for the
effect of cation orderings with minimal increase in feature
dimension. Finally, we demonstrate the application of the NN
models in accurately and efficiently identifying stable composi-
tions out of thousands of garnet and perovskite candidates,
greatly expanding the space for the discovery of materials with
potentially superior properties.

Results
Model construction and definitions. We start with the
hypothesis that the formation energy Ef of a C3A2D3O12

garnet is some unknown function f of the Pauling electro-
negativities (χ) and Shannon ionic radii (r) of the species in the C,

A, and D sites, i.e.,

Ef ¼ f χC; rC; χA; rA; χD; rD
� � ð1Þ

Here, we define Ef as the change in energy in forming the garnet
from binary oxides with elements in the same oxidation states, i.e.,
Eoxide
f as opposed to the more commonly used formation

energy from the elements Eelement
f in previous works8–11. Using

the Ca3Al2Si3O12 garnet (grossular) as an example, Eoxide
f is

given by the energy of the reaction: 3CaO+Al2O3+
3SiO2 → Ca3Al2Si3O12. This choice of definition of Ef is motivated
by two reasons. First, binary oxides are frequently used as
synthesis precursors. Second, our definition ensures that garnets
that share elements in the same oxidation states have Ef that are
referenced to the same binary oxides, minimizing well-known
DFT errors. In contrast, Eelement

f and Ehull are both poor target

metrics for a ML model. Eelement
f suffers from non-systematic DFT

errors associated with the incomplete cancellation of the self-
interaction error in redox reactions28, while Ehull is defined with
respect to the linear combination of stable phases at the
C3A2D3O12 composition in the C-A-D-O phase diagram, which
can vary unpredictably even for highly similar chemistries.
Henceforth, the notation Ef in this work refers to Eoxide

f unless
otherwise stated. The binary oxides used to calculate the Ef for
garnets and perovskites are listed in Supplementary Table 1 and 2,
respectively.

Based on the universal approximation theorem29, we may
model the unknown function f(χC,rC,χA,rA,χD,rD), which is clearly
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A site

D site
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Fig. 1 Crystal structures of garnet and perovskite prototypes. a Crystal
structure of Ia3d C3A2D3O12 garnet prototype. Green (C), blue (A), and red
(D) spheres are atoms in the 24c (dodecahedron), 16a (octahedron), and
24d (tetrahedron) sites, respectively. The orange spheres are oxygen
atoms. b Crystal structure of Pnma ABO3 perovskite prototype. Green (A)
and blue (B) spheres are atoms in the 4c (cuboctahedron) and 4d
(octahedron) sites, respectively. The orange spheres are oxygen atoms
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non-linear (see Supplementary Fig. 1), using a feed-forward
ANN, as depicted in Fig. 2. The loss function and evalua-
tion metric are chosen to be the mean squared error (MSE) and
MAE, respectively. We will denote the architecture of the ANN
using ni−n[1]−n[2]−···−1, where ni and n[l] are the number of
neurons in the input and lth hidden layer, respectively.

Neural network model for unmixed garnets. We developed an
initial ANN model for unmixed garnets, i.e., garnets with only one
type of species each in C, A, and D. A data set comprising 635
unmixed garnets was generated by performing full DFT relaxation
and energy calculations (see Methods) on all charge-neural com-
binations of allowed species (Supplementary Table 3) on the C, A,
and D sites30. This dataset was randomly divided into training,
validation, and test data in the ratio of 64:16:20. Using 50 repeated
random sub-sampling cross validation, we find that a 6-24-1 ANN
architecture yields a small root mean square error (RMSE) of 12
meV atom−1, as well as the smallest standard deviation in the
RMSE among the 50 sub-samples (Supplementary Fig. 2a). The
training, validation and test MAEs for the optimized 6-24-1 model
are ~7–10meV atom−1 (Fig. 3a), an order of magnitude lower than
the ~100meV atom−1 achieved in previous ML models5,8–10. For
comparison, the error in the DFT Ef of garnets relative to experi-
mental values is around 14meV atom−1 (Supplementary Table 4).
Similar RMSEs are obtained for deep neural network (DNN)
architectures containing two hidden layers (Supplementary Fig. 2b),
indicating that a single-hidden-layer architecture is sufficient to
model the relationship Ef and the descriptors.

Averaged neural network models for mixed garnets. To extend
our model to mixed garnets, i.e., garnets with more than one type
of species in the C, A, and D sites, we explored two alternative
approaches—one based on averaging of descriptors, and another
based on expanding the number of descriptors to account for the
effect or species ordering. The data set for mixed garnets were

created using the same species pool, but allowing two species to
occupy one of the sites. Mixing on the A sites was set at a 1:1
ratio, and that on the C and D sites was set at a 2:1 ratio, gen-
erating garnets of the form C3A’A”D3O12 (211 compositions),
C’C’’2A2D3O12 (445 compositions), and C3A2D’D’’2O12 (116
compositions). For each composition, we calculated the energies
of all symmetrically distinct orderings within a single primitive
unit cell of the garnet. All orderings must belong to a subgroup of
the Ia3d garnet space group.

In the first approach, we characterized each C, A, or D site
using weighted averages of the ionic radii and electronegativities
of the species present in each site, given by the following
expressions (see Methods):

ravg ¼ xrX þ 1� xð ÞrY ð2Þ

χavg ¼ χO �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x χX � χO
� �2þ 1� xð Þ χY � χO

� �2q
ð3Þ

where X and Y are the species present in a site with fraction x
and (1−x), respectively, and O refers to the element oxygen. The
implicit assumption in this “averaged” ANN model is that species
X and Y are completely disordered, i.e., different orderings of X
and Y result in negligible DFT energy differences.

Using the same 6-24-1 ANN architecture, we fitted an
“averaged” model using the energy of the ground state ordering
of the 635 unmixed and 772 mixed garnets. We find that the
training, validation, and test MAEs of the optimized model are
22, 26, and 26 meV atom−1, respectively (Supplementary Fig. 3a).
These MAEs are about double that of the unmixed ANN model,
but still comparable to the error of the DFT Ef relative to
experiments. The larger MAEs may be attributed to the fact that
the effect of species orderings on the crystal energy is not
accounted for in this “averaged” model.

Ordered neural network model for mixed garnets. In the second
approach, we undertook a more ambitious effort to account for the
effect of species orderings on crystal energy. Here, we discuss the
results for species mixing on the C site only, for which the largest
number of computed compositions and orderings is available. For
2:1 mixing, there are 20 symmetrically distinct orderings within the
primitive garnet cell, which can be encoded using a 5-bit binary
array [b0,b1,b2,b3,b4]. This binary encoding scheme is significantly
more compact that the commonly used one-hot encoding scheme,
and hence, minimizes the increase in the descriptor dimensionality.
We may then modify Eq. 1 as follows:

Ef ¼ f χC′ ; rC′ ; χC′′ ; rC′′ ; χA; rA; χD; rD; b0; b1; b2; b3; b4
� �

ð4Þ

where the electronegativities and ionic radii of both species on the
C sites are explicitly represented. In contrast to the “averaged”
model, we now treat the 20 ordering-Ef pairs at each composition
as distinct data points. Each unmixed composition was also
included as 20 data points with the same descriptor values and Ef,
but different binary encodings.

We find that a two-hidden-layer DNN is necessary to model
this more complex composition-ordering-energy relationship.
The final optimized 13-22-8-1 model exhibits overall training,
validation and test MAEs of ~11–12 meV atom−1 on the entire
unmixed and mixed dataset (Supplementary Fig. 3b). The
comparable MAEs between this extended DNN model and the
unmixed ANN model is clear evidence that the DNN model has
successfully captured the additional effect of orderings on Ef. We
note that the average standard deviation of the predicted Ef of
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Fig. 2 General schematic of the artificial neural network. The artificial neural
network (ANN) comprises an input layer of descriptors (the Pauling
electronegativity and ionic radii on each site), followed by a number of
hidden layers, and finally an output layer (Ef). The large circle in the centre
shows how the output of the ith neuron in lth layer, a l½ �

i , is related to the
received inputs from (l−1)th layer a½l�1�

j . w l½ �
i;j and b l½ �

i denote the weight and
bias between the jth neuron in (l−1)th layer and ith neuron in lth layer. σ is
the activation function (rectified linear unit in this work). The ANN models
were implemented using Keras39 deep learning library with the
Tensorflow40 backend
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different orderings of unmixed compositions using this extended
DNN model is only 2.8 meV atom−1, indicating that the DNN
has also learned the fact that orderings of the same species on a
particular site have little effect on the energy. Finally, similar
MAEs can be achieved for A and D site mixing (Supplementary
Fig. 3c and 3d) using the same approach.

Stability classification of garnets using ANN models. While Ef
is a good target metric for a predictive ANN model, the stability
of a crystal is ultimately characterized by its Ehull. Using the
predicted Ef from our DNN models and pre-calculated DFT data
from the Materials Project31, we have computed Ehull by con-
structing the 0 K C-A-D-O phase diagrams. From Fig. 4a, we may
observe that the extended C-mixed DNN model can achieve a
>90% accuracy in classifying stable/unstable unmixed garnets at a
strict Ehull threshold of 0 meV atom−1 and rises rapidly with
increasing threshold. Similarly, high classification accuracies of

greater than 90% are achieved for all three types of mixed garnets.
Given the great flexibility of the garnet prototype in accom-
modating different species, there are potentially millions of
undiscovered compositions. Even using our restrictive protocol of
single-site mixing in specified ratios, 8427 mixed garnet compo-
sitions can be generated, of which 2307 are predicted to have Ehull
of 0 meV atom−1, i.e., potentially synthesizable (Supplementary
Fig. 4a). A web application that computes Ef and Ehull for any
garnet composition using the optimized DNNs has been made
publicly available for researchers at http://crystals.ai.

Neural network models for unmixed and mixed perovskites. To
demonstrate that our proposed approach is generalizable and not
specific to the garnet crystal prototype, we have constructed
similar neural network models using a dataset of 240 unmixed,
222 A-mixed and 80 B-mixed ABO3 perovskites generated using
the species in Supplementary Table 5. We find that a 4-12-1
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Fig. 3 Performance of artificial neural network (ANN) models. a Plot of EANNf against EDFTf of unmixed garnets for optimized 6-24-1 ANN model. The
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encoded using 4-bit binary arrays. The black lines (dashed) in (a, c) are the identity lines serving as references
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single-hidden-layer neural network is able to achieve MAEs of
21–34 meV atom−1 in the predicted Ef for unmixed perovskites
(Fig. 3c), while two 10-24-1 neural networks are able to achieve
MAEs of 22–39 meV atom−1 in the Ef of the mixed perovskites
(Supplementary Fig. 5). These MAEs are far lower than those of
prior ML models of unmixed perovskites, which generally have
MAEs of close to 100 meV atom−1 or higher9,16. As shown in
Fig. 3b, the accuracy of classifying stable versus unstable per-
ovskites exceeds 80% at a strict Ehull threshold of 0 meV atom−1

and maintains at above 70% at a loosened Ehull threshold of 30
meV atom−1. During the review of this work, a new work by Li
et al.32 reported achieving comparable MAEs of ~28 meV atom−1

in predicting the Ehull of perovskites using a kernel ridge
regression model. However, this performance was achieved using
a set of 70 descriptors, with model performance sharply dropping
with less than 70 descriptors. Furthermore, Li et al.’s model is
restricted to perovskites with Ehull < 400 meV atom−1 and only a
single ordering for each mixed perovskite, while in this work, the
highest Ehull is 747 meV atom−1 for the perovskite dataset and all
symmetrically distinct orderings on the A and B sites within a
√2×√2×1 orthorhombic conventional perovskite unit cell (ten
structures each) are considered.

Discussion
To summarize, we have shown that NN models can quantify the
relationship between traditionally chemically intuitive descriptors,

such as the Pauling electronegativity and ionic radii, and the
energy of a given crystal prototype. A key advantage of our pro-
posed NN models is that they rely only on an extremely small
number (two) of site-based descriptors, i.e., no structural degrees
of freedom are considered beyond the ionic radii of a particular
species in a site and the ordering of the cations in the mixed
oxides. This is in stark contrast to most machine-learning models
in the literature utilizing a large number of correlated descriptors,
which render such models highly susceptible to overfitting, or
machine-learning force-fields, which can incorporate structural
and atomic degrees of freedom but at a significant loss of trans-
ferability to different compositions. Most importantly, we derive
two alternative approaches—a rigorously defined averaging
scheme to model complete cation disorder and a binary encoding
scheme to account for the effect of orderings—to extend high-
performing unmixed deep learning models to mixed cation crys-
tals with little/no loss in error performance and minimal increase
in descriptor dimensionality. It should be noted that our NN
models are still restricted to the garnet and perovskite composi-
tions (with or without cation mixing) with no vacancies, though
further extensions to other common crystal structure prototypes
and to account for vacancies should in principle be possible.
Finally, we show how predictive models of Ef can be combined
with existing large public databases of DFT computed energies to
predict Ehull and hence, phase stability. These capabilities can be
used to efficiently traverse large chemical spaces of unmixed and
mixed crystals to identify stable compositions and orderings,
greatly accelerating the potential for novel materials discovery.

Methods
DFT calculations. All DFT calculations were performed using Vienna ab initio
simulation package (VASP) within the projector augmented-wave approach33,34.
Calculation parameters were chosen to be consistent with those used in the
Materials Project, an open database of pre-computed energies for all known inor-
ganic materials31. The Perdew-Burke-Ernzehof generalized gradient approximation
exchange-correlation functional35 and a plane-wave energy cut-off of 520 eV were
used. Energies were converged to within 5 × 10−5 eV atom-1, and all structures were
fully relaxed. For mixed compositions, symmetrically distinct orderings within the
80-atom primitive garnet unit cell and the 40-atom √2×√2×1 orthorhombic per-
ovskite supercell were generated using the enumlib library36 via the Python
Materials Genomics package.37

Training of ANNs. Training of the ANNs was carried out using the Adam opti-
mizer38 at a learning rate of 0.2, with the mean square error of Ef as the loss metric.
For each architecture, we ran with a random 64:16:20 split of training, validation
and test data, i.e., random sub-sampling cross validation.

Electronegativity averaging. Pauling’s definition of electronegativity is based on
an “additional stabilization” of a heteronuclear bond X–O compared to average of
X–X and O–O bonds, as follows.

χX � χO
� �2¼ Ed XOð Þ � Ed XXð Þ þ Ed OOð Þ

2

where χX and χO are the electronegativities of species X and O, respectively, and Ed
is the dissociation energy of the bond in parentheses. Here, O refers to oxygen.

For a disordered site containing species X and Y in the fractions x and (1−x),
respectively, we obtain the following:

χXxY1�x
� χO

� �2
¼ xEd XOð Þ þ 1� xð ÞEd YOð Þ

� xEd XXð Þ þ 1� xð ÞEd YYð Þ þ Ed OOð Þ
2

¼ x χX � χO
� �2þ 1� xð Þ χY � XO

� �2

We then obtain the effective electronegativity for the disordered site as follows:

χXxY1�x
¼ χO �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x χX � χO
� �2þ 1� xð Þ χY � χO

� �2q
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Fig. 4 Accuracy of stability classification. Plots of the accuracy of stability
classification of the ANN models compared to DFT as a function of the Ehull
threshold for a. garnets, and b. perovskites. The accuracy is defined as the
sum of the true positive and true negative classification rates. A true
positive (negative) means that the Ehull for a particular composition
predicted from the optimized artificial neural network model and DFT are
both below (above) the threshold. For the mixed compositions, an Ehull is
calculated for all orderings (20, 7, and 18 orderings per composition for C-,
A-, and D-mixed garnets, respectively, and ten orderings per composition
for both A- and B-mixed perovskites)
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Data availability
The datasets generated during and/or analysed during the current study are available in
the GitHub repository https://github.com/materialsvirtuallab/garnetdnn as well as the
Dryad Digital Repository (doi: 10.5061/dryad.760r5b6). A web application that estimates
Ef and Ehull for any given garnet or perovskite composition using the optimized DNNs is
available at http://crystals.ai/.
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