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Abstract
Amulti-targeting protocol for the detection of three of the most important bacterial phyto-

pathogens, based on their scientific and economic importance, was developed using an

acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection

was based on a novel approach where DNA amplicons were monitored and discriminated

based on their length rather than mass. Experiments were performed during real time moni-

toring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing

signal transduction. The proposed protocol improves time processing by circumventing gel

electrophoresis and can be incorporated as a routine detection method in a diagnostic lab

or an automated lab-on-a-chip system for plant pathogen diagnostics.

Introduction
Detection of bacterial plant pathogens relies on internationally agreed diagnostic protocols
published by official entities such as the European and Mediterranean Plant Protection Organi-
zation [1]. They are based on biochemical tests, serological typing (immunofluorescence,
enzyme-linked immunosorbent assay—ELISA, protein profiling (SDS-PAGE), fatty acid
methyl-ester (FAME) profiling, pathogenicity confirmation testing) and polymerase chain
reaction (PCR)—based techniques [2]. PCR mainly focuses on amplification of the 16S rRNA
gene and the 16S-23S internal transcribed spacer by genera or species specific primers, com-
bined occasionally with simple restriction fragment length polymorphisms (RFLPs) and repeti-
tive-sequence-based PCR (REP-PCR) analysis. Other primer targets usually include genera
and species specific genes [3]. Real time, multiplex and competitive PCR protocols have been
developed [4,5] to overcome main drawbacks of PCR-based methods: sensitivity, cross reaction
with other bacteria, and false negatives or positives, usually associated to the DNA extraction
method used and/or the plant tissue [6].

In a recent study, the polymerase chain reaction was paired with acoustic biosensors for
detecting different types of mutations in Anopheles and the human BRCA1 and BRCA2 genes
[7,8]. The described methodology combines the sensitivity and selectivity of the PCR method
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with the label free nature of acoustic biosensing while DNA detection is achieved within only a
few minutes and during real time monitoring. The amplified PCR products can be directly
immobilized through biotin-avidin interactions [9] on the surface of the acoustic sensor with-
out the need of post-PCR purification. DNA binding affects the characteristics of the acoustic
waves propagating on the sensor surface, i.e. velocity and energy, which in turn are monitored
as changes in frequency and dissipation [10]. Frequency changes can be related to the mass of
the immobilized DNA while energy dissipation to the viscoelastic properties of the bound mol-
ecules. The energy dissipation per unit mass ratio (acoustic ratio) was shown to be related to
the length of the attached analyte [7,11].

The current work, combines for the first time the Quartz Crystal Microbalance (QCM), a
commercial acoustic biosensor system, with a multiplex PCR reaction for the simultaneous
detection of three of the most economically/scientifically important [12], plant bacterial patho-
gens; i.e. Ralstonia solanacearum (Rsol), Pseudomonas syringae pv tomato (Pto) and Xantho-
monas campestris pv. vesicatoria (Xcv). All the above which include tomato (Solanum
lycopersicum) as their host range cannot be accurately detected with conventional PCR meth-
ods are results are often inconsistent. For example, most protocols for Xanthomonas campestris
pathovar detection target the 16S rRNA gene which exhibits a 98% similarity within the genus
Xanthomonas[13]. To develop the multiplexed assay initially we assessed all the available and
approved primers for the detection of the selected three pathogens [3] and selected those that
resulted in three products of distinct sizes.

Bacterial wilt is a devastating plant vascular disease caused by Ralstonia solanacearum, a
genetically diverse soil-borne pathogen with an extremely wide host range [14]. It occurs in
tropical, subtropical and warm temperate areas throughout the world, causing great losses in
agriculture, is considered a quarantine pathogen and no effective chemical product is available
for its control.

Pseudomonas syringae is a widespread bacterial pathogen that causes disease on a broad
range of economically important plant species. The species P. syringae is sub-divided into about
50 pathovars, each exhibiting characteristic disease symptoms and distinct host-specificities
[15]. P. syringae pathovar tomato (Pto) is the cause of bacterial speck of tomato, a seedborne dis-
ease that has become economically important throughout the world since the mid-1970s.

Bacterial spot of pepper and tomato plants, is caused by bacterial spot-causing xanthomo-
nads (BSX) of which two distinct groups compose the formerly known Xanthomonas campes-
tris pv. vesicatoria[16]. Xcv is considered a quarantine organism in the European Union A2 list
[1] due to its economic importance and its prolong survival in tomato and tomato seeds.

Materials and Methods

Bacterial strains, growth conditions and inoculation assays
Bacteria utilized in this study included P. syringae pv tomato Rifampicin resistance type strains
DC3000/ DC3001 [17,18] strains BPIC 315 and BPIC 389 from the Benaki Phytopathological
Institute culture Collection (BPIC); R. solanacearum type strain GMI 1000 and strain BPIC 819
(BPI) and Xanthomonas campestris pv. vesicatoria strain 5071 (D. Goumas, pers. collection)
and other Xcv strains isolated from pepper and tomatoes at BPI. Strains were routinely grown
on LB medium, NA agar [19] for 24 h at 28°C; Pto strain were also grown in King's B (KB)
medium [20].

To prepare inoculums, cultures were grown in 5 ml of liquid LB medium; bacterial cells
were then harvested by centrifugation at 2.800 rpm for 10 min in 10°C, washed twice in 10 mM
MgCl2 and finally re-suspended to an OD600 of 0.12 (108 cfu ml-1 in sterile 10 mMMgCl2).
Inoculum concentration was then adjusted to 5 ×105 cfu ml-1, and used for inoculation of
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tomato plants cv. Belladonna. Plants were grown from surface sterilized seeds which were ger-
minated on moist potting soil and then transplanted into 10 cm pots containing a three-ele-
ment (NPK) complex fertilized soil and maintained in a glasshouse at 25°C and 16h
photoperiod. They were inoculated at the 4 to 5 true leaf stage following respective schemes for
each pathogen. In detail, Pto and Xcv inoculums were infiltrated by gently pressing a syringe
on the abaxial surface of leaves and injecting 150 μl into the intercellular spaces [21]. In addi-
tion, to simulate natural infection a 108 cfu ml-1 concentration of Pto and Xcv inoculums-pre-
pared as described above—were also sprayed in the upper and lower surface of leaves in the
presence of the X77 (Loveland Inc.) spreading agent. Rsol inoculum was also prepared as
described above, adjusted to cell density of 107 cfu ml-1 and a 50 ml suspension was then
drenched to pots containing tomato plants.

Total cell count determination
Total cell count of each of the bacterial suspensions was determined by plating 100 μl samples
of serial 10-fold dilutions of each suspension. The internal pathogen population at each sam-
pling point was calculated using 8 mm-diameter leaf/vascular tissue samples that were surface
sterilized for epiphytic bacteria. Samples were then homogenized in 10mMMgCl2, before plat-
ing the 100 μl samples of the homogenate onto NA agar containing the appropriate antibiotic
to allow for colony forming unit (cfu) development after a 48 h incubation at 28°C.

Isolation and manipulation of bacterial DNA
Genomic DNA from bacterial cultures was extracted based on the method developed by Mur-
ray and Thompson (1980)[22]. Bacterial DNA was isolated from infected plant tissue either by
diffusion of bacteria, centrifugation at 4.000 rpm for 10 min in 10°C and application of the pre-
viously mentioned protocol, or as crude DNA extract using Whatman FTA Elute Cards (USA).
Samples were collected daily after inoculation.

Evaluation of multiplex PCR sensitivity
Multiplex PCR sensitivity was evaluated using DNA extracts from bacterial cultures ranging
from 107 to 101 cfu ml-1. The same range of pathogen suspensions were also used as whole cell
templates for PCR amplification as described by Cuppels et al. (2006)[17]. The limit of detec-
tion and the interference of tomato tissue with the efficiency of DNA extraction or PCR ampli-
fication was also determined in single pathogen infections by extracting bacterial DNA from
infected plant tissue samples on a daily basis. The pathogen population on each sample was
counted as mentioned previously.

Multiplex PCR assay
To develop a multiplex PCR for the simultaneous detection of three pathogens using an acous-
tic biosensor several primer pairs were assessed in silico for compatibility in a multiplex PCR.
The following PCR primer pairs were selected: OLI1 (5’ GGGGGTAGCTTGCTACCTGCC 3’)
and Y2 (5’ cccactgctgcctcccgtaggagt 3’) for amplification of a 288 bp fragment
from a Rsol DNA template [23]; COR1 (5’ gga ctc agc agt atc atc tcg gga cg 3’)
and COR2 (5’ tgc agg gtc ttg ggg agc acg 3’) for amplification of a 689 bp fragment
from a Pto DNA template [17]; RST 65 (5’ GTC GTC GTT ACG GCA AGG TGG TCG 3’) and
RST69 (5’ tcg ccc agc gtc atc agg cca tc 3’) for amplification of a 420 bp fragment
from a Xcv DNA template [24]. Each primer pair was tested under the reported PCR condi-
tions using genomic DNA or by increasing the denaturation step 3 mins for whole cell
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templates. Amplification was performed in 0.2 ml thin-walled PCR tubes in a Applied Biosys-
tems (USA) Veriti thermal cycler. The final 25 μl reaction mixture contained 1 x PCR buffer,
2.0 mMMgCl2, 0.2 mM of each dNTP, 0.8 μM each primer and 1U of KAPATaq DNA poly-
merase (Kapabiosystems, USA) in addition to 1μl of bacterial DNA template.

Once end-point PCR was standardized, a multiplex reaction protocol was developed using
gradient PCR, seeking to amplify products from DNA, whole cell or infected plant material
templates. Gradient PCR was performed in the following conditions: one cycle at 95°C for 2
mins (5 mins for whole cell template); 30 cycles of 30 sec at 95°C, 30 sec at 54, 58, 61, 63, 66 or
68°C and 40 sec at 72°C; and final extension at 72°C for 5 mins. Each single PCR product from
multiplex PCR was sequenced on sense and antisense strands using an ABI 3730 sequencer. To
increase the speed of the multiplex amplification protocol the KAPA2G Fast HotStart Taq
DNA polymerase (Kapabiosystems, USA) was employed using the following cycling condi-
tions: one cycle at 95°C for 2 mins (5 mins for whole cell template); 30 cycles of 10 sec at 95°C,
15 sec at 63°C and 10 sec at 72°C. The two end-point multiplex PCR protocols described above
were repeated using 5’-end biotinylated (FRIZ, Germany) and non-biotinylated primers as for-
ward and reverse primers, respectively. The PCR products (5μl) were loaded into 1.5% agarose
gels in 0.5 TBE buffer (O.089M Tris-borate, 0.002M EDTA, pH 8.0) for electrophoresis and
analysis under standard conditions. Products that were amplified using the fast-multiplex PCR
protocol were used for the acoustic measurements.

Experimental setup and real time acoustic measurements
Acoustic measurements were performed with the Q-Sense E4 instrument (QSense, Sweden)
using gold crystals operating at 35 MHz, cleaned by etching for 2.30 min at high power in a
Harrick Plasma Cleaner using air. The gold sensors were immediately transferred to the instru-
ment and the system was filled with PBS buffer using a peristaltic pump at a flow rate of 75 μl/
min. 200 μl of neutravidin (Invitrogen) at a concentration of 200 μg/ml were adsorbed at the
sensor surface followed by PBS rinsing. PCR reactions without purification were diluted in PBS
buffer to a volume of 200 μl and loaded on the sensor followed by buffer rinsing (Fig 1).

Real time graphs of dissipation (D) and frequency (F) during DNA binding were used to
measure the acoustic ratio expressed as ΔD/ΔF, where ΔF corresponds to the raw frequency
data, i.e. not divided by the overtone number. Multiplex fast PCR reactions containing tem-
plate corresponding to each of the 3 pathogens and one non template control (NTC) (negative)
reaction without template were prepared and loaded on the sensor. The reactions were added
on the same sensor in a consecutive order. Firstly, (A) the negative control followed by the 3
PCR reactions containing amplicons corresponding to (B) Pto, (C) Rsol and finally (D) Xcv
pathogens. Between samples addition the sensor was rinsed with PBS buffer. Each measure-
ment was repeated three times. Additions in a consecutive order is possible since it has been
shown that the acoustic ratio is independent of the surface history, i.e., previous loading steps
[11,25], as long as the available binding positions have not reached saturation.

Results

Development of a multiplex PCR for acoustic detection
The acoustic method for DNA detection is achieved during the immobilization of biotinylated
DNAmolecules on a neutravidin coated device surface (Fig 1). DNA binding causes changes in
the frequency (ΔF) and dissipation (ΔD) of the acoustic wave. Acoustic measurements are then
expressed as an acoustic ratio (ΔD/ΔF) which is linearly related to the number of base pairs of a
DNAmolecule, approximately up to 300 bp [7]. Above this linear range, the acoustic ratio still
increases with DNA length up to 1000 bp at which point a plateau is reached (data not shown).
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Towards the development of a multiplex assay for the simultaneous detection of 3 different
pathogens with the acoustic method, the primer pairs should be chosen so that the produced
PCR amplicons are between 100 and 1000 bp and with differences of at least 100 bp between
any two of them. This difference in base pairs number was considered essential to ensure that
three clearly distinct acoustic ratios corresponding to three distinct DNA lengths would be
measured with the acoustic sensor.

Several primer pairs were assessed in silico for pairwise compatibility in a multiplex PCR for
the simultaneous detection of Rsol, Pto and Xcv (data not shown). The selected primer pairs
were OLI1 and Y2, amplifying a 288 bp fragment of the 16S rRNA gene in the case of Rsol[23];
COR1/2, amplifying a 689 bp fragment of a gene cluster controlling production of the Pto phy-
totoxin coronatine [17]; and RST 65/69, amplifying a 420 bp fragment of the Xcv hrp gene clus-
ter, encoding for a protein secretion system [26], for [24]. An end point multiplex PCR was
developed using gradient PCR; amplification was specific at an annealing temperature of 63–
69°C (Fig 2) and specificity was confirmed by sequencing of the amplified products on sense
and antisense strands. Amplification was successfully tested for each of the three pathogens
and in DNA extracts of overnight cultures, whole cell templates and infected tissue (crude
extracts or diffused bacteria).

Acoustic detection of the 3 pathogens
Real time binding graphs (Fig 3) were used to calculate the acoustic ratio (ΔD/ΔF) for every
binding step, each one corresponding to the addition of one of the target DNAs; the acoustic
ratios obtained for each pathogen are summarized in fig 4.

The acoustic ratio for the NTC reaction 199±38 (10−10/Hz) is in agreement with previous
data from similar measurements of unpurified PCR reactions with QCM-D [8]. When DNA

Fig 1. Experimental procedure for acoustic measurements. The method consists of two steps: 1. End-
point PCR and 2. PCR product immobilization. Before addition of the PCR reaction, neutravidin protein is
adsorbed on a clean gold QCM crystal and biotinylated DNA is immobilized through biotin-neutravidin
interactions. Biomolecules are not drawn in scale.

doi:10.1371/journal.pone.0132773.g001

Fig 2. Multiplex polymerase chain reaction showing specificity of three primer pairs to amplify
Pseudomonas syringae pv. tomato (lane 1–6), Xanthomonas campestris pv. vesicatoria (lane 7–12) or
Ralstonia solanacearum (lanes 13–18) at anealling temperatures of 58, 61, 63, 66, 68, 69°C; lane L: 1
kb ladder; lane 19: non-template control.

doi:10.1371/journal.pone.0132773.g002
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template was added to the multiplex reaction three distinct acoustic ratios were measured. For
the 689 bp amplicons corresponding to Pto the acoustic ratio was 778±59 (10−10/Hz), while for
the 288 bp of Rsol and the 422 bp for Xcv it was found to be 509±8 (10−10/Hz) and 669±13
(10−10/Hz), respectively. All three ratios are significantly above the corresponding control
value and since no overlapping is observed among them, each one can be clearly attributed to a
particular pathogen (Fig 4). Note that ratios correspond to the mean value derived from at least
3 experiments.

Limit of detection of the multiplex PCR and the acoustic detection
method
When DNA extracts from pure bacterial cultures were used as templates for the multiplex PCR
reaction and amplified products were visualized in agarose gels, the limit of detection was
found to be 101−102 cfu with each bacterial DNA template. When whole bacterial cell were

Fig 3. Real time graph depicting changes in dissipation and frequency upon samples addition in a
consecutive order. (A) Non template control, (B) Pseudomonas syringae pv. tomato, (C) Ralstonia
solanacearum and (D) Xanthomonas campestris pv. vesicatoriamultiplex PCR reactions.

doi:10.1371/journal.pone.0132773.g003

Fig 4. Comparison of the acoustic ratios measured for the 3 different pathogens and the negative
control.

doi:10.1371/journal.pone.0132773.g004
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used as templates, the limit of detections was found to be 102−103 cfu. Therefore, sensitivity
levels for the multiplex PCR do not differ to those reported for the respective single PCR or
similar multiplex PCR protocols [27].

In Rsol and Pto single pathogen infection assays, the extraction of crude DNA directly from
inoculated plant tissue was found to be more efficient compared to diffusion of bacteria from
tissue followed by DNA extraction. In detail, the limit of detection with crude DNA extracts as
templates was found to be 103−104 cfu. This corresponds to a bacterial population of 106 cfu/
cm2 of plant tissue, in samples taken 2 days post infiltration (Fig 5AI) or 6 days after spraying
with Pto, and before the appearance of tissue collapse and development of necrotic lesions (Fig
5AII). Similarly, detection limits correspond to samples taken 7 days after Rsol inoculation,
when wilting symptoms appeared (Fig 5B). The method was also successfully tested in DNA
extracts of overnight bacterial cultures and inoculated plant tissue using the fast PCR version
of the same protocol at an annealing temperature of 63°C.

Regarding the acoustic detection, DNA extracted based on the above methods can be used
in the reposrted assay. The amount of PCR amplicons required to produce a reliable acoustic
signal change should be in the range of 10–100 ng after end-point PCR. Experiments with
extracted DNA from bacteria have shown that the acoustic biosensor can be used to detect
PCR products derived from approximately 5 genome copies included in the amplification reac-
tion (unpublished data).

Discussion
In the current work a multiplex PCR assay was developed for the first time for the detection of
three economically important plant pathogens using an acoustic biosensor. Plant pathogens
develop symptoms that can often be confused with those of other diseases; additionally, con-
ventional PCR detection protocols sometimes show inconsistency due to pathogen heterogeni-
city, rendering multi-targeting protocols more efficient for discrimination. The use of acoustic
biosensors allows multi-targeting and displays some clear advantages over traditional detection
methods. First, acoustic detection can be an attractive alternative to optical sensing since it
does not require any fluorescent labels for signal transduction neither the use of elaborate opti-
cal instrumentation; In that sense, the development of a real-time PCR instrument for on-site
analysis would require at least a light source (LED) for dye excitation, series of filters and lenses
to eliminate excitation light and a photomultiplier tube for the detection of the emission light
[28]. On the contrary, for acoustic measurements a simple analyzer used for checking antennas
and RF circuits would be enough. Second, toxic, genotoxic or other hazardous chemicals are
not required as with gel electrophoresis or alternative detection methods, which make the
method faster and more user-friendly. Third, double stranded PCR products are directly used
for detection instead of hybridizing single stranded DNA molecules to complementary oligo-
nucleotides commonly used with QCM and SPR sensors [29,30]. As a result, the need of con-
trolling hybridization specificity through careful control of the density of surface immobilized
probe and hybridization temperature is avoided. Fourth, acoustic detection is very simple since
a PCR reaction can be directly loaded on the sensor without the need of purification steps
while the measurement is monitored in real time and can be completed within a few minutes.
Finally, the sensitivity of the acoustic method combined with the multiplex PCR allows the
detection during infections which are latent or in their early stages, before symptom develop-
ment. Early detection is crucial for emergency responses, biosecurity and microbial forensics of
plant pathogens, including Rsol, Pto and Xcv, which are opportunistic pathogens spending part
of their life cycle as rhizosphere/epiphytic colonisers of different plants rather than in an active
virulent phase of susceptible crops [31]. In addition, this method could assist on-site large scale
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surveys on random samples where sensitivity, to overcome the problem of false negative
results, and fast detection are needed.

In this work the QCM system was employed as a commercially available and well tested
instrument for biological and biophysical studies [32]. However, acoustic systems based on sur-
face acoustic wave (SAW) devices would be more suitable for this type of application. Recently,

Fig 5. Pathogen population growth and disease symptoms in tomato plants grown to the 4–5 true leaf
stage (BBCH 104–105) following artificial infection (inoculation) with A: Pseudomonas syringae pv
tomato (Pto) suspension which was: I. Infiltrated at a 5 ×105 cfu ml-1 concentration inside the leaf apoplast
using a syringe, developing a necrotic lesion 4 dpi II. Sprayed at a 108 cfu ml-1 concentration on both sides of
the leaf, developing indistinct dark, round spots (specks) after entry through the stomata and epidermal
wounds 7 dpi. The increase in Pto population size was determined in leaf discs (3 triplicated samples) and
over a 17 day time course following treatments and infection. Bars represent means ± SE in log10 scale; dpi:
days post inoculation.B. Ralstonia solanacearum suspension drenched to pots containing tomato plants in
the 4-5th true leaf stage. Early symptoms appear in the youngest leaves having a flabby appearance followed
by wilting of the whole plant 7 days post inoculation (dpi) due to invasion of xylem vessels and collapse of the
vascular system.

doi:10.1371/journal.pone.0132773.g005
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several applications based on SAW devices have been reported for molecular diagnostics,
including both protein [33–35] and genetic [36] biomarkers. SAW devices operating at higher
frequencies can be easily reduced in size and integrated with microfluidics technology [37,38]
to create automated lab-on-a-chip (LoC) platforms for plant pathogen diagnostics. Clear
advantages of an acoustic LoC would be the: a) low manufacturing costs; SAW acoustic devices
are relatively inexpensive since they are produced in large quantities annually due to their
application in mobile phones as bandpass filters [39], b) low energy consumption (battery
operated and environmental friendly) and c) portability. Miniaturization and portability will
allow ‘on site’ rapid detection, critical for disease control and necessary for detection in remote
areas. In addition it could be cost effective and could shorten the time flowchart in large appli-
cations, as for example in detection surveys for quarantine pathogens such as Rsol. The use of a
fast-dependable first confirmation test by phytosanitary inspectors would increase the overall
number of samples but decrease the number of samples sent to centralized detection facilities,
only to those needed for a second confirmation test.
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