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Quantum materials are amenable to nonequilibrium manipulation
with light, enabling modification and control of macroscopic prop-
erties. Light-based augmentation of superconductivity is particularly
intriguing. Copper-oxide superconductors exhibit complex interplay
between spin order, charge order, and superconductivity, offering
the prospect of enhanced coherence by altering the balance between
competing orders. We utilize terahertz time-domain spectroscopy to
monitor the c-axis Josephson plasma resonance (JPR) in La2−xBaxCuO4

(x = 0.115) as a direct probe of superconductivity dynamics following
excitationwith near-infrared pulses. Starting from the superconducting
state, c-axis polarized excitation with a fluence of 100 μJ/cm2 results
in an increase of the far-infrared spectral weight by more than an
order of magnitude as evidenced by a blueshift of the JPR, inter-
preted as resulting from nonthermal collapse of the charge order.
The photoinduced signal persists well beyond our measurement
window of 300 ps and exhibits signatures of spatial inhomogeneity.
The electrodynamic response of this metastable state is consistent
with enhanced superconducting fluctuations. Our results reveal that
La2−xBaxCuO4 is highly sensitive to nonequilibrium excitation over a
wide fluence range, providing an unambiguous example of photoin-
duced modification of order-parameter competition.
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High-temperature superconductivity in the cuprates can co-
exist or compete with a multitude of other phenomena, in-

cluding charge and spin order, pair density waves, and the
pseudogap (1–4), all of which have observable signatures in the
linear or transient electrodynamic response (5). A key question for
the cuprates is the extent to which the underlying interactions can
be manipulated to alter the macroscopic properties. Ultrafast
pump–probe spectroscopy provides a unique means to initiate and
interrogate nonequilibrium dynamics and property control in su-
perconductors (6, 7).
Evidence of transiently enhanced interlayer tunneling has been

reported in several cuprates following selective phonon pumping
(8–10) or intense near-infrared excitation (11). In these experi-
ments, the c-axis Josephson plasma resonance (JPR) serves as a
reporter of the interlayer tunneling which, in general, scales with
the superfluid spectral weight (12). Upon applying intense near-
infrared pump excitation starting above the transition temperature
Tc, Nicoletti et al. (11) observed a blueshift of the plasma reso-
nance relative to the below Tc equilibrium response. The plasma
resonance decayed after several picoseconds and was interpreted
in terms of transient superconductivity. Similar dynamics were
subsequently observed in both La2−xBaxCuO4 and YBa2Cu3O6+x
over a range of doping levels and excitation conditions. More
recently, in La2−xBaxCuO4 (x = 0.095), a longer-lived (>50 ps)
collective response was observed subsequent to photoexcitation at
T < Tc in which the JPR appeared to split into 2 distinct longi-
tudinal modes (13), reminiscent of the static electrodynamic re-
sponse in bilayer cuprates (14–16). Further, no pump-induced

effect was observed above Tc. Notably, the x = 0.095 material does
not exhibit robust charge or stripe order (17).
In this report, we clarify the details of the photoinduced order

parameter control in the cuprates, by performing temperature and
fluence-dependent c-axis measurements on materials with equilib-
rium signatures of phase competition. We present near-infrared
pump, THz probe experiments of La2−xBaxCuO4 (x = 0.115), for
which we observe distinct dynamics above and below Tc. The doping
x = 0.115 is close to the anomalous x = 1/8 composition where 3D
superconductivity is maximally suppressed by robust charge and
stripe order (2, 18–20). At x = 0.115, charge order, spin order, and
3D superconductivity onset at Tco = 53 K, Tso = 40 K, and Tc =
13 K, respectively (17). In this compound Tc is high enough to enable
initiating dynamics from within the superconducting state. The
La1.885Ba0.115CuO4 crystal was cut and polished to expose the a-c
plane with a large area of 5 mm × 5 mm. Temperature-dependent
Fourier transform infrared spectroscopy (FTIR) measurements were
carefully performed to provide a baseline static characterization of
the electrodynamic response (see SI Appendix, section S1 for details).
The static and dynamic reflectivity of LBCO were measured as

a function of temperature and fluence using terahertz time-domain
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spectroscopy (0.15 to 2 THz). As shown in Fig. 1A, both the near-
infrared pump (1.55 eV) and the THz probe pulses are polarized
along the c axis. The static THz reflectivity is plotted in Fig. 1B,
showing a flat response at 30 K (gray line, with a slight upturn
below 0.5 THz). In the superconducting state (7 K, blue curve) a
sharp reflectivity edge emerges around 200 GHz, a hallmark of the
interlayer JPR effect in agreement with previous studies for this
doping (11).
For the dynamics measurements, we first performed 1-dimensional

scans, where the photoinduced change in the peak electric field of the
single-cycle THz pulse (ΔE/E) is measured as a function of pump-
probe delay. These raw unprocessed data unambiguously highlight
important features of the electrodynamic response. Fig. 1C plots
1-dimensional scans (ΔE/E peak scans) for various fluences, starting
from an initial temperature of 7 K, well into the superconducting state.
The dynamics exhibit a long-lived response with an initial risetime of
several picoseconds. The magnitude of the ΔE/E signal slightly in-
creases from 50 to 100 μJ/cm2, followed by a strong decrease in am-
plitude at higher fluences up to 760 μJ/cm2. The observed fluence
dependence indicates dynamics that are distinct from a photoinduced
decrease in the condensate density with a commensurate increase in
the quasiparticle density. In that scenario, ΔE/E would increase in
magnitude with increasing fluence.
Calculations using the 2-temperature model of the initial electron-

phonon (e-ph) thermalization (see SI Appendix, section S3 for de-
tails) indicate a rise in the final temperature that increases with
fluence (after several picoseconds when the plateau in the data in
Fig. 1C is reached). Fig. 1D displays the phase diagram of LBCO
(reproduced from ref. 17) with color-coded dots (corresponding to

the fluences used in Fig. 1C) indicating the final temperature after
thermalization. Clearly, the amplitude of ΔE/E decreases with in-
creasing fluence as Tco is approached after the initial e-ph ther-
malization. This indicates that the strongest photoinduced response
occurs for fluences that do not heat the sample above Tco. We refer
to 50 to 380 μJ/cm2 as the low-fluence regime where the quasie-
quilibrium temperature stays below Tco. The data in Figs. 2 and 3
reveal that the dynamics are dramatically different for low- and high-
fluence (>380 μJ/cm2) regimes spanning Tco. The difference in dy-
namics is evident in Fig. 1C, where the 760-μJ/cm2 data exhibit an
exponential decay in contrast to the plateau apparent in the low-
fluence data.
We now discuss the full spectroscopic response of the dynamics,

considering first low-fluence optical excitation of LBCO (100 μJ/cm2)
obtained starting from an initial temperature of 7 K. The optical
properties of the photoexcited region were extracted using a lay-
ered model to account for the penetration depth mismatch be-
tween the pump and probe beams (see SI Appendix, section S2).
Fig. 2A shows the photoinduced reflectivity (blue curve at 10 ps,
red curve at 300 ps), revealing a large reflectivity increase extending
out to 1 THz, corresponding to an increase in the plasma frequency
from ∼0.2 to 0.9 THz. This is more clearly revealed in Fig. 2 B and
C showing the loss function −Im(1/e) (where e = e1 +ie2 is the c-
axis dielectric response) which peaks at the plasma frequency.
Importantly, there is no sign of decay of the photoinduced state
over the measured temporal window, indicating a metastable state
that persists beyond 300 ps. Fig. 2 D and E show the associated c-
axis optical conductivity (σ = σ1 + iσ2) highlighting an important
observation. Namely, there is a peak in σ1 at 0.3 THz signifying

A B

C D

Fig. 1. (A) Schematic of the 1.55-eV pump THz probe experiment on LBCO crystal with pump and probe polarization along c axis. The illustration depicts the
superconducting state with electron pairs tunneling along the c axis. (B) Equilibrium THz reflectivity above and below TC at 30 and 7 K, respectively. The
dotted line is beyond our experimentally accessible spectral range and is a guide to the eye. (C) Time-dependent relative change in the THz electric field
amplitude after excitation at various pump fluences (at 7 K). (D) Temperature versus hole doping phase diagram of L2−xBaxCuO4. Adapted with permission
from ref. 17. Regions of the phase diagram include bulk superconductivity (SC) at onset temperature Tc, spin ordering (SO) at temperature Tso, charge or-
dering at Tco, and low-temperature structural transition TLT. The initial temperature at 7 K for x = 0.115 is plotted in red, and the color dots mark the es-
timated lattice temperature after pump excitation and e-ph thermalization has occurred (colors corresponding to pump fluences shown in C).
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dissipation in the c-axis THz transport. In contrast, in equilibrium
for a superconductor, σ1 at frequencies greater than zero but less
than twice the superconducting gap approaches zero (solid gray
line in Fig. 2D). This origin of the peak in σ1 arising after pho-
toexcitation will be discussed below. Finally, the solid green line in
Fig. 2A shows the spectral response at 10 ps delay for a fluence of
100 μJ/cm2 taken at an initial temperature of 20 K––that is, above
Tc. There is an increase in the reflectivity, arguably with the de-
velopment of a weak plasma edge. However, as shown in Fig. 2F,
the response is much smaller and shorter lived in comparison to
dynamics initiated from within the superconducting state. In short,
the emergence of a robust metastable state upon low-fluence
photoexcitation requires starting from the superconducting state
while remaining below Tco after e-ph thermalization.
To complete the data discussion, we now consider the high-

fluence dynamics. Fig. 3 shows the spectroscopic results for high-

fluence excitation at 9 mJ/cm2 which leads to a final temperature
greater than Tco. Fig. 3A reveals an increased reflectivity starting
from an initial temperature of 30 K. At early times a broad peak
emerges in the loss function (shown in Fig. 3 B and C) that
rapidly broadens and decays on an ∼10-ps timescale. There is a
corresponding increase in σ1 and σ2 (Fig. 3 D and E), although
there are no well-defined peaks as for the low-fluence results.
Fig. 3F reveals the rapid decay in the transient ΔE/E with 9-mJ/cm2

excitation, with the inset showing a saturation of the dynamics
with increasing fluence. The plateau in the ΔE/E scans fol-
lowing the initial exponential decay is presumably associated
with heating, leading to a broad and featureless optical con-
ductivity from 0.1 to 1.5 THz. The broadened plasma edge that
appears after the arrival of the pump pulse is qualitatively in
agreement with the previous study by Nicoletti et al. (11). Given
the relatively small value of σ1, this could indicate the presence

A B C

D E F

Fig. 2. Extracted c-axis THz optical properties of LBCO at different pump–probe delays after photoexcitation (colored) with 100 μJ/cm2 and at equilibrium
(gray). All data have been taken at 7 K below TC except for the green curves in A and Fwhich were taken at 20 K. (A) Reflectivity at 7 K before (gray) and after
photoexcitation (colored) at different pump–probe delays. Plotted in green is the equilibrium (dotted) reflectivity and largest photoinduced change (solid) in
reflectivity at 20 K. (B) Loss function −Im(1/e). Dashed gray line is beyond our spectral resolution and is a guide to the eye. (C) Spectral evolution of the loss
function after photoexcitation. (D and E) Real and imaginary parts of the THz conductivity. (F) Peak of ΔE/E THz transient after photoexcitation at 7 and 20 K.

A B C
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Fig. 3. Extracted c-axis THz optical properties of LBCO at different pump–probe delays after photoexcitation (colored) with 9 mJ/cm2 and at equilibrium
(gray). All data taken at 30 K above TC and below TCO. (A) Reflectivity and (B) loss function, −Im(1/e) at different pump–probe delays. (C) Spectral evolution of
the loss function after photoexcitation. (D and E) Real and imaginary parts of the THz conductivity at different pump–probe delays. (F) Time-dependent
relative changes in THz electric field after photoexcitation. (Inset) Display of maximum ΔE/E value at 30 K as a function of pump fluence.
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of enhanced superconducting correlations associated with the
unambiguous transient blueshift of the plasma frequency. Sum-
marizing, the high-fluence transient response evolves at tem-
peratures above Tco and is short-lived in contrast to the low-
fluence metastable results presented in Fig. 2, implying that
the 2 features correspond to distinct states.
We now discuss the origin and nature of the low-fluence

photoinduced metastable electrodynamic response (Fig. 2). For
100 μJ/cm2, the temperature following e-ph thermalization is
∼35 K. In equilibrium, 35 K is within the charge-ordered, non-
superconducting region that is spectrally featureless at THz
frequencies. In contrast, the low-fluence metastable state pro-
duced by c-axis excitation exhibits unique spectroscopic features
in the loss function −Im(1/e) (Fig. 2 B and C) and conductivity
(Fig. 2 D and E) that are indicative of a nonequilibrium meta-
stable state. Importantly, the plasma frequency (ωp) is blue-
shifted by a factor of 4.5 upon photoexcitation (from 0.2 → 0.9
THz) corresponding to an increase of the low-energy spectral
weight (Σ) by a factor of 20 (i.e., Σ ∝ p

2). This is a robust ob-
servation, independent of the microscopic origin of the electro-
dynamic response. Additionally, the spectral weight must originate
from energies beyond the 1.5-THz regime probed here because
the equilibrium condensate spectral weight (Fig. 4A) is far too
small to account for the factor of 20 increase. A change in the c-
axis response may also arise from structural distortions affecting
interlayer coupling independent of a change in the in-plane su-
perfluid density (21). Although our measurements are not directly
sensitive to structural distortions, we estimate the metastable
phase to be at ∼35 K which is still below the low-temperature
orthorhombic to tetragonal transition occurring at 53 K (22). As
such, this is not likely to be the cause of the increase in Σ. We next
show that a more likely scenario for the increase in Σ is photo-
induced collapse of charge/stripe order whereby spectral weight
originally at energies above the charge density wave (CDW) gap
scale is made available for enhanced c-axis transport.
A well-known approximate scaling relationship (valid for both

c-axis and ab plane) for the cuprates is ρo = 120σdcTc, where ρo is
the superfluid density ∝ (2) and σdc is the zero-frequency con-
ductivity measured just above Tc (23). Fig. 4A shows the product
σdcTc versus ρo for x = 0.115 doping measured in this study, and
for x = 0.95 and x = 0.145 taken from ref. 22 For x = 0.115 at 7 K,

the JPR appears near the renormalized superconducting plasma
frequency ω′p = 6.7 cm−1 (200 GHz). The unscreened plasma
frequency is given by ωp = ω′p

ffiffiffiffiffi

«∟
p

«∟ ∼ 30 giving a superfluid density
ρo ≡ ωp

2 = 1.3 × 103 cm−2 (This is taken to be very near the su-
perfluid density at T = 0 K.) The conductivity just above Tc = 13 K
is taken as σdc ∼ 0.8 Ω−1·cm−1, estimated from transport measure-
ments on a similar doping of x = 0.11 (24). As seen in Fig. 4A, the
x = 0.115 doping is consistent with ρo = 120 σdcTc plotted as a
dashed line. We now extend this concept to the photoinduced
metastable state which, as described above, exhibits a large in-
crease in spectral weight.
From the photoinduced blueshift of the plasma edge (ω′e ∼ 0.9

THz or 30 cm−1) it is possible to determine the photoinduced
density ρe. This estimate from experimental data gives ρe = 2.7 ×
104 cm−2, yielding ρe/ρo ∼ 20 as mentioned above. We now assume
the validity of the scaling relation ρe = 120 σcoTco where σco ∼
3 Ω−1·cm−1 is the conductivity just above the charge-ordering tem-
perature (Tco = 53 K). From this we obtain ρe/ρo ∼ σcoTco/σcTc ∼ 15,
in reasonable agreement with experiment. The product σcoTco is
plotted in Fig. 4A as a red data point and lies on the dashed line
given by ρs = 120 σdcTc. This suggests that c-axis spectral weight
initially tied up in charge order is released upon photoexcitation
leading to the blueshift of the plasma edge. We note that the
precise microscopic reason for the photoinduced collapse of charge
order upon c-axis interband excitation is not understood and is a
topic for future investigation, beyond the scope of the present study.
The peak in the loss function cannot be simply described as an

enhanced plasma edge with increased interlayer tunneling arising
from the collapse of the charge order. This is because we have a
peak in σ1 at a nonzero frequency (Fig. 2D). In principle, 2
inequivalent junctions (with different interlayer spacing) do yield 2
distinct longitudinal JPRs at different frequencies. For example,
Sm-doped La2−xSrxCuO4 (LSCO), is composed of a stack of
inequivalent Josephson junctions. Out-of-phase oscillations of the
2 longitudinal modes result in a transverse mode with a resonance
frequency intermediate to the 2 JPRs with a corresponding peak
in σ1 (16, 25). In such a case, the spectral weight would be asso-
ciated with a pure superfluid response, which is certainly intriguing
since our LBCO sample is (as discussed above) at ∼35 K following
e-ph equilibration (i.e., ∼2.7 Tc). It is, however, not clear how
photoexcitation could lead to uniform creation of a well-defined

A B

C

Fig. 4. (A) Plot of the superfluid density ρs versus the product of the zero-frequency conductivity (σdc) and the superconducting transition temperature Tc for
several dopings of LBCO (σdc is the conductivity measured just above the superconducting transition). The values for x = 0.95 and x = 0.145 were taken from
ref. 22. The dashed line is the universal scaling relation for cuprates ρs = 120σdcTc found by Homes et al. (23) (B) Schematic of anisotropic effective medium
theory along the c axis with regions of different dielectric constants e1 and e2 and filling fractions f1 and f2, respectively. The superconducting volume is
depicted with dark ellipses and the transformed region is in blue. (C) Real (red) and imaginary (blue) parts of the THz conductivity after photoexcitation with
100 μJ/cm2 at 7 K. Experimental data are plotted with dots and the effective medium model with solid lines.
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microscopic bilayer structure, although spectroscopic aspects of
this are present in the non–charge-ordered LBCO (x = 0.095)
(13). However, for x = 0.115, charge-order collapse plays a dom-
inant role as described above. As such, we consider an alternative
scenario based on photoinduced mesoscopic inhomogeneity.
The simplest effective medium theory for an anisotropic layered

crystal (appropriate to c-axis cuprates) is schematically depicted in
Fig. 4B where regions are transformed into a metastable state
(blue) while others remain untransformed (dark ellipses). The
domain boundaries of the 2 different phases are along the a-b
plane giving rise to regions with differing c-axis coupling
strengths. The dark horizontal stripes represent the insulating
barriers between CuO2 planes which give rise to the Josephson
effect along the c axis. The effective dielectric response eeff is given
as 1/eeff = f1/e1 + f2/e2 where f1 and f2 are the volume fractions
corresponding to regions with complex dielectric function e1 and
e2, respectively (26). Taking f1 as the superconducting volume
fraction (having the 7 K equilibrium response), and f2 as a Drude
response (with a finite scattering rate of 0.36 THz) yields the fit to
the experimental data shown in Fig. 4C. For additional details
regarding the model and fit we refer the reader to SI Appendix,
section S4. Notably, the peak in σ1 corresponding to a photoin-
duced transverse mode is accurately reproduced with this model
taking f1 = 0.02 ± 0.01 and f2 = 0.98 ± 0.01. While the general
features of σ2 are reproduced by the effective medium model, an
exact fit was not possible. We note that errors in extracting σ2 from
experiment are generally more difficult in comparison to σ1 as this
depends sensitively on changes in phase of the terahertz pulse.
Taking the fits as representative of the photoinduced state

leads to some interesting conclusions. First, the preponderant
component consisting of a Drude response is consistent with the
picture presented above that the pump destroys the charge/spin
order. Second, a small but nonnegligible superconducting vol-
ume fraction (∼2%) is required to obtain the spectral response in
Fig. 4C. This indicates that even though the temperature is more
than 2 times greater than the equilibrium Tc, regions of super-
conductivity persist. Furthermore, the Drude response (associ-
ated with f2) is anomalous as it exhibits a small scattering rate of

0.36 THz. This is surprising for a nonsuperconducting c-axis re-
sponse and has not been observed in the equilibrium c-axis re-
sponse for any cuprate material. We suggest that the origin of this
enhanced response arises from incipient superconducting corre-
lations that enhance the c-axis conductivity as has been theoreti-
cally discussed (27, 28). This is consistent with the experimental
observation that the observed metastability requires starting from
an initial superconducting state and that a nonzero super-
conducting volume fraction persists after photoexcitation. Pre-
vious pump–probe studies on the cuprates have also observed
long-lived dynamics after photoexcitation of the superconducting
state, although the fluence dependence differs from what we have
observed (29–31). In these studies the slow relaxation rate of the
quasiparticles is described by a persistent phase separation along
the CuO planes which may be a general feature in the cuprates
and responsible for the long-lived state we observe. It will be
important to pursue comparative experimental studies as a func-
tion of doping and excitation fluence and to gain additional insight
into the nature of the metastability we have observed in LBCO.
Such studies will also benefit from theoretical investigations of the
origin of metastability in materials with competing order (32).
In summary, low-fluence photoexcitation favors the establishment

of a long-lived state with superconductivity playing an important
role. Additional experiments are required to fully characterize the
observed metastable response and the effective medium description
of mesoscale inhomogeneity that includes a superfluid response.
Our results raise crucial theoretical questions including the origin of
the superconductivity and the physics and surprisingly long lifetime
of the metallic state. The observed long lifetime bodes well for
performing additional experiments, including time-resolved nano-
scopy to spatially resolve the photoinduced state.
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