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In the model-based approach, researchers assume that the underlying structure, which generates 
the population of interest, is correctly specified. However, when the working model differs from 
the underlying true population model, the estimation process becomes quite unreliable due to 
misspecification bias. Selecting a sample by applying the balancing conditions on some functions 
of the covariates can reduce such bias. This study aims at suggesting an estimator of population 
total by applying the balancing conditions on the basis functions of the auxiliary character(s) 
for the situations where the working model is different from the underlying true model under a 
ranked set sampling without replacement scheme. Special cases of the misspecified basis function 
model, i.e. homogeneous, linear, and proportional, are considered and balancing conditions are 
introduced in each case. Both simulation and bootstrapped studies show that the total estimators 
under proposed sampling mechanism keep up the superiority over simple random sampling in 
terms of efficiency and maintaining robustness against model failure.

1. Introduction

The basic literature on survey sampling is categorized into two approaches, design-based and model-based inferences. The core 
difference between the two approaches is the randomness in the stochastic structure for statistical inference [1]. The design-based 
approach posses many appealing features and delineate better estimates of the parameters of interest in terms of efficiency but 
it disregards the importance of the model relationship of the study the auxiliary characters at the stage of estimation. Numerous 
varieties of design-based estimators for estimating population parameters have been constructed to reduce the bias and mean squared 
error (MSE) e.g. [2], [3], [4], and [5]. On the opposite, supporters of the model-based approach emphasize that randomization occurs 
due to the model error term. Therefore, it is not the required condition for a rigorous statistical inference [6]. In finite population 
sampling, the model-based approach has been an interesting source of discussion over the past 50 years. The concept of a model-
based approach was, initially, suggested by [7] who employed a simple model for prediction of the non-sampled values and their total 
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which is regarded as unknown and stochastic. After that [8], [9], [10], [11] and [12] employed a model-based approach to predict 
the total of a finite population utilizing superpopulation model. This model helps in the sample selection, suggesting estimators, and 
improving the precision of the estimators.

The model-based inference, typically, assumes that the model which explains the behavior of the random phenomena under 
study is specified correctly. However, when the working model is incorrect, the inference about the parameter of interest can be 
affected due to the existence of bias in the estimators. For many years, the preservation against model misspecification has been a 
major concern of survey statisticians. In this direction, [13], [14], [15] and [16] suggested the balancing associated with a sample 
to prevent the inference from model misspecification. Later on, [6, Chapter 3] provided a detailed discussion on balance sampling 
for reducing the impact of the bias introduced because of model failure. A detailed literature on the model-based methods to choose 
a balanced sample can be obtained from [17] and [18]. [19] discussed many robust sample designs, and shown that under these 
designs, estimators of the population total are still approximately unbiased, even when the assumed model is misspecified. [20]
has described the conditions that can be achieved on the auxiliary variables and on the inclusion probabilities to obtain an exactly 
balanced sample. [21] have proposed a sample balancing method in multi-way stratification layout and employed it to find sample 
sizes for domains which belong to different sub-populations. Several versions of the model-based estimators have been found utilizing 
the model relationship between the variable of interest and the predictors [see [22], [23], [24], [25], [26] and [27]]. Recently, [28]
worked on a general model-based framework for estimation of an unknown population quantity under basis functions regression 
model (BFRM). The problems of subset selection with one predictor under an automated matrix approach, and ill-conditioning of 
regression models are also highlighted. [29] have incorporated idea of balancing assuming basis function regression model (BFRM).

In the same era, many survey sampling researchers have worked on improved methods of data collection. Among them ranked 
set sampling (RSS) technique is at least as efficient as simple random sampling (SRS) for obtaining the experimental data that are 
truly representative of the population under investigation. The idea of the ranked set sampling method, initially proposed by [30] to 
assess mean pasture yields, has recently been modified by numerous researchers to estimate the population parameters with improved 
efficiency. Several authors, such as [31], [32], [33], [34], [35] and [36] have worked on estimation of parameters under RSS. [37]
has discussed RSS procedure with spline and penalized spline models (PSM) parametrically. Some new contributions on RSS can be 
found in [38], [5], and [39] and references are there in. All the above cited works covered the developments in ranked set sampling 
assuming with replacement sampling. Pioneer work on ranked set sampling without replacement can be found from [40]. Recently, 
[41] worked on model-based framework for estimating finite population totals under RSS. After that [42] worked on stratified 
judgment post-stratified sampling (SJPS) design which includes selecting a JPS from each stratum. In addition to stratification, the 
method induces extra ranking structure in the stratum samples. Inference was made under both design and model-based paradigms. 
More details on model-based inference under JPS are available in [43]. On similar line, [44] have extended the idea of model-based 
estimation to ranked set sampling by using a without replacement version and provided with an algorithm that ensures independent 
observations under RSSWOR. The method suggested in [44] works well when specified model is same as the true population model. 
In some cases such matching is not possible and we need to make adjustment during sample selection process. In this study, we 
introduce a ranked set sampling without replacement mechanism for estimation of the total of a finite population utilizing the model 
relationship of the response variable and some function of the auxiliary variable. We follow the algorithm given in [44] for selecting 
a RSSWOR. The idea of balancing is obtained from [6]. Section 2 delineates the mathematical results of the proposed estimation 
approach using the BFR model under SRSWOR. Section 3 covers the developed estimator of population total under misspecified 
BFRM and its special cases. Section 4 describes the population total estimation, when the model is misspecified with some special 
cases under RSSWOR. Finally, in Section 5, we present a simulation study and a bootstrap study to evaluate the properties of the 
estimators.

2. Basis function regression model under SRSWOR

Consider a population of size 𝑁 indexed as 𝑈 = {1, 2, 3, ....., 𝑁} from a sub-population with the variable under study 𝑌 having 
finite lower order moments. In notations of matrices, let 𝒚 = (𝑦𝑖, 𝑖 ∈ 𝑈 ) be the realization of the random vector 𝒀 = (𝑌𝑖, 𝑖 ∈ 𝑈 ). Let 𝑠
be a sample of size 𝑛 chosen from 𝑈 using SRSWOR and �̄� be the set of the units that are not covered in 𝑠. The population vector of 
𝑦 can be written as 𝑦 = (𝑦𝑡

𝑠
, 𝑦𝑡
�̄�
)𝑡, where 𝑦𝑠 and 𝑦�̄� are, respectively, the vectors of 𝑛 sampled and (𝑁 − 𝑛) non-sampled values of 𝑦. We 

assume a basis function regression model (BFRM), where the response variable depends on some function of the predictor(s) called 
the basis functions and denoted by Φ(𝑥). Let 𝑀 be a linear basis function model defined as

𝒀 =𝚽𝜷 + 𝜻 , (1)

where 𝜷 is the vector of coefficients, 𝚽 is the matrix of basis functions and 𝜻 is random error term with zero mean. Mathematically, 
we can write

𝚽 =

⎡⎢⎢⎢⎢⎢⎣

Φ0(𝑥1) Φ1(𝑥1) ⋯ Φ𝑀−1(𝑥1)
Φ0(𝑥2) Φ1(𝑥2) ⋯ Φ𝑀−1(𝑥2)

⋮ ⋮ ⋮
⋮ ⋮ ⋮

Φ0(𝑥𝑁 ) Φ1(𝑥𝑁 ) ⋯ Φ𝑀−1(𝑥𝑁 )

⎤⎥⎥⎥⎥⎥⎦( ) ( )

2

𝜷 = 𝛽0 𝛽1 ⋯⋯ 𝛽𝑀−1
𝑡
, 𝜻 = 𝜉1 𝜉2 ⋯⋯ 𝜉𝑁

𝑡
.
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The function 𝐸𝑀 (𝑌 |Φ, 𝛽) =𝚽𝜷 is considered as a non-linear function of input variable but linear in parameters. The matrix of basis 
functions Φ and the matrix 𝝂, a square matrix containing variances and covariances, partitioned as:

𝚽 =
[
𝚽𝑠

𝚽�̄�

]
, 𝝂 =

[
𝝂𝑠𝑠 𝝂𝑠�̄�
𝝂 �̄�𝑠 𝝂 �̄��̄�

]
,

where Φ𝑠 and Φ�̄� are the sub-matrices with respective orders (𝑛 ×𝑀) and (𝑁 − 𝑛) ×𝑀 .
Let 𝜏𝑦 = 𝜸𝑡𝑦 be a realization of the stochastic quantity 𝜸𝑡𝑌 , where 𝜸 = (𝜸𝑖; 𝑖 ∈ 𝑈 ) is the weight vector which is separated into 

sampled and non-sampled parts as 𝜸 = (𝜸𝑡
𝑠
, 𝜸𝑡

�̄�
)𝑡. The population total and mean are obtained by setting 𝜸𝑖 as 1 and 1∕𝑁 respectively 

for all 𝑖 ∈𝑈 .
[6] defined a linear estimator for 𝜏𝑦 as 𝜏𝑦 = 𝒈𝑡

𝑠
𝒚𝑠, where 𝒈𝑠 = (𝑔𝑖; 𝑖 ∈ 𝑠) is the vector of wights to be optimized. Assuming (1), the 

typical prediction estimator, suggested by [10], is given by

𝜏𝑦 = 𝜸𝑡
𝑠
𝒚𝑠 + 𝜸𝑡

�̄�

[
Φ�̄��̂� + 𝝂 �̄�𝑠𝝂

−1
𝑠𝑠
(𝒚𝑠 −Φ𝑠�̂�)

]
, (2)

where �̂� = (Φ𝑡
𝑠
𝝂−1
𝑠𝑠
Φ𝑠)−1Φ𝑡

𝑠
𝝂−1
𝑠𝑠
𝑦𝑠 is the weighted least square (WLS) of the vector 𝜷. The error-variance of 𝜏𝑦 in Equation (2), is given 

by

𝑉𝑀
(
𝜏𝑦 − 𝜏𝑦

)
=𝜸𝑡

�̄�

(
𝝂 �̄��̄� − 𝝂 �̄�𝑠𝝂

−1
𝑠𝑠
𝝂𝑠�̄�

)
𝜸 �̄� + 𝜸𝑡

�̄�

(
Φ�̄� − 𝝂 �̄�𝑠𝝂

−1
𝑠𝑠
Φ𝑠

)(
Φ𝑡
𝑠
𝝂−1
𝑠𝑠
Φ𝑠

)−1

(
Φ�̄� − 𝝂 �̄�𝑠𝝂

−1
𝑠𝑠
Φ𝑠

)𝑡

𝜸 �̄�. (3)

When the values on sampled and non-sampled units are assumed to be uncorrelated i.e. 𝝂 �̄�𝑠 = 𝝂𝑠�̄� = 0, Equation (3) reduces to

𝜏𝑦 = 𝜸𝑡
𝑠
𝒚𝑠 + 𝜸𝑡

�̄�
Φ�̄��̂� (4)

with prediction error-variance,

𝑉𝑀
(
𝜏𝑦 − 𝜏𝑦

)
= 𝜸𝑡

�̄�

(
𝝂 �̄��̄� +Φ�̄�

(
Φ𝑡
𝑠
𝝂−1
𝑠𝑠
Φ𝑠

)−1 Φ𝑡
�̄�

)
𝜸�̄�. (5)

Further assuming i.i.d. error terms i.e. 𝝂𝑠𝑠 = 𝜎2𝐼𝑠𝑠 and 𝝂�̄��̄� = 𝜎2𝐼�̄��̄�, the error-variance reduces to

𝑉𝑀
(
𝜏𝑦 − 𝜏𝑦

)
= 𝜎2

[
𝜸𝑡
�̄�
𝜸 �̄� + 𝜸𝑡

�̄�

(
Φ𝑡
𝑠
Φ𝑠

)−1 Φ𝑡
�̄�
𝜸 �̄�

]
,

where 𝐼𝑠𝑠 and 𝐼�̄��̄� are the identity matrices of order 𝑛 and 𝑁 − 𝑛 respectively.

3. Estimation with misspecified BFRM under SRSWOR

The balanced sampling adjusts for the discrepancy that occurs when the working model on which the estimator is based deviates 
from the true underlying model [6]. Suppose the working model is 𝑀∗ which is defined as

𝒀 =𝚽∗𝜷∗ + 𝜻 . (6)

Our aim is to obtain a methodology that makes an estimator 𝜏∗
𝑦

derived under a model 𝑀∗ which is unbiased under the true model 
𝑀 defined in Equation (1). Following Equation (6), the general prediction estimator, is given by

𝜏∗
𝑦
= 𝜸𝑡

𝑠
𝑦𝑠 + 𝜸𝑡

�̄�
Φ∗
�̄�
𝜷∗, (7)

where 𝜷∗ =
(
Φ∗𝑡
𝑠
𝝂−1
𝑠𝑠
Φ∗
𝑠

)−1 Φ∗𝑡
𝑠
𝝂−1
𝑠𝑠
𝑦𝑠 is the WLS estimator of 𝜷∗ (see details in [29]). The prediction bias of the estimator 𝜏∗

𝑦
given in 

Equation (7) under model 𝑀 is expressed as

𝐵𝑀

(
𝜏∗
𝑦
− 𝜏𝑦

)
= 𝜸𝑡

�̄�

(
𝝎∗Φ𝑠 −Φ�̄�

)
𝜷, (8)

where 𝝎∗ =Φ∗
�̄�
(Φ∗𝑡

𝑠
𝝂−1
𝑠𝑠
Φ∗
𝑠
)−1Φ∗𝑡

𝑠
𝝂−1
𝑠𝑠

is a (𝑁 − 𝑛) × 𝑛 matrix of weights. The sample is 𝝎∗-balanced on basis function when 𝜸𝑡
�̄�
𝝎∗Φ𝑠 =

𝜸𝑡
�̄�
Φ�̄� and the bias in Equation (8) vanishes under the balancing condition [19]. The prediction error variance for a balanced sample 

is

𝑉𝑀

(
𝜏∗
𝑦
− 𝜏𝑦

)
= 𝜸𝑡

�̄�

(
Φ∗
�̄�
(Φ∗𝑡

𝑠
𝝂−1
𝑠𝑠
Φ∗
𝑠
)−1Φ∗𝑡

�̄�
+ 𝝂 �̄��̄�

)
𝜸 �̄�. (9)

Assuming i.i.d. error terms i.e. 𝝂𝑠𝑠 = 𝜎2𝐼𝑠𝑠 and 𝝂 �̄��̄� = 𝜎2𝐼�̄��̄�, Equation (9) reduces to(
∗

)
2
(

𝑡 ∗ ∗𝑡 ∗ −1 ∗𝑡 𝑡

)

3

𝑉𝑀 𝜏
𝑦
− 𝜏𝑦 = 𝜎 𝜸

�̄�
Φ
�̄�
(Φ

𝑠
Φ
𝑠
) Φ

�̄�
𝜸 �̄� + 𝜸

�̄�
𝜸 �̄� .
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In the subsequent subsections, we discuss the idea of balancing under the most widely used population models as the special cases 
of the BFRM.

3.1. Case I: homogeneous population model

Under homogeneous population model the basis function matrix 𝚽∗ will be an 𝑁 dimensional vector of 1′s. The response on the 
𝑖th population unit 𝑦 under 𝑀∗ is expressed as:

𝑦𝑖 = 𝛽0 + 𝜉𝑖, ∀ 𝑖 ∈𝑈 (10)

where error terms 𝜉𝑖 (for 𝑖 ∈ 𝑈 ) are i.i.d. with mean zero and variance 𝜎2. The conditional mean, variance and the covariance 
are 𝐸𝑀

{
𝑦𝑖|Φ∗(𝑥𝑖)

}
= 𝛽0, 𝑉𝑀

{
𝑦𝑖|Φ∗(𝑥𝑖)

}
= 𝜎2 and 𝐶𝑜𝑣𝑀

{
𝑦𝑖, 𝑦𝑗 |Φ∗(𝑥𝑖), Φ∗(𝑥𝑗 )

}
= 0 (for 𝑖 ≠ 𝑗), respectively. A best linear unbiased 

estimator for 𝛽0 is 𝛽0 =
∑
𝑖∈𝑠 𝑦𝑖
𝑛

, which yields an estimator of 𝑡𝑦, named as the expansion estimator, and is given by

𝑡𝐸
𝑦
=
∑
𝑖∈𝑠

𝑦𝑖 +
∑
𝑖∈�̄�

𝛽0 =𝑁�̄�𝑠.

The expected prediction error (bias) of the expansion estimator under model 𝑀 , is given in Equation (11)

𝐵𝑀 (𝑡𝐸
𝑦
− 𝑡𝑦) =𝑁

𝑀−1∑
𝑙=0

𝜷𝑙
(
Φ̄𝑠𝑙 − Φ̄𝑈𝑙

)
, (11)

where Φ̄𝑠𝑙 =
∑

𝑖∈𝑠Φ𝑙(𝑥𝑖)
𝑛

and Φ̄𝑈𝑙 =
∑

𝑖∈𝑈 Φ𝑙(𝑥𝑖)
𝑁

are means of the 𝑙th (for 𝑙 = 0, 1, 2, ⋯ , (𝑀 − 1)) basis function for sample and 
population, respectively. A sample which satisfies the condition Φ̄𝑠 ≈ Φ̄𝑈 is known as a balanced sample. Under a balanced sample, 
the expansion estimator becomes unbiased even for misspecified working model. The error variance is obtained as

𝑉𝑀 (𝑡𝐸
𝑦
− 𝑡𝑦) =

𝑁2

𝑛
(1 − 𝑓 )𝜎2. (12)

Equation (12) is equivalent to the variance expression of the designed-based total estimator in SRSWOR [2]. Equation (12) infers 
that model misspecification does not disturb the error variance of the total estimator when sample is balanced on the means of the 
basis functions.

3.2. Case II: linear basis function model

Assuming a linear basis function model of 1st order with intercept, the 𝑖𝑡ℎ response on 𝑦 can be expressed as:

𝑦𝑖 = 𝛽0 + 𝛽1Φ1(𝑥𝑖) + 𝜉𝑖, ∀𝑖 ∈𝑈

The BLUEs for 𝛽0 and 𝛽1 are obtained under OLS technique and expressed as 𝛽0 = �̄�𝑠 − 𝛽1Φ̄𝑠1 and 𝛽1 =
∑
𝑖∈𝑠

(
𝑦𝑖−�̄�𝑠

)(
Φ(𝑥𝑖)−Φ̄𝑠

)
∑
𝑖∈𝑠

(
Φ(𝑥𝑖)−Φ̄𝑠

)2 . After 

some algebraic operations, the estimator for population total 𝑡𝑦 becomes

𝑡𝐿
𝑦
=𝑁

[
�̄�𝑠 + 𝛽1

(
Φ̄𝑈1 − Φ̄𝑠1

) ]
, (13)

where Φ̄𝑠1 =
∑
𝑖∈𝑠Φ1(𝑥𝑖)

𝑛
and Φ̄𝑈1 =

∑
𝑖∈𝑈 Φ1(𝑥𝑖)

𝑁
are, respectively, the sample and population means of Φ1(𝑥). The prediction bias of 

the total estimator given in Equation (13) under linear regression model, is given by

𝐵𝑀

(
𝑡𝐿
𝑦
− 𝑡𝑦

)
=𝑁

[𝑀−1∑
𝑙=2

𝛽𝑙
(
Φ̄𝑠𝑙 − Φ̄𝑈𝑙

)]
. (14)

The misspecification bias under the working model is expressed in Equation (14) which can be minimized by selecting a sample 
such that the sample mean of the basis functions is nearly close to the population mean of the corresponding basis functions. Under 
balancing condition, the error variance of the total estimator is obtained as:

𝑉𝑀 (𝑡𝐿
𝑦
− 𝑡𝑦) =

𝑁2

𝑛
(1 − 𝑓 )𝜎2

(
1 +

(
Φ̄𝑈1 − Φ̄𝑠1

)2
(1 − 𝑓 )𝜑𝑠

)
, (15)

where 𝜑𝑠 =
∑
𝑖∈𝑠

(
Φ1(𝑥𝑖)−Φ̄𝑠1

)2
𝑛

is the variance of basis function Φ𝑠1 in the sample. It is observed that under first-order balancing, the 
4

variance of the total estimator under Equation (10) coincides with the variance of the expansion estimator given in Equation (15).
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3.3. Case III: proportional basis function model

A proportional basis function model for the response on the 𝑖th population unit is expressed as

𝑦𝑖 = 𝛽1Φ1(𝑥𝑖) + Ψ(𝑥𝑖)𝜉𝑖, ∀ 𝑖 ∈𝑈 (16)

where Ψ(𝑥𝑖) is some function of the auxiliary information. Equation (16) is converted to a model with homoscedastic error term

𝑦∗
𝑖
= 𝛽1Φ∗

1(𝑥𝑖) + 𝜉𝑖, (17)

where 𝑦∗
𝑖
= 𝑦𝑖

Ψ(𝑥𝑖)
, Φ∗

1(𝑥𝑖) =
Φ1(𝑥𝑖)
Ψ(𝑥𝑖)

. The WLS estimator for 𝛽1 in Equation (17) is given by 𝛽1 =
∑
𝑖∈𝑠Φ∗

1(𝑥𝑖)𝑦
∗
𝑖∑

𝑖∈𝑠Φ∗2
1 (𝑥𝑖)

. The estimator of total, is 

given by

𝑡𝑃
𝑦
= 𝑡𝑦𝑠 + 𝛽1

∑
𝑖∈�̄�

Φ∗
1(𝑥𝑖). (18)

The prediction bias of the proportional estimator given in Equation (18), is given by

𝐵𝑀 (𝑡𝑃
𝑦
− 𝑡𝑦) = (𝑁 − 𝑛)

𝑀−1∑
𝑙=0

𝛽𝑙

[∑
𝑖∈𝑠

𝑘∗
𝑖
Φ𝑠𝑙(𝑥𝑖) −

Φ̄�̄�𝑙

Φ̄�̄�1

]
, (19)

where 𝑘∗
𝑖
=
( Φ∗

1(𝑥𝑖)
Ψ(𝑥𝑖)

∑
𝑖∈𝑠Φ∗2

1 (𝑥𝑖)

)∑
𝑖∈�̄�Φ∗

1(𝑥𝑖). The bias given in Equation (19) can be reduced by selecting a sample such that the 

difference on the right hand side of Equation (19) is minimum i.e. 
∑

𝑖∈𝑠 𝑘
∗
𝑖
Φ𝑠𝑙(𝑥𝑖) ≈

Φ̄�̄�𝑙

Φ̄�̄�1
. Under the balancing condition, the error 

variance is obtained as

𝑉𝑀 (𝑡𝑃
𝑦
− 𝑡𝑦) =

[∑
𝑖∈𝑠

𝑘∗∗2
𝑖

Ψ2(𝑥𝑖) +
∑
𝑖∈�̄�

Ψ2(𝑥𝑖)
]
𝜎2, (20)

where 𝑘∗∗
𝑖

= (𝑁 − 𝑛)𝑘∗
𝑖
. The gamma population model given in [19, Chapter 5] is resulted by setting Ψ(𝑥𝑖) = 𝑥𝜸∗ in Equation (16), 

where the quantity 𝜸∗ controls the variation in the response variable depends on the auxiliary variable. Similarly the ratio estimator 
is obtained by setting 𝜸∗ = 1

2 . For 𝜸∗ = 0, the given population model reduces to linear regression model with constant variance.

4. Estimation with misspecified BFRM under RSSWOR

After the pioneer work of [30], RSS attained much attention and has been applied in parameter estimation under with replacement 
settings. Due to its attractive feature of efficiency improvement in RSS, [44] introduced a new version of ranked set sampling for 
obtaining a without replacement sample. To add up in efficiency and to obtain robustness to model failure in finite population 
parameter estimation, in this article we propose the idea of balancing based on the means fo basis functions in RSSWOR suggested by 
[44]. For the 𝑖th judgment ordered random variable 𝑌[𝑖] for 𝑖 ∈ 𝑈 , let 𝜇[𝑖] and 𝜎2[𝑖] be, respectively, the mean and variance. Suppose 
𝑠𝑟 =

{
𝑦[1]1, ..., 𝑦[𝑚]1; 𝑦[1]2, ..., 𝑦[𝑚]2; ......; 𝑦[1]𝑟, ..., 𝑦[𝑚]𝑟

}
a ranked set sample of size 𝑛 =𝑚𝑟, where 𝑚 be the set size and 𝑟 be the number 

of cycles. Let �̄�𝑟 be the set of index attached to the values of units that are not indexed in 𝑠𝑟 . For a given ranked set sample 𝑠𝑟, we can 
rearrange the population vector as 𝑦𝑟 = (𝑦𝑡

𝑠𝑟
, 𝑦𝑡
�̄�𝑟
)𝑡, where 𝑦𝑠𝑟 and 𝑦�̄�𝑟 be the vectors of 𝑚𝑟 sampled and (𝑁 −𝑚𝑟) non-sampled values of 

the study variable respectively. Assuming judgment ranking which is done with respect to some covariate and the respective ordered 
values are subscripted as, (𝑦[𝑖], 𝑥(𝑖)) to denote judgment ranked units, we write the population BFRM of order (M) for 𝑦𝑟 as follow

𝒚𝑟 =𝚽𝑟𝜷 + 𝜻∗, (21)

where 𝒚𝑟 is the ranked response vector, 𝚽𝑟 is the ranked matrix containing basis functions, 𝜷 is the vector of coefficients and 𝜻∗ is 
the vector of random error with mean zero vector and variance-covariance matrix 𝝂𝑟. The function 𝐸𝑀 (𝑌 |Φ𝑟, 𝛽) =𝚽𝑟𝜷 is considered 
as non-linear function of regressors but the conditional mean is still linear in parameters. For estimating 𝜏𝑦 under Equation (21), the 
feature matrix Φ𝑟 and covariance matrix 𝝂𝑟 can be partitioned as:

𝚽𝑟 =
[
𝚽𝑠𝑟

𝚽�̄�𝑟

]
and 𝝂𝑟 =

[
𝝂𝑠𝑟𝑠𝑟 𝝂𝑠𝑟�̄�𝑟
𝝂 �̄�𝑟𝑠𝑟 𝝂 �̄�𝑟 �̄�𝑟

]
,

where 𝚽𝑠𝑟
and 𝚽�̄�𝑟

are the sub-matrices of order 𝑚𝑟 ×𝑀 and (𝑁 −𝑚𝑟) ×𝑀 , respectively. The matrix 𝝂𝑟 is a square matrix consisting 
variances and covariances of the order statistics the sub-matrices 𝝂𝑠𝑟�̄�𝑟 and 𝝂 �̄�𝑟𝑠𝑟 become null when RSSWOR given in [44] is applied 
for select the sample.

An estimator for 𝜏𝑦, using general prediction theorem, given in [6], is obtained as follows

𝜏𝑦𝑟 = 𝜸𝑡
𝑠𝑟
𝑦𝑠𝑟

+ 𝜸𝑡
𝑠𝑟
Φ�̄�𝑟

�̂�[𝑟𝑠𝑠], (22)

where �̂�[𝑟𝑠𝑠] =
(
Φ𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

Φ𝑠𝑟

)−1Φ𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

𝑦𝑠𝑟
is the WLS estimator of 𝜷 under RSSWOR. The prediction error of the estimator 𝜏𝑦𝑟 can be 
5

expressed as:
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Algorithm 1 Proposed ranked set sample without replacement scheme.

1: Construct 𝑟 random sub-populations from 𝑈 i.e. 𝑈1, 𝑈2, ⋯ ⋅ 𝑈𝑗 ⋯ ⋅, 𝑈𝑟 of size 𝑁∕𝑟 such that ∑𝑟

𝑗=1 𝑈𝑗 = 𝑈 and 𝑁∕𝑟 > 𝑚2 . The division of population units into 
sub-population should be random and independent of the study variable to ensure independent selection from each sub-population.

2: Select 𝑚2 units from the 𝑗th sub-population and partitioned into 𝑚 sets each of size 𝑚 for 𝑗 = 1, 2, 3, ⋯ ⋅, 𝑟.
3: Rank each set within itself and select the 𝑖th ranked unit from the 𝑖th set 𝑖 = 1, 2, 3, ⋯ ⋅, 𝑚 from each sub-population.
4: Repeat the Steps 1–3, 𝑅 times and obtain 𝑅 estimates from each RSSWOR samples.
5: Sort the 𝑅 estimates in ascending order and divide into smaller groups and compute the balancing condition based on the sample means of the basis functions 

(see illustration of Steps 1–3 in Fig. 1 [44]).
6: Pick the sample which satisfies the balancing condition (e.g. the sample mean of 𝑙th basis function is very close to the corresponding population basis function).

𝜏𝑦𝑟 − 𝜏𝑦 = 𝜸𝑡
𝑠𝑟
𝝎𝑟𝑦𝑠𝑟

− 𝜸𝑡
𝑠𝑟
𝑦�̄�𝑟

,

where 𝝎𝑟 =Φ�̄�𝑟

(
Φ𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

Φ𝑠𝑟

)−1Φ𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

.
It is easy to show that 𝜏𝑦𝑟 is unbiased with prediction error variance as:

𝑉𝑀
(
𝜏𝑦𝑟 − 𝜏𝑦

)
= 𝑉𝑀

(
𝜏𝑦 − 𝜏𝑦

)
− 𝜸𝑡

�̄�𝑟
Φ�̄�𝑟

Φ−1
𝑠𝑟
Δ𝑡
𝑠𝑟
Δ𝑠𝑟

(
Φ𝑡
𝑠𝑟

)−1Φ𝑡
�̄�𝑟
𝜸�̄�𝒓 , (23)

where 𝝂𝑠𝑟𝑠𝑟 = 𝜎2𝐼𝑠𝑟𝑠𝑟 −Δ𝑡
𝑠𝑟
Δ𝑠𝑟

, Δ𝑠𝑟
=
(
𝝁𝑠𝑟 −𝝁

)
, 𝝁𝑠𝑟 is the vector of population means for ranked data after random classification (see 

[44] for clarification) and 𝝁 is the over all population mean. From Equations (5) and (23), it is clear that 𝜏𝑦𝑟 is always more efficient 
than the 𝜏𝑦 which shows the superiority of under ranked set sampling over simple random sampling. The newly adopted ranked set 
sampling mechanism is illustrated in Algorithm 1.

We now discuss the problem of model misspecification bias in RSSWOR setting considering a working basis function model (𝑀∗), 
which is different from the underlying true model (𝑀). Suppose, we have the following working model (𝑀∗).

𝒚𝑟 =𝚽∗
𝑟
𝜷∗ + 𝜻∗. (24)

Assuming single cycle i.e. 𝑟 = 1 for making derivations simple, we write the estimator of population total under Equation (24) as 
follows

𝜏∗
𝑦𝑟
= 𝜸𝑡

𝑠𝑟
𝑦𝑠𝑟

+ 𝜸𝑡
𝑠𝑟
Φ∗
𝑠𝑟
�̂�
∗
[𝑟𝑠𝑠], (25)

where 𝛽∗[𝑟𝑠𝑠] =
(
Φ∗𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

Φ∗
𝑠𝑟

)−1
Φ∗𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

𝑦𝑠𝑟
is the weighted least square (WLS) estimator for the coefficient vector 𝜷∗. We can write 

prediction error of 𝜏∗
𝑦[𝑟𝑠𝑠] as

𝜏∗
𝑦𝑟
− 𝜏𝑦 = 𝜸𝑡

𝑠𝑟
Φ∗
𝑠𝑟

(
Φ∗𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

Φ∗
𝑠𝑟

)−1
Φ∗𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

𝑦𝑠𝑟
− 𝜸𝑡

𝑠𝑟
𝑦𝑠𝑟

.

The prediction bias under true model (M), is given by

𝐵𝑀
(
𝜏∗
𝑦𝑟
− 𝜏𝑦

)
= 𝜸𝑡

𝑠𝑟

(
𝝎∗
[𝑅]Φ𝑠𝑟

−Φ𝑠𝑟

)
𝜷, (26)

where 𝝎∗
𝑟
= Φ∗

𝑠𝑟

(
Φ∗𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

Φ∗
𝑠𝑟

)−1
Φ∗𝑡
𝑠𝑟
𝝂−1
𝑠𝑟𝑠𝑟

is a (𝑁 −𝑚) ×𝑀 . The sample is 𝜔∗
𝑟

balanced on input variable(s) i.e. 𝜸𝑡
𝑠𝑟
𝝎∗
𝑟
Φ𝑠𝑟

= 𝜸𝑡
𝑠𝑟
Φ𝑠𝑟

. 
Under the balancing condition, the model bias given in Equation (26) vanishes and the prediction error variance reduces to

𝑉𝑀
(
𝜏∗
𝑦𝑟
− 𝜏𝑦

)
= 𝑉𝑀

(
𝜏∗
𝑦
− 𝜏𝑦

)
− 𝜸𝑡

𝑠𝑟
Φ∗
�̄�𝑟
Φ∗−1
𝑠𝑟

Δ𝑡
𝑠𝑟
Δ𝑠𝑟

(
Φ∗𝑡
𝑠𝑟

)−1Φ∗𝑡
�̄�𝑟
𝜸𝒔𝒓 , (27)

where 𝝂𝑠𝑟𝑠𝑟 = 𝜎2𝐼𝑠𝑟𝑠𝑟 −Δ𝑡
𝑠𝑟
Δ𝑠𝑟

and Δ𝑠𝑟
=
(
𝜇𝑠𝑟

− 𝜇
)
. From Equations (9) and (27), it is clear that 𝜏∗

𝑦𝑟
is more efficient than 𝜏𝑦 which 

shows the superiority of the RSSWOR over SRSWOR for estimation of 𝜏𝑦. The special cases of the BFRM under RSSWOR with 
balancing are discussed in following subsections.

4.1. Case I: homogeneous basis function model (HBFM)

The ordered population value of the study variable 𝑦, under HBFM is expressed as 𝑦[𝑖] = 𝛽0 + 𝜉[𝑖]. The error term is approximately 
independently distributed with mean 0 and variance 𝜎2[𝑖]. It is assumed that the ranking is performed on some co-variate which is 
not related to 𝜉[𝑖]. We assume that 𝐸𝑀

{
𝑦[𝑖]|Φ(𝑥(𝑖))

}
= 𝛽0, 𝑉𝑀

{
𝑦[𝑖]|Φ(𝑥(𝑖))

}
= 𝜎2[𝑖] and 𝐶𝑜𝑣𝑀

{
𝑦[𝑖], 𝑦[𝑖′]|Φ(𝑥(𝑖)), Φ(𝑥(𝑖′))

}
= 0 for 𝑖 ≠ 𝑖′, 

where 𝑦[𝑖] and 𝑦[𝑖′] are taken from different ranked sets. The expansion estimator 𝑡𝐸
𝑦[𝑟𝑠𝑠] for the population total 𝑡𝑦 =

∑
𝑖∈𝑠 𝑦[𝑖] +

∑
𝑖∈�̄� 𝑦𝑖

under HBFM, is given by

𝑡𝐸
𝑦[𝑟𝑠𝑠] =

∑
𝑖∈𝑠𝑟

𝑦[𝑖] +
∑
𝑖∈�̄�𝑟

𝛽0[𝑟𝑠𝑠],

∑𝑟

𝑗=1
∑

𝑖∈𝑠 𝑦[𝑖]𝑗
6

where 𝛽0[𝑟𝑠𝑠] =
𝑟

𝑟𝑚
is BLUP for 𝛽0 under RSSWOR and the resulting total estimator is
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𝑡𝐸
𝑦𝑟
=𝑁

∑𝑟

𝑗=1
∑

𝑖∈𝑠𝑟 𝑦[𝑖]𝑗

𝑟𝑚
. (28)

The prediction bias of the expansion estimator given in (28), after some simplification, is given by

𝐵𝑀
(
𝑡𝐸
𝑦𝑟
− 𝑡𝑦

)
=𝐸𝑀

(
𝑁

𝑚

∑
𝑖∈𝑠𝑟

𝑦[𝑖] −
∑
𝑖∈𝑈

𝑦𝑖

)

=𝑁
𝑀−1∑
𝑞=0

𝛽𝑞

(
Φ̄𝑠𝑟𝑞

− Φ̄𝑈𝑞

)
(29)

where Φ̄𝑠𝑟𝑞
=

∑
𝑖∈𝑠𝑟 Φ𝑞(𝑥(𝑖))

𝑚
and Φ̄𝑈𝑞

=
∑

𝑖∈𝑈 Φ𝑞(𝑥𝑖)
𝑁

, for (𝑞 = 0, 1, 2, ⋯ ⋅, 𝑀 − 1), are the sample and population means for the 𝑞th 
basis function of a balanced sample i.e. Φ̄𝑠𝑟

≈ Φ̄𝑈 . The error variance of 𝑡𝐸
𝑦[𝑟𝑠𝑠], is given by

𝑉𝑀 (𝑡𝐸
𝑦𝑟
− 𝑡𝑦) =

𝑁

𝑚
(𝑁 −𝑚)𝜎2 −

(
𝑁 −𝑚

𝑚

)2 ∑
𝑖∈𝑠𝑟

𝛿2[𝑖]

=𝑉𝑀 (𝑡𝐸
𝑦
− 𝑡𝑦) −

(
𝑁 −𝑚

𝑚

)2 ∑
𝑖∈𝑠𝑟

𝛿2[𝑖], (30)

where 𝜎2[𝑖] = 𝜎2 −𝛿2[𝑖] and 𝛿[𝑖] = 𝜇[𝑖] −𝜇. Equation (30) shows that the total estimator under RSSWOR is at least as efficient as SRSWOR.

4.2. Case-II: linear basis function model (LBFM)

The response on the 𝑖th ordered population unit under a LBFM, is given by

𝑦[𝑖] = 𝛽0 + 𝛽1Φ1(𝑥(𝑖)) + 𝜉[𝑖] (31)

with 𝐸𝑀

{
𝑦[𝑖]|Φ(𝑥(𝑖))

}
= 𝛽0 + 𝛽1Φ1(𝑥(𝑖)). Under (31), we obtain the following estimator for population total

𝑡𝐿
𝑦𝑟
=
∑
𝑖∈𝑠𝑟

𝑦[𝑖] +
∑
𝑖∈�̄�𝑟

(
𝛽0[𝑟𝑠𝑠] + 𝛽1[𝑟𝑠𝑠]Φ1(𝑥(𝑖))

)

=𝑁
[
�̄�𝑠𝑟

+ 𝛽1[𝑟𝑠𝑠]

(
Φ̄𝑈1

− Φ̄𝑠𝑟1

)]
, (32)

where 𝛽1[𝑟𝑠𝑠] is the BLUE of 𝛽1 under RSSWOR. The prediction bias of the total estimator in Equation (32) is given as:

𝐵𝑀

(
𝑡𝐿
𝑦𝑟
− 𝑡𝑦

)
=𝐸𝑀

[
𝑁

𝑚

∑
𝑖∈𝑠𝑟

𝑦[𝑖] +𝑁𝛽1[𝑟𝑠𝑠]

(
Φ̄𝑈1

− Φ̄𝑠𝑟1

)
−
∑
𝑖∈𝑈

𝑦𝑖

]

=𝑁
𝑀−1∑
𝑞=2

𝛽𝑞

(
Φ̄𝑠𝑟𝑞

− Φ̄𝑈𝑞

)
, 𝑞 = 2,3,⋯⋅,𝑀 − 1. (33)

The bias given in Equation (33) can be reduced to zero by selecting a balanced sample under RSSWOR i.e. Φ̄𝑠𝑟
≈ Φ̄𝑈 . Under 

balancing condition, the estimator under LBFM reduces to expansion estimator. The prediction error variance of the total estimator 
under RSSWOR, is given by

𝑉𝑀 (𝑡𝐿
𝑦𝑟
− 𝑡𝑦) = 𝑉𝑀

[ (𝑁 −𝑚)
𝑚

∑
𝑖∈𝑠𝑟

𝑦[𝑖] +𝑁𝛽1[𝑟𝑠𝑠]

(
Φ̄𝑈1

− Φ̄𝑠𝑟1

)
−
∑
𝑖∈𝑠𝑟

𝑦𝑖

]
.

After some simplification, we get

𝑉𝑀 (𝑡𝐿
𝑦𝑟
− 𝑡𝑦) =𝑉𝑀 (𝑡𝐿

𝑦
− 𝑡𝑦) −

(
𝑁 −𝑚

𝑚

)2 ∑
𝑖∈𝑠𝑟

𝛿2[𝑖] −𝑁2
(
Φ̄𝑈1

− Φ̄𝑠𝑟1

)2

×

∑
𝑖∈𝑠𝑟

(
Φ1(𝑥(𝑖)) − Φ̄𝑠𝑟1

)2
𝛿2[𝑖]

𝑚2𝜑2
𝑠𝑟

, (34)

where 𝜑𝑠𝑟 =
1
𝑚

∑
𝑖∈𝑠𝑟

(
Φ1(𝑥(𝑖)) − Φ̄𝑟𝑠1

)2
. Equation (34) indicates that prediction error variance is reduced by selecting a balanced 

sample under RSSWOR and also in this situation, variance of LBFM reduces to variance of the HPM. This provides that 𝑡𝐿
𝑦𝑟

is at least 
7

as efficient as its counterpart under SRSWOR.
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4.3. Case-III: proportional basis function model (PBFM)

The PBFM for the response on the 𝑖th ordered population value can be modeled as

𝑦[𝑖] = 𝛽1Φ1(𝑥(𝑖)) + Ψ(𝑥(𝑖))𝜉[𝑖] for 𝑖 ∈𝑈 (35)

where Ψ(𝑥(𝑖)) is some function of the ordered values of the auxiliary variable. Following transformation on Equation (35)is used to 
make error terms homoscedastic

𝑦∗[𝑖] = 𝛽1Φ∗
1(𝑥(𝑖)) + 𝜉[𝑖], (36)

where 𝑦∗[𝑖] =
𝑦[𝑖]

Ψ(𝑥(𝑖))
, and Φ∗

1(𝑥(𝑖)) =
Φ1(𝑥(𝑖))
Ψ(𝑥(𝑖))

.

The error term 𝜉[𝑖] is approximately independently distributed with 𝜇[𝑖] = 0 and variance 𝜎2[𝑖]. The estimator 𝑡𝑃
𝑦𝑟

for population 
total under RSSWOR is expressed as follows:

𝑡𝑃
𝑦𝑟
=
∑
𝑖∈𝑠𝑟

𝑦[𝑖] + 𝛽1[𝑟𝑠𝑠]
∑
𝑖∈�̄�𝑟

Φ∗
1(𝑥(𝑖))

The BLUE for 𝛽1 under RSSWOR is obtained as 𝛽1[𝑟𝑠𝑠] =
∑𝑟
𝑗=1

∑
𝑖∈𝑠𝑟 Φ

∗
1(𝑥(𝑖)𝑗 )𝑦

∗
[𝑖]𝑗∑𝑟

𝑗=1
∑
𝑖∈𝑠𝑟 Φ

∗2
1 (𝑥(𝑖)𝑗 )

. For 𝑟 = 1, the estimator is written as

𝑡𝑃
𝑦𝑟
=
∑
𝑖∈𝑠𝑟

𝑦[𝑖] +
∑
𝑖∈�̄�𝑟

Φ∗
1(𝑥(𝑖))

∑
𝑖∈𝑠𝑟 Φ

∗
1(𝑥(𝑖))𝑦

∗
[𝑖]∑

𝑖∈𝑠𝑟 Φ
∗2
1 (𝑥(𝑖))

.

The expression for prediction bias under RSSWOR is given in Equation (37)

𝐵𝑀
(
𝑡𝑃
𝑦𝑟
− 𝑡𝑦

)
=𝐸𝑀

[
(𝑁 −𝑚)

∑
𝑖∈𝑠𝑟

𝑘∗(𝑖)𝑦[𝑖] −
∑
𝑖∈�̄�𝑟

𝑦𝑖

]

=(𝑁 −𝑚)
𝑀−1∑
𝑞=0

𝛽𝑞

[∑
𝑖∈𝑠𝑟

𝑘∗(𝑖)Φ𝑠𝑞(𝑥(𝑖)) −
Φ̄�̄�𝑟𝑞

Φ̄�̄�𝑟1

]
, 𝑞 = 0,1,2,⋯ ⋅𝑀 − 1, (37)

where 𝑘∗(𝑖) =
[ Φ∗

1(𝑥(𝑖))
Ψ(𝑥(𝑖))

∑
𝑖∈𝑠𝑟 Φ

∗2
1 (𝑥(𝑖))

]∑
𝑖∈�̄�𝑟 Φ

∗
1(𝑥(𝑖)). Unbiasedness can be achieved by selecting a sample which satisfies the condition i.e. ∑

𝑖∈𝑠𝑟 𝑘
∗
(𝑖)Φ𝑠𝑞(𝑥(𝑖)) −

Φ̄�̄�𝑟𝑞

Φ̄�̄�𝑟1
. The prediction error variance of the total estimator is expressed as

𝑉𝑀 (𝑡𝑃
𝑦𝑟
− 𝑡𝑦) =

[∑
𝑖∈𝑠𝑟

𝑘∗∗2(𝑖) Ψ2(𝑥(𝑖)) +
∑
𝑖∈�̄�𝑟

Ψ2(𝑥(𝑖))
]
𝜎2 −

∑
𝑖∈𝑠𝑟

𝑘∗∗2(𝑖) Ψ2(𝑥(𝑖))𝛿2[𝑖]

=𝑉𝑀 (𝑡𝑃
𝑦
− 𝑡𝑦) −

∑
𝑖∈𝑠𝑟

𝑘∗∗2(𝑖) Ψ2(𝑥(𝑖))𝛿2[𝑖], (38)

where 𝑘∗∗(𝑖) = (𝑁 −𝑚)𝑘∗(𝑖). Equation (38) shows the supremacy of the predictive estimator 𝑡𝑃
𝑦𝑟

over its counterpart under SRSWOR (see 
Equation (20)).

5. Empirical studies

We conduct two empirical studies to evaluate the performance of the proposed estimators of the finite population total under 
RSSWOR. For this purpose, firstly, a simulation study is conducted using hypothetically generated population and then we provide a 
bootstrap study using real-world data.

5.1. Simulation study

For the purpose of efficiency comparisons, we conduct a Monte Carlo (MC) experiment by creating a hypothetical population 
with 𝑁 = 1000 data points. Following [44], the values on the auxiliary character (𝑥) are obtained assuming a gamma distribution 
with different sets of parameters 𝑎 and 𝑏. The values of 𝒚 are obtained using the relationship 𝒚 = 𝒙 ⊖ +𝝐, where 𝜖 ∼ (0, 𝜎2𝐼𝑁 ) is 
randomly generated error term and ⊖ is computed as the averaged eigen vector corresponding to the eigen values of the data matrix 
𝐻 = 𝑥𝑡𝑥 that are greater than unity. We select an SRS and a RSSWOR each with total units 𝑛 =𝑚𝑟 = 10, 20, 25, 40, 50, and 80, where 
𝑚 = 2, 5, 8 sizes and 𝑟 = 5, 10. The sampling process is replicated 𝜂 = 20,000 times to evaluate the behavior of the estimators and 
their mutual comparison. The mean squared prediction error (MSPE) of the proposed estimators and the corresponding estimators 
with balancing restrictions are obtained as follows

𝑀𝑆𝑃𝐸𝐵𝐼.𝑟𝑠𝑠 =
𝜂∑{ (𝑡𝐼

𝑦𝑟𝑐
− 𝑡𝑦)2

}
, 𝐼 =𝐸,𝑃 ,𝐿 (39)
8

𝑐=1 𝜂
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Table 1

Simulated MSEs of total estimator under SRSWOR and RSSWOR with 𝑀 = 3.

𝑟 𝑚 𝑅𝐸𝐵𝐸.𝑟𝑠𝑠 𝑅𝐸𝐵𝑃 .𝑟𝑠𝑠 𝑅𝐸𝐵𝐿.𝑟𝑠𝑠 𝑅𝐸𝐵𝐸.𝑟𝑠𝑠 𝑅𝐸𝐵𝑃 .𝑟𝑠𝑠 𝑅𝐸𝐵𝐿.𝑟𝑠𝑠

𝑀 = 3 𝑀 = 5

G(3,1)
2 1.0491 1.0424 1.0421 1.0808 1.0818 1.0847

5 5 1.1225 1.1242 1.1259 1.2069 1.2048 1.1998
8 1.2969 1.2628 1.2808 1.6285 1.6124 1.5640

2 1.2112 1.1968 1.2023 1.0934 1.0901 1.0805
10 5 1.1158 1.1004 1.1003 1.1690 1.1645 1.1509

8 1.2975 1.2082 1.2237 1.4171 1.4137 1.4040

G(3,2)
2 1.0888 1.0904 1.0947 1.1184 1.1208 1.1259

5 5 1.1025 1.1063 1.1247 1.2096 1.2081 1.2051
8 1.1725 1.1652 1.1615 1.4610 1.4461 1.4049

2 1.1468 1.1439 1.1495 1.1715 1.1682 1.1654
10 5 1.2029 1.2104 1.2194 1.1790 1.1743 1.1623

8 1.2303 1.2175 1.2098 1.1400 1.1351 1.1268

G(5,2)
2 1.0170 1.0122 1.0168 1.2606 1.2625 1.2675

5 5 1.0646 1.0478 1.0447 1.1599 1.1603 1.1574
8 1.0814 1.0740 1.0658 1.4963 1.4920 1.4852

2 1.0997 1.1027 1.0990 1.0382 1.0310 1.0348
10 5 1.0903 1.0939 1.0916 1.2006 1.1961 1.1863

8 1.2327 1.2254 1.2205 1.3012 1.3106 1.3051

G(5,4)
2 1.0628 1.0641 1.0672 1.1871 1.1745 1.1663

5 5 1.0418 1.0192 1.0160 1.1260 1.1281 1.1262
8 1.1270 1.1313 1.1244 1.3109 1.3068 1.2992

2 1.0533 1.0558 1.0574 1.0550 1.0561 1.0577
10 5 1.2274 1.2297 1.2171 1.0748 1.0644 1.0594

8 1.1906 1.1808 1.1773 1.0871 1.0845 1.0765

𝑀𝑆𝑃𝐸𝐵𝐼.𝑠𝑟𝑠 =
𝜂∑
𝑐=1

{ (𝑡𝐼
𝑦𝑐
− 𝑡𝑦)2

𝜂

}
, 𝐼 =𝐸,𝑃 ,𝐿 (40)

with a relative efficiency as

𝑅𝐸𝐵𝐼.𝑟𝑠𝑠 =
𝑀𝑆𝑃𝐸𝐵𝐼.𝑠𝑟𝑠

𝑀𝑆𝐸𝐵𝐼.𝑟𝑠𝑠

, 𝐼 =𝐸,𝑃 ,𝐿

The absolute biases (ABs) under balanced sample technique under RSSWOR are calculated as

𝐴𝐵𝐵𝐼.𝑟𝑠𝑠 =
𝜂∑
𝑐=1

||||
(𝑡𝐼
𝑦𝑟𝑐

− 𝑡𝑦)
𝜂

||||, 𝐼 =𝐸,𝑃 ,𝐿 (41)

For comparison, the ABs are also obtain under SRSWOR of size 𝑛 as:

𝐴𝐵𝐵𝐼.𝑠𝑟𝑠 =
𝜂∑
𝑐=1

||||
(𝑡𝐼
𝑦𝑐
− 𝑡𝑦)
𝜂

||||, 𝐼 =𝐸,𝑃 ,𝐿 (42)

The results of simulation study for different choices of Gamma distribution 𝐺(𝑎; 𝑏) are given in Table 1. Relative efficiency (RE) 
of the total estimator under balanced RSSWOR with respect to their counterparts are obtained in Table 1. The RSSWOR estimator 
performs better when set size is relatively larger. Similarly, RE values are higher for higher order polynomial basis function models. 
Further, the RE values are higher for choice of shape parameter of the Gamma distribution 𝑎. The absolute biases (ABs) of the total 
estimators under SRSWOR and RSSWOR are reported in Tables 2 and 3 for 𝑀 = 3 and 𝑀 = 5 respectively. The total estimators under 
RSSWOR yield relatively smaller ABs than that of the estimators under SRSWOR. Comparing ABs in Tables 2 and 3 one can conclude 
that the constrain of balancing is more effective with lower order polynomial basis function models. Similarly, the values of ABs for 
different choices of the parameters of gamma distribution can be compared by observing Tables 2 and 3. ABs of the total estimator 
in RSSWOR tend to decrease with increase in set size 𝑚 and the number of cycles 𝑟 too, which indicates that our proposed estimator 
9

performs better under model misspecification
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Table 2

Simulated ABs of total estimator under SRSWOR and RSSWOR with 𝑀 = 3.

𝑡 𝑚 𝐴𝐵𝐵𝐸.𝑠𝑟𝑠 𝐴𝐵𝐵𝑃 .𝑠𝑟𝑠 𝐴𝐵𝐵𝐿.𝑠𝑟𝑠 𝐴𝐵𝐵𝐸.𝑟𝑠𝑠 𝐴𝐵𝐵𝑃 .𝑟𝑠𝑠 𝐴𝐵𝐵𝐿.𝑟𝑠𝑠

G(3,1)
5 2 66.8657 72.0003 78.2543 58.6901 62.8968 67.5400
10 40.3001 49.1976 53.4408 24.5476 32.5703 38.5398
5 5 20.1106 30.1876 36.5044 11.9226 18.9517 20.1343
10 9.6356 12.6104 14.9427 4.0930 7.6618 8.0473
5 8 12.9411 16.9934 21.3778 7.0693 8.3414 10.5984
10 6.8300 8.3676 10.8993 2.0317 4.0343 4.9982

G(3,2)
5 2 27.8350 28.6832 32.7945 19.1209 19.5267 20.3128
10 17.1977 20.5302 24.3838 10.1298 13.1127 17.5576
5 5 10.2189 13.9700 17.2160 6.9432 8.3357 9.3555
10 5.1276 6.8604 8.6562 0.8678 2.9407 3.1512
5 8 7.7666 5.0500 9.3713 1.3776 3.7934 5.8796
10 1.2689 2.9954 4.5702 0.3311 0.4659 0.8682

G(5,2)
5 2 19.4222 28.8517 33.3209 10.5543 19.9300 25.5437
10 11.7477 17.3109 20.0423 7.8265 10.1012 13.4287
5 5 7.2266 11.9065 18.3234 4.4209 6.2111 7.7354
10 5.8535 7.3711 8.4976 2.8780 4.1609 4.5025
5 8 6.4175 9.2900 11.4509 3.6634 7.0676 5.3942
10 4.1888 5.2754 6.8710 0.9876 0.4460 1.3543

G(5,4)
5 2 12.3006 16.9863 19.9821 7.1368 9.1630 10.6479
10 6.2535 8.3733 11.5766 3.8410 5.0946 6.8834
5 5 4.7820 5.9207 8.6599 2.5495 3.5129 4.1620
10 2.8951 4.1012 5.9011 0.7632 0.4058 1.0006
5 8 3.8451 6.9086 7.3425 0.0943 1.5589 1.9028
10 0.5092 1.8525 3.5061 0.0159 0.8881 0.0303

Table 3

Simulated ABs of total estimator under SRSWOR and RSSWOR with 𝑀 = 5.

𝑟 𝑚 𝐴𝐵𝐵𝐸.𝑠𝑟𝑠 𝐴𝐵𝐵𝑃 .𝑠𝑟𝑠 𝐴𝐵𝐵𝐿.𝑠𝑟𝑠 𝐴𝐵𝐵𝐸.𝑟𝑠𝑠 𝐴𝐵𝐵𝑃 .𝑟𝑠𝑠 𝐴𝐵𝐵𝐿.𝑟𝑠𝑠

G(3,1)
5 2 3655.2512 3711.4980 4077.9060 2104.2515 2309.1798 2671.1745
10 3060.7540 3289.4904 3754.9755 1888.7451 1990.3500 2210.0817
5 5 1866.3167 2107.8587 2619.0132 1100.4511 1490.0865 1610.9230
10 928.8201 1161.2856 1700.6612 546.5607 712.2954 901.0886
5 8 1224.0187 1446.2904 2057.2836 615.5572 857.9963 1088.6778
10 176.3144 280.9307 473.1444 74.1323 119.2898 241.2923

G(3,2)
5 2 435.3540 469.3012 495.3176 259.5445 288.0545 302.0144
10 167.1598 183.5406 215.3223 92.0376 101.1512 143.6133
5 5 113.1509 130.0323 164.0114 67.3387 84.7843 100.1067
10 52.4399 68.9607 104.5009 32.4143 40.5731 71.8876
5 8 63.5800 82.1165 129.8623 36.0677 46.4209 78.8656
10 15.1812 26.9074 54.6509 8.3840 15.8922 31.7555

G(5,2)
5 2 1510.3540 1557.3012 1654.3176 825.8523 874.0756 901.9987
10 1110.1598 1151.5406 1250.3223 676.6017 697.3065 712.7732
5 5 627.1509 693.0323 854.0114 324.2975 401.8634 484.0146
10 250.4399 281.9607 412.5009 141.9864 197.2886 245.6687
5 8 304.5800 365.1165 522.8623 171.9111 228.5843 335.8843
10 172.1812 215.9074 309.6509 87.5912 115.8388 173.1566

G(5,4)
5 2 94.5793 97.7126 104.0087 46.7772 59.3593 73.8702
10 64.9339 67.6973 81.4644 33.5258 42.7515 60.9946
5 5 35.5339 40.6358 50.6530 20.4888 26.2799 35.9581
10 17.1437 21.8906 27.8021 9.5260 12.9178 17.3328
5 8 21.8644 26.2070 36.9291 12.4457 14.2724 20.4412
10 7.2685 11.0959 18.2345 3.2359 6.5321 10.8713
10



Heliyon 10 (2024) e25106S. Ahmed, J. Shabbir, H.M. Alshanbari et al.

Table 4

Bootstrapped MSPE of total estimators under SRSWOR and RSSWOR.

𝑟 𝑚 𝑀𝑆𝑃𝐸𝐵𝐸.𝑠𝑟𝑠 𝑀𝑆𝑃𝐸𝐵𝑃 .𝑠𝑟𝑠 𝑀𝑆𝑃𝐸𝐵𝐿.𝑠𝑟𝑠 𝑀𝑆𝑃𝐸𝐵𝐸.𝑟𝑠𝑠 𝑀𝑆𝑃𝐸𝐵𝑃 .𝑟𝑠𝑠 𝑀𝑆𝑃𝐸𝐵𝐿.𝑟𝑠𝑠

5 4 912.5090 901.3022 906.8722 884.9288 876.3699 868.9105
8 632.8460 625.6318 616.4567 570.1571 546.0445 524.2228
5 6 742.3634 736.5551 732.0162 618.6125 611.2861 603.4957
8 432.1373 428.5528 426.4057 385.6711 376.1896 360.272
5 8 525.6232 516.6093 506.6172 469.9386 459.9073 434.9171
8 315.2605 311.7891 307.9543 279.2272 275.6586 267.4239

Table 5

Bootstrapped ABs of total estimator under SRSWOR and RSSWOR.

𝑟 𝑚 𝐴𝐵𝐵𝐸.𝑠𝑟𝑠 𝐴𝐵𝐵𝑃 .𝑠𝑟𝑠 𝐴𝐵𝐵𝐿.𝑠𝑟𝑠 𝐴𝐵𝐵𝐸.𝑟𝑠𝑠 𝐴𝐵𝐵𝑃 .𝑟𝑠𝑠 𝐴𝐵𝐵𝐿.𝑟𝑠𝑠

5 4 643.0678 703.1282 931.7880 376.5418 466.0784 597.7331
8 452.2373 616.5886 796.0038 265.6684 389.3196 474.7331
5 6 498.8261 697.3275 827.1205 283.9132 409.6674 515.2632
8 245.7981 410.0384 498.8969 92.897 167.4791 197.3432
5 8 325.2421 503.5297 622.8771 158.1708 217.0325 305.4045
8 84.75926 119.6282 205.4875 46.3246 78.5706 99.3762

Fig. 1. Comparison of MSPE for total estimators for different choices of 𝑟, and 𝑚 with different models.

5.2. Bootstrapped study

To evaluate the performance and applicability of the proposed estimators with balanced sampling strategy under RSSWOR, we 
consider a data set given in [6, Appendix B-2, Page 424]. The data consists of 𝑁 = 393 hospitals which is considered as the population 
to be sampled for bootstrapping. The number of beds in each hospital is taken as the auxiliary variable, and the number of patients 
discharged is taken as the study variable. The formula used for the mean squared error and absolute bias are same as given in 
Equations (39), (40) and (41), (42) respectively. See [6] about the detail on variable and relationship between the study variable and 
the auxiliary variable.

The results computed from the real data set (hospital data) are reported in Tables 4 and 5. Three simple basis function models 
are used to obtain results under ranked set sampling under respective balancing conditions (see conditions obtained under Cases I, II 
and III in Section 4). The procedure given in Algorithm 1 is repeated 𝑅 = 20,000 times and the MSPE and absolute biases (ABs) are 
obtained using Equations (39) and (41).

Tables 4–5 give bootstrapped results of different estimators under HPM, LBFM, and PBFM. The MSPE values in Table 4 are 
reported after dividing by 106. It can be seen that the MSE values reduce under RSSWOR using the balanced sampling technique as 
compared to SRSWOR. Table 5 shows that the ABs under RSSWOR using the balanced sample rapidly go down and each estimator 
is unbiased where the sample mean is nearer to the population mean. Both simulation and bootstrapped studies provide evidence 
of superiority of ranked set sampling both in terms of AB and MSE. The results also suggest that it is more easy to get balancing 
conditions under RSSWOR as in ranked set sampling we consider many sets and observe the values of the auxiliary variables and 
rank the data accordingly which can be used for balancing. For visual comparison the MSPE and AB values are displayed in Figs. 1
11

and 2 respectively.



Heliyon 10 (2024) e25106S. Ahmed, J. Shabbir, H.M. Alshanbari et al.

Fig. 2. Comparison of AB for total estimators for different choices of 𝑟, and 𝑚 with different models.

6. Conclusion

Model-based robust estimators of finite population total, assuming the superpopulation setting, are discussed under the misspec-
ified basis function regression model in SRSWOR and RSSWOR. Some well known estimators are identified as the special cases 
of the proposed estimators. The expressions for prediction error, bias, and mean squared error of the proposed estimators are de-
rived. The results indicate that the proposed technique based on balanced sampling under RSSWOR works well in case of model 
misspecification in terms of bias reduction. Both mathematical expressions and empirical study keep up the superiority of the total 
estimators with balancing conditions under RSSWOR over SRSWOR. The results suggested that through proper selection of a sample 
and estimator, estimation becomes robust against model failure. Hence, the suggested estimators can be used in the estimation of 
any linear combination of the study variable including mean, total and proportions. It is also applicable in public health to check the 
prevalence of disease, where demographic information can be used as the auxiliary data. The results also suggest that it is more easy 
to get balancing conditions under RSSWOR as in ranked set sampling, we consider many sets and observe the values of the auxiliary 
variables and rank the data accordingly which can be used for balancing. In RSSWOR, we assume that the error term is random with 
a zero mean and constant variance but this assumption is very weak as the mean of the error may not be zero for a ranked set. The 
idea can be extended to other ranked set sampling schemes and we can work with the same idea under Bayesian framework.
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