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Caspase-1 cleavage of transcription factor GATA4 and
regulation of cardiac cell fate

A Aries1,3, J Whitcomb1,3, W Shao2, H Komati1, M Saleh2 and M Nemer*,1

Caspase-1 or interleukin-1β (IL-1β) converting enzyme is a pro-inflammatory member of the caspase family. An IL-1β-independent
role for caspase-1 in cardiomyocyte cell death and heart failure has emerged but the mechanisms underlying these effects are
incompletely understood. Here, we report that transcription factor GATA4, a key regulator of cardiomyocyte survival and adaptive
stress response is an in vivo and in vitro substrate for caspase-1. Caspase-1 mediated cleavage of GATA4 generates a truncated
protein that retains the ability to bind DNA but lacks transcriptional activation domains and acts as a dominant negative regulator
of GATA4. We show that caspase-1 is rapidly activated in cardiomyocyte nuclei treated with the cell death inducing drug
Doxorubicin. We also find that inhibition of caspase-1 alone is as effective as complete caspase inhibition at rescuing GATA4
degradation and myocyte cell death. Caspase-1 inhibition of GATA4 transcriptional activity is rescued by HSP70, which binds
directly to GATA4 and masks the caspase recognition motif. The data identify a caspase-1 nuclear substrate and suggest a direct
role for caspase-1 in transcriptional regulation. This mechanism may underlie the inflammation-independent action of caspase-1 in
other organs.
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Caspase-1 is best known for its role in inflammation through
the processing of the pro-inflammatory cytokines interleukin-
1β (IL-1β) and IL-18.1 Mice lacking caspase-1 (Casp1−/−) are
viable but fail to activate and secrete IL-1β.2 In addition to its
function in inflammation, caspase-1 has a role in programmed
cell death in myeloid cells, lymphocytes as well as in the heart
and brain.3,4 Whereas Casp1−/−mice have no developmental
programmed cell death defects, they are protected against
ischemic brain injury and heart failure.3,4 In both neurons and
cardiomyocytes, a direct role for caspase-1 in promoting cell
death in the absence of inflammation has been demonstrated
using in vitro cell cultures and in vivo models. For example,
myocardial-specific overexpression of caspase-1 induces a
massive increase in cardiomyocyte death in young mice
without any increase in tissue or plasma levels of IL-1β, IL-18
or other inflammatory mediators; conversely, Casp1−/− mice
show a lesser degree of cell death after induction of
myocardial infarction.4 Similarly, expression of caspase-1 in
neonate rat cardiomyocyte cultures increases cell death
by 4- to 5-fold.4 Because postnatal cardiomyocytes have
limited regenerative capacity, their loss as occurs following
myocardial infarction or chemotherapy leads to heart
remodeling, loss of contractility and ultimately heart failure.4

Indeed, cardiomyocyte death is increased in human heart
failure and induction of cell death in experimental models is
sufficient to cause heart failure.5 Together, the data suggest

that caspase-1 inactivates key molecules and pathways that
promote cardiomyocyte survival.
Transcription factor GATA4, a member of the zinc finger

GATA family, has emerged as a key cardiomyocyte survival
factor and an essential regulator of the postnatal cardiomyo-
cyte stress response. Cardiomyocytes with downregulated
GATA4 levels have increased rates of cell death at basal levels
and in response to cardiotoxic drugs such as Doxorubicin
(Dox) or tyrosine kinase inhibitors.6,7 These cells also fail to
mount any adaptive response to mechanical or neuroendo-
crine stress.8–10 GATA4 is also a potent cardiogenic factor
essential for cardiomyocyte commitment and differentiation.11

We now report that GATA4 is cleaved by caspase-1 in vitro and
in cardiomyocytes. The resulting cleaved protein acts as a
dominant negative isoform unable to maintain the genetic
program required for myocyte survival. The data identify a
target for caspase-1 in the nucleus and a pathway to explain its
cardiac action.

Results

GATA4 is an immediate early target of Doxorubicin (Dox) in the
heart, affecting both transcriptional and post-translational
mechanisms. Depletion of GATA4 dose dependently induces
cell death, a process that can be rescued by exogenous
GATA4.6 Time course analysis of Dox effects revealed that the
GATA4 protein was markedly depleted after 3 h of treatment
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(the earliest point studied) in the absence of any significant
decrease in transcript levels (Figures 1a, left panel and b).
GATA6 protein levels remained unchanged (Figure 1a,
middle panel). The decrease in the native GATA4
immunoreactive band was accompanied by the concomitant
appearance of a 20-KDa band. GATA4 degradation was
independent of the proteasome as shown by the inability of a
proteasome inhibitor to prevent the Dox-dependent decrease
in GATA4 protein (Figure 1c). To confirm whether these
changes occur at post-translational stages, a CMV-driven
HA-GATA4 expression vector was transfected into the
cardiomyocyte cell line HL-1 and treated with Dox. As shown

in Figure 1d, Dox-treated extracts had significantly less intact
exogenous GATA4 as revealed with the HA and GATA4
antibodies which recognize N and C-terminal epitopes,
respectively.12 AGATA4 protein deleted of its entire N-terminal
domain (amino acids 201–440) was then transfected into
HL1 cells and exposed to Dox. In Dox-treated cells, the
C-terminal GATA4 antibody detected a doublet suggesting that
a cleavage site lies within this domain. This doublet was not
recognized by the N-terminal HA tag implicating cleavage
at the N-terminus of the protein. The difference in size
between the two bands suggested cleavage between amino
acids 225 and 230.
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Figure 1 Dox-induced GATA4 depletion is independent of the ubiquitin-proteasome pathway. (a) Effect of time course treatment of Doxorubicin (Dox) on GATA4 (left panel),
GATA6 (middle panel) and total protein (right panel) levels. Nuclear extracts were prepared from primary cardiomyocyte cultures treated for the indicated times with Dox (300 nM)
and subjected to western blot analyses. (b) Depletion of GATA4 transcripts after 12 h of Dox treatment. Cardiomyocytes were treated for the indicated times with Dox. RNA was
subjected to real-time PCR. GATA4 mRNA levels were normalized to S16 mRNA. The results are shown as mean±S.E.M. and analyzed by one-way ANOVA with Bonferroni
post-test relative to the 3-h Dox treatment (n= 3). **P≤ 0.01, ***P≤ 0.001. (c) Depletion of GATA4 protein by Dox is not prevented by a proteasome inhibitor. Cardiomyocytes
were treated with Dox for 12 h in the presence or absence of 10 μM proteasome inhibitor MG132. Nuclear extracts were subjected to western blot to detect GATA4 protein. P300
was used as a control. (d) A putative cleavage site in the N-terminal region of GATA4. Transient transfection was carried out in HL-1 atrial cardiomyocytes using GATA4 WTand a
GATA4 N-terminal deletion (201–440) mutant. Nuclear extracts were subjected to western blot analysis using anti-HA and anti-GATA4 antibodies to detect N- and C-terminal
fragments, respectively
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Figure 2 Dox-induced GATA4 depletion is caspase-1 dependent. (a) Pan-caspase inhibitor restored GATA4 expression. Cardiomyocytes were treated with Dox in the
presence or absence of pan-caspase inhibitor (zVAD-FMK) for 12 h and analyzed by western blot. (b) Caspase-1 inhibitor prevented Dox-dependent GATA4 depletion.
Cardiomyocytes were treated in the presence or absence of Dox with a caspase-1 inhibitor (YVAD-CHO). Western blots were carried out to detect GATA4 and its downstream
target BclxL. GAPDH was used as a loading control. Note how changes in BclxL levels parallel those of GATA4. (c) Effect of caspase inhibition on cardiomyocyte apoptosis.
Quantification of TUNEL assays in primary cardiomyocytes treated with the indicated inhibitors. The results are shown as mean±S.E.M. and analyzed by one-way ANOVA with
Bonferroni post-test relative to the control (*) or to the Dox treatment alone (#). ***P≤ 0.001, #P≤ 0.001. Note how caspase-1 inhibition is as effective as the pan-caspase inhibitor
at abrogating Dox-induced apoptosis. (d–g) Increased activation and nuclear localization of caspase-1 in Dox-treated cardiomyocytes. (d) Western blots of nuclear cardiomyocyte
extracts. Notice how caspase-1 is activated (lower band) after 3 and 12 h of Dox treatment. GAPDH staining was used to control for cytoplasmic contamination. (e) Representative
images (top panel) and quantification (lower panel) of a FAM-FLICA assay measuring caspase-1 activity in control and Dox-treated cardiomyocytes. Results are shown as percent
of caspase-1-positive cells. ***P≤ 0.0001. In the top panel, green is active caspase-1 and blue is Hoechst staining. (f) and (g) Immunofluorescence of HL1 cells (f) and primary
cardiomyocytes (g) treated with Dox for the indicated time. Caspase-1 is labeled in red, α-actinin is labeled in green and Hoechst staining is labeled in blue
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We tested whether GATA4 degradation was caspase
dependent. Co-treatment of cardiomyocytes with Dox and a
pan caspase inhibitor abrogated GATA4 depletion (Figure 2a)
and significantly attenuated cardiomyocyte death (Figure 2c).
Next, we determined which caspase was responsible for
GATA4 depletion and cardiomyocyte death. Cardiomyocytes
were treated with Dox in the presence or absence of YVAD-
CHO, a selective caspase-1 inhibitor. Co-treatment with Dox
and YVAD-CHO prevented GATA4 depletion, demonstrating
that inhibition of caspase-1 protects against Dox-induced
GATA4 degradation (Figure 2b). In contrast, caspase-3
inhibition had only a modest effect on GATA4 levels and on
Dox-induced cardiomyocyte apoptosis (data not shown). The
caspase-1 inhibitor was also as effective as the pan-caspase
inhibitor at reducing cell death in response to Dox treatment
(Figure 2c). These results are indicative of an important role for
caspase-1 in Dox-induced cardiotoxicity. We examined
whether Dox treatment was associated with caspase-1
activation by both western blot and FLICA assay, which

measures active caspase-1 binding to cognate sites. Western
blot analysis of nuclear extracts revealed the presence of
cleaved caspase-1 in Dox-treated cardiomyocytes at 3 and
12 h post treatment (Figure 2d). Similarly, FLICA assays
confirmed increased caspase-1 activation (4-fold) in Dox-
treated cells (Figure 2e). Immunofluoresence staining of
caspase-1 in the cardiac HL1 cell line (Figure 2f) and in
primary cardiomyocytes (Figure 2g) showed caspase-1
localization to the nucleus in Dox-treated cells.
Caspase-1 nuclear localization in response to Dox was also

observed in vivo. Wild-type mice treated with Dox show
stronger nuclear caspase-1 staining in comparison with
control mice and a concomitant decrease in GATA4 nuclear
staining (Figure 3a). To determine the effect of caspase-1
inhibition on cardiomyocyte cell death and cardiac remodeling,
Terminal Deoxynucleotidyltransferase- Mediated dUTP
End-Labeling (TUNEL) assays and trichrome staining were
carried out on heart tissue sections of wild-type mice treated
with Dox in the presence or absence of the caspase-1 inhibitor
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Figure 3 Caspase-1 inhibition is protective against Dox cardiotoxicity in vivo. (a) Dox induces an increase in caspase-1 and a decrease in GATA4 staining in vivo.
Immunohistochemistry of ventricular tissue sections from wild-type mice treated with Dox or vehicle. Caspase-1 staining is shown in the top panels and GATA4 staining in the
bottom panels. (b) Caspase-1 inhibition or loss attenuates cardiomyocyte cell death in vivo. Quantification of TUNEL assays of wild-type mice treated with Dox and YVAD-CHO as
well as Casp1− /− mice treated with Dox. The results are shown as the mean± S.E.M. and analyzed by Student’s T-test of wild-type control mice (*) or of wild-type Dox-treated
mice (#). ***P≤ 0.0001, ##P≤ 0.001. (c) Effect of caspase-1 inhibition or loss on Dox induced cardiac fibrotic cardiac lesions in vivo. Trichrome staining of transverse sections of
left ventricular tissue of wild-type mice treated with Dox and YVAD-CHO or Casp1−/− mice treated with Dox. Blue staining represents fibrotic lesions
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YVAD-CHO (Figures 3b and c). Treatment with YVAD-CHO
significantly reduced the number of TUNEL-positive nuclei
and fibrotic lesions, consistent with a role for caspase-1 in
Dox-induced cardiotoxicity. Casp1− /− mice treated with Dox
showed an attenuated response compared with similarly
treated wild-type mice as measured by cell death and the
presence of fibrosis (Figures 3b and c). These results suggest
that reduction of caspase-1 activity in vivo is protective against
Dox cardiotoxicity.
To determine whether GATA4 is a direct substrate of

caspase-1 or -3, we searched for putative caspase recognition
motifs on the GATA4 protein. Caspase-3 preferably cleaves at
DEVD sequences whereas the preferred sites of caspase-1
contain a bulky and hydrophobic amino acid at the P4 position
such as tryptophan and tyrosine (e.g., W/YxxD).13,14 Two
putative caspase-1 sites that fit these criteria are present on
the GATA4 protein and are evolutionary conserved in human,
mouse and rat: YMAD168 within the major transcription
activation domain and WRRD230 within the first zinc finger
(Figure 4a). Another conserved motif DMFD208 may corre-
spond to a low affinity caspase-3 recognition site. Figure 4b
depicts the possible polypeptides resulting from caspase
cleavage. Incubation of in vitro translated GATA4 with active

caspase-1 produced three fragments around 18, 26 and
32 KDa. In contrast, no caspase-3 cleavage products were
detected (Figure 4c). The fragments obtained from the
caspase-1 digestion are consistent with processing cleavage
at D168 and D230. To confirm that these are caspase-1
cleavage sites, we prepared a series of mutant proteins in
which these residues alone or in combination are converted
into alanine effectively eliminating the caspase motif. As
shown in Figure 4d, mutation of both D168 and D230 render
GATA4 completely resistant to caspase-1 cleavage. These
results confirm that GATA4 is a direct caspase-1 substrate and
that caspase-1 processes GATA4 at two specific cleavage
sites. Of note, cleavage at either position would result in a
truncated nuclear GATA4 protein capable of binding DNA as
shown in Figure 5a, but missing the N-terminal transactivation
domains. As well, cleavage at D230 would lead to loss of the
N-terminal zinc finger, a region critical to protein–protein
interactions.15;16 As expected, the deletion mutants that
would result from cleavage at D168 and D230 had reduced
transcriptional activation (Figure 5b) and when co-expressed
with native GATA4, reduced its activity on target promoters
(Figure 5c).
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Next, we tested the effect of caspase-1 on GATA4 activity
ex vivo. NIH3T3 cells were co-transfected with GATA4 and a
GATA-dependent reporter in the presence or absence of
caspase-1. As shown in Figure 5d, caspase-1 dose depen-
dently inhibited GATA4 transcriptional activity of the reporter.
A similar effect was also observed on the ANF promoter, a
well-known GATA4 target. In contrast, the activity of a
caspase-1-resistant GATA4 mutant (D168A/D230A) was not
significantly affected by caspase-1. These results indicate that
GATA4 is a caspase-1 substrate and that caspase-1 is a
negative regulator of GATA4.
Inhibition of GATA4 – a cardiomyocyte survival factor – by

caspase-1 is consistent with the reported involvement of
caspase-1 in myocyte cell death and heart failure. We asked
whether interaction of GATA4 with other cofactors might serve
to mask the caspase-1 recognition motifs and protect GATA4

from caspase-1 cleavage. We focused on HSP70 because it
was identified by mass spectrometry as a component of
nuclear GATA4 complexes in cardiogenic TC13 cells (our
unpublished data) and because HSP70 is cardioprotective.17

Co-immunoprecipitation of transfected GATA4 and HSP70
confirmed that the two proteins interact in cell nuclei
(Figures 6a and b). Pull down assays using GST-GATA4
proteins (Figure 6c) and in vitro translated HSP70were carried
out to identify the HSP70 interacting domain on GATA4. As
shown in Figure 6d, HSP70 bound mainly the N-terminal
domain of GATA4 and a 40 amino-acid fragment spanning
GATA4 amino acids 130–170 was sufficient to retain HSP70.
To determine the effect of HSP70 and Caspase-1 on GATA4
protein expression, nuclear extracts from NIH3T3 cells
transfected with GATA4, Caspase-1 and HSP70 were
analyzed by western blot (Figure 6e). Compared with
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transfection with GATA4 alone, co-transfection of caspase-1
and GATA4 yielded lower levels of GATA4 protein. However,
GATA4 protein levels were rescued by concomitant HSP70
expression. The relevance of this interaction on GATA4
transcriptional activity was examined by luciferase assay.
We co-transfected a GATA-luciferase reporter with a GATA4
expression vector in the presence or absence of caspase-1
and HSP70 (Figure 6f). HSP70 prevented the caspase-1
mediated reduction of GATA4 transcriptional activation, main-
taining GATA4 activity to a similar level as observed in the
absence of caspase-1. Together, the data indicate that GATA4

is a caspase-1 substrate and suggest that physical interaction
with HSP70 may protect GATA4 from caspase-1 processing
and inactivation.

Discussion

Transcription factor GATA4 is a critical survival factor for
cardiomyocytes and an angiogenic factor of the infarcted
heart.6,9,18,19 Decreased levels of GATA4 promote cardio-
myocyte death and sensitize myocytes to drug induced cell
death. The data presented here reveal that GATA4 is
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inactivated by caspase-1 cleavage, which leads to transcrip-
tional downregulation of cell survival pathways (e.g., Bcl-xL)
and irreversible cardiac damage. This negative feedback loop
would amplify the deleterious effects of cardiotoxic insults and is
consistent with the degenerative nature of some cardiac
disease such as heart failure. Conversely, the finding that
HSP70 interacts with GATA4 to prevent caspase-1-dependent
inhibitory effects might explain – at least in part – the
cardioprotective effects of HSP70. For example, erythropoietin
has been shown to have cardioprotective effects against
ischemic or non-ischemic heart disease including Dox-induced
cardiotoxicity.20 Erythropoietin prevents Dox-mediated GATA4
depletion and also increases HSP70 expression, which may
serve as the first control against GATA4 depletion.21 The
mechanisms by which erythropoietin may exert its cardiopro-
tective role via induction of HSP70 and stabilization of GATA4
would be reminiscent of its mechanism of action in erythropoi-
esis where it induces HSP70 to protect against caspase-3
cleavage of GATA1.22 Other cardioprotective inducers such as
exercise, CaMKII and preconditioning also increase
HSP70.17,23–25 It is therefore tempting to speculate that
HSP70 cardioprotection in these instances also involves
preventing caspase-1-mediated GATA4 degradation.
Caspase-1 is best known for its role in the NLRP3

inflammasome where it cleaves and processes IL-1β and
IL-18.1 The involvement of the NLRP3 inflammasome has been
documented in several cardiac contexts including acute
myocardial infarction, heart failure and myocardial contractile
dysfunction due to sepsis.26–28 Furthermore, Dox has also
been shown to induce the NLRP3/caspase-1/IL-1β pathway in
the context of macrophages and dendritic cells.29 However, our
findings demonstrate that in cardiac tissue, Dox-induced
caspase-1 activation is involved with other non-canonical
pathways as well. This is particularly interesting given that
transgenicmice overexpressing caspase-1 showan increase in
cardiomyocyte cell death without a concomitant increase in
IL-1β and IL-18 secretion.4 This suggests the involvement of a
non-inflammatory mechanism such as cleavage of GATA4 and
subsequent dysregulation of cardiomyocyte survival pathways.
Few validated caspase-1 substrates are known besides

IL-1β and IL-18. Using a proteomic approach, 41 proteinswere
identified that can be cleaved by caspase-1; they include
translation machinery, chaperones and cytoskeletal proteins
as well as several enzymes of the glycolysis pathway.30 No
nuclear targets for caspase-1 have yet been identified despite
the fact that caspase-1 expression is observed in the
nucleus.27 This is in contrast to caspase-3 that has been
reported to cleave several transcription factors including
GATA1 in hematopoietic cells and MEF2 in neuronal
cells.31,32 The identification of GATA4 as a nuclear substrate
for caspase-1 suggests a direct role for this caspase in
transcriptional regulation. Interestingly, sequence analysis
reveals that the D230 recognition site is conserved in all six
members of the GATA family which, in addition to the heart,
have a critical role in immune cells, neurons and the gut. This
is noteworthy given the role of caspase-1 in inflammation,
neuronal survival and, more recently, in triglyceride
metabolism.33,34 Whether caspase-1 targets additional GATA
proteins or other transcription factors in cardiac and extra
cardiac tissues will be worth investigating.

Materials and Methods
Cell culture and transfections. Cardiomyocytes from 4-day-old Sprague-
Dawley rats (Charles River, Wilmington, MA, USA) were harvested, cultured and
manipulated as previously described.6 Myocytes were treated with Doxorubicin
(Sigma, St. Louis, MO, USA) at 300 nM for the indicated time in the presence or
absence of a protease inhibitor (MG-132, 10 μM in DMSO, CalBioChem, Billerica,
MA, USA, 474790) or caspase inhibitors: caspase-1 inhibitor (YVAD-CHO, 10 μM in
DMSO, CalBioChem 400011) or pan-caspase inhibitor (zVAD-FMK, 10 μM in
DMSO, CalBioChem 219007). Inhibitors were added to cardiomyocytes 30 min
before the addition of Dox. NIH3T3, HL1, TC13 and AD293 cells were maintained
and manipulated as previously reported.35,36 Luciferase assays were carried out as
described previously.37

Western blot. Western blots of nuclear extracts from cardiac myocytes or other
cell lines overexpressing various GATA4 proteins were performed as previously
described.8 Western blots of nuclear extracts from cardiac myocytes or other cell
lines overexpressing various GATA4 proteins were performed as previously
described.8 Anti-HA (Santa Cruz, Santa Cruz, CA, USA, sc-805) anti-Flag (Sigma,
F1804), anti-p300 (Santa Cruz, SC-585X) and anti-nucleolin (Santa Cruz, sc-55486)
were all used at a dilution of 1/500. Anti-caspase-1 (Cell Signaling, Danvers, MA,
USA, 2225), antiBclxL (Cell Signaling, 2762), anti-GAPDH (Abcam, Cambridge, UK,
ab8245) and anti-GATA4 (Santa Cruz, sc-25310) were used at 1/1000 dilution.
Homemade rabbit GATA4 and GATA6 antibodies were used at a dilution of 1/2000
and 1/500, respectively.38

Electrophoretic mobility shift assays. DNA binding of GATA4 mutants
was assessed using nuclear extracts from AD293 cells and the proximal GATA site
from the rat Nppa promoter as described previously.8

Coimmunoprecipitation. AD293 cells were transfected with pCGN-HA-
GATA4 and/or Flag- pcDNA3.1-F-HSP70-GFP using Effectene transfection reagent
(Qiagen, Hilden, Germany, 301425) according to the manufacturer’s guidelines.
Nuclear extracts were incubated with anti-Flag M2 coupled magnetic beads (Sigma)
overnight as described by Morin et al.37 Bound proteins were revealed with anti-HA
or anti-Flag antibodies by western blot.

TUNEL assay for apoptosis. Apoptosis was detected by the TUNEL
technique as recommended in the Apoptag kit (Millipore, Billerica, MA, USA,
S7100). An average of 10 random fields with 100 nuclei per field was analyzed.

Immunofluorescence. Immunofluorescence experiments were carried out as
described previously.8 Anti-Caspase-1 (Abcam, ab-1872) was used at a dilution of
1/200 and Alexa Fluor 546 Goat Anti-Rabbit IgG (Life Technologies, Carlsbad, CA,
USA, A-11035) was used at a dilution of 1/500. Hoechst (Life Technologies, H1398)
was used at a dilution of 1/5000. Images acquisition was completed using the Zeiss
AxioObserver D1 microscope (Oberkochen, Germany).

Immunohistochemistry. Immunohistochemistry was completed as pre-
viously described.6 Rabbit anti-caspase-1 antibody (Abcam, ab-1872) was used
at a dilution of 1/200. A homemade rabbit anti-GATA4 antibody was used at a
dilution of 1/500.

In vitro translation and pull down assays. In vitro translation and pull
down assays were carried out as described previously.8 35S-labelled in vitro
translated proteins were produced using the T7 Quick-Coupled Transcription/
Translation System (Promega, Madison, WI, USA) according to the procedures
provided by the manufacturer. Pull down assays were carried out as described
previously.8 Briefly, recombinant GST-fused proteins were produced in BL-21 E. coli
and purified on sepharose beads. In vitro translated proteins were incubated with
GST fusion proteins overnight at 4 oC. Bound proteins were detected by
autoradiography.

Caspase cleavage assays. Cleavage of the in vitro transcribed and
translated 35S-labeled substrates was performed in a 20-μl reaction containing 2 μl
of in vitro transcribed and translated 35S-labeled substrates by incubation at 37 °C
for 4 h in the presence or absence of purified human recombinant caspase-1 or
caspase-3 (170 ng) in CHEG buffer (with 10 mM dithiothreitol freshly added). The
cleavage reaction was terminated by the addition of Laemmli SDS loading buffer
and resolved by SDS-PAGE. The gel was fixed in 10% acetic acid and 40% ethanol
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for 0.5 h; the signal was then amplified by incubating the gel with NAMP 100 V
amplifying solution (Amersham Biosciences, Little Chalfont, Buckinghamshire, UK)
for 30 min The gel was placed on a Whatman paper, dried at 70 °C for 1 h, and
exposed at − 80 °C, and the signal was viewed by autoradiography.30

Real-time PCR. RNA was extracted using Trizol and then reverse transcribed
with the Omniscript reverse transcriptase (Qiagen). QPCR analyses were used to
measure change in GATA4 and ribosomal protein S16 mRNA levels using the
Quantitech SYBR green (Qiagen).

Mice. C57/B6 mice were treated with Dox as previously described.6 Casp1− /−

mice have been previously described.39 For Dox and YVAD-CHO experiments,
animals were injected i.p. with 5 mg/kg YVAD-CHO and 20 mg/kg Dox. Injections
were separated by 1 h. After 1 week, animals were killed by cervical dislocation and
the heart was cryopreserved. All experiments were approved by the University of
Ottawa and McGill University animal care committees and were carried out as per
institutional guidelines for animal care. Mason trichrome staining was completed as
previously described.40

FAM-FLICA assay. The FAM-FLICA assay is specific to active caspase-1 and
measures binding of caspase-1 to cognate sites. The assays were done as per the
manufacturer’s instructions (ImmunoChemistry Technologies, catalog number 97,
Bloomington, MN, USA). Briefly, cardiomyocytes plated on glass coverslips were
incubated with FAM-FLICA reagent diluted in serum-free media for 1 h at 37 oC.
Cells were then washed three times for 5 min in media and fixed with 4% PFA. Cells
were then washed three times in PBS and mounted with Prolong Gold (Life
Technologies, P36930). Fluorescence image acquisition was completed using the
Zeiss AxioObserver D1 microscope.

Plasmids. GATA4 and all luciferase reporters used were previously
described.6,11,41 GATA4 point mutations were subcloned into the pGEX vector
and the N-terminal flag-tagged Caspase-1 constructs were produced by PCR from
rat cDNA and was subcloned into the pcDNA3 vector. The pcDNA3.1-F-HSP70-
GFP construct was a kind gift from Dr Stephen Lee (University of Ottawa).42 All
constructs were verified by sequencing.
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