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Bananas: Their Origin and Global Rollout
The banana is the most popular fruit in the world and ranks among the top ten food commodi-
ties for Southeast Asia, Africa, and Latin America [1]. Notably, the crop is largely produced by
small-holder farmers, with around 85% of the global production destined for local markets and
only 15% entering international trade [1]. Bananas evolved in the Indo-Malayan archipelago
thousands of years ago. The majority of all edible varieties developed from specific (inter- and
intra-) hybridizations of two seeded diploidMusa species (M. acuminata andM. balbisiana)
and subsequent selection of diploid and triploid seedless clones [2,3]. Despite rich genetic and
phenotypic diversity [4], only a few clones developed, over time, into global commodities—
either as dessert bananas, such as the triploid “Cavendish” clones, or as important staple foods
such as cooking bananas and plantains [4,5]. Currently, bananas are widely grown in the (sub)
tropics and are consumed in nearly all countries around the world, providing crucial nutrition
for millions of people. Edible bananas reproduce asexually through rhizomes, but since the
early 1970s, tissue culture has enabled mass production of cultivars [6]. This facilitates the
rapid rollout of genetically identical plants, which have consumer-preferred traits and out-
standing agronomical performance, onto vast acreages around the world. However, the typical
vulnerability of monocultures to diseases has taken its toll on banana production over the last
century. In 1876, a wilting disease of banana was reported in Australia [7], and in 1890, it was
observed in the “Gros Michel” plantation crops of Costa Rica and Panama [8,9]. There it devel-
oped major epidemics in the 1900s that are among the worst in agricultural history [10], link-
ing its most prone geographical area to its colloquial name: Panama disease. It was only in
1910 that the soil-borne fungus Fusarium oxysporum f.sp. cubense (Foc) was identified as the
causal agent in Cuba, from which the name of the forma specialis was derived [10].

Genetic Diversity of Fusarium oxysporum f.sp. cubense, the Causal
Agent of Panama Disease
Foc belongs to the F. oxysporum species complex: a suite of asexual, morphologically similar,
pathogenic and non-pathogenic strains affecting a wide variety of crops [11]. Foc likely co-
evolved with its host speciesMusa in its center of origin [12–15]. Traditionally, phenotyping
has identified three Foc races (1, 2, and 4) that cause disease in different subsets of banana and
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plantain cultivars [5,8]. However, Foc race designations are cumbersome and hence other
methods unveiling genetic diversity were developed. Vegetative compatibility group (VCG)
analyses largely divide Foc into 24 unique VCGs (VCG0120 through VCG0126 and VCG0128
through VCG01224) [5,13,16]. Later, DNA markers revealed the polyphyletic origin of Foc, as
some VCGs are taxonomically closer to other F. oxysporum formae speciales than to other Foc
VCGs [12,14,17]. Moreover, strains belonging to diverse VCGs infect particular banana culti-
vars and, hence, were grouped in the same race, suggesting that pathogenicity towards a spe-
cific cultivar evolved either convergently [5,12,14] or resulted from horizontal gene transfer
among members of the F. oxysporum complex [18]. Overall, Foc lineages show a remarkable
dichotomy, referred to as types or clades [12–14,19–22]. High-resolution genotyping-by-
sequencing analyses using DArTseq—which generates short sequence reads after a genome-
wide complexity reduction through restriction enzyme digestion [23]—validate and extend
these findings (Fig 1). Based on genome-wide DArTseq markers, 24 Foc strains (representing
all hitherto known VCGs) split into two groups. These largely corroborate the aforementioned
clades, except for VCG0123 [13,14,20,22], VCG01210 [19], VCG01212 [20], and VCG01214
[21], which were occasionally reported in opposite clades, and VCGs 01221 to 01224, which
were never classified before but now clearly belong to clade 2 (Fig 1).

Unfortunately, it is not well known which VCGs (the so-called Foc race 1 strains) caused the
Panama disease epidemic in “Gros Michel” and, hence, their geographical dissemination is still
unclear (I. Buddenhagen and M. Dita, personal communications). The current epidemic in Cav-
endish bananas, however, is caused by VCG01213 [5], colloquially called Tropical Race 4 (TR4).

Panama Disease: History Repeats Itself
Large railway projects in Central America in the late 1800s facilitated industrial banana pro-
duction and trade [10], which was entirely based on “Gros Michel” bananas [8]. The

Fig 1. Genetic diversity of the banana pathogen F. oxysporum f. sp. cubense.Genotyping-by-sequencing analyses of the hitherto identified 24
vegetative compatibility groups (VCG) in F. oxysporum f. sp. cubense resulted in 12,978 DArTseq markers that divide Foc into two distinct clades—clade 1
and clade 2. VCG01216 is considered the same as VCG01213 [13]. The labels for race 1 isolates are based on personal communications with I.
Buddenhagen and M. Dita. Although VCG01213 contains all TR4 isolates that cause the current Panama disease epidemic in Cavendish bananas,
VCG0120—which has also been considered as race 4 [5]—and VCG0124 [36] have also been recovered from symptomatic Cavendish plants.

doi:10.1371/journal.ppat.1005197.g001
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unparalleled vulnerability of “Gros Michel” to race 1 strains drove aggressive land-claiming
policies in order to continue banana production. However, this did not stop the epidemic as
Panama disease was easily entering these new areas through infected planting material. Hence,
by the 1960s, the epidemic reached a tipping point with the total collapse of “Gros Michel” [9].
Fortunately, there was a remedy: Cavendish bananas—maintained as interesting specimens in
botanical gardens in the United Kingdom and in the United Fruit Company collection in Hon-
duras—were identified as resistant substitutes for “Gros Michel.” A new clone was “born” that,
along with the new tissue culture techniques, helped save and globalize banana production
[5,8,9].

However, in the late 1960s, Panama disease emerged in Cavendish bananas in Taiwan, but
TR4 was only identified as its cause in 1994 [9,24,25]. Surprisingly, this initial outbreak did not
awaken the banana industry and awareness levels remained low, despite the lack of any Caven-
dish replacement that met market demands and the susceptibility of many local banana culti-
vars to TR4 [5] (see also http://panamadisease.org/en/news/26). Thus, TR4 threatens not only
the export trade but also regional food provision and local economies.

Tropical Race 4, a Single Pathogen Clone, Threatens Global
Banana Production
Ever since TR4 destroyed the Cavendish-based banana industry in Taiwan, its trail in Southeast
Asia seems unstoppable with incursions and expansions in the Chinese provinces of Guang-
dong, Fujian, Guangxi, and Yunnan as well as on the island of Hainan. Since the 1990s, TR4
has also wiped out Cavendish plantations in Indonesia and Malaysia; between 1997 and 1999,
it significantly reduced the banana industry near Darwin in the Northern Territory of Austra-
lia. It was first observed in the early 2000s in a newly planted Cavendish banana farm in Davao
(on island of Mindanao, Philippines), where it currently threatens the entire banana export
trade [26]. Since 2013, incursions outside Southeast Asia were reported in Jordan [27], Paki-
stan, and Lebanon [28], informally announced in Mozambique and Oman, and just recently
noted in the Tully region of Northern Queensland, Australia. By now, TR4 may have affected
up to approximately 100,000 hectares, and it is likely that it will disseminate further—either
through infected plant material, contaminated soil, tools, or footwear, or due to flooding and
inappropriate sanitation measures [5,29]. Clearly, the current expansion of the Panama disease
epidemic is particularly destructive due to the massive monoculture of susceptible Cavendish
bananas.

Foc is a haploid asexual pathogen [8] and is therefore expected to have a predominantly
clonal population structure [13,14,19–22]. Comparison of re-sequencing data of TR4 isolates
from Jordan, Lebanon, Pakistan, and the Philippines—with the publicly available reference
genome sequence of Foc TR4 strain II-5 (http://www.broadinstitute.org/)—indeed shows a
very low level of single nucleotide polymorphisms (SNPs) (about 0.01%). This, together with a
highly similar set of DArTseq markers, suggests that the temporal and spatial dispersal of TR4
is due to a single clone (Fig 2). This finding underscores the need for global awareness and
quarantine campaigns in order to protect banana production from another pandemic that par-
ticularly affects vulnerable, small-holder farmers.

Strategies for Sustainable Panama Disease Management
Any disease management eventually fails in a highly susceptible monoculture. Managing Pan-
ama disease with its soil-borne nature, long latency period, and persistence once established is,
therefore, impossible without drastic strategy changes. Evidently, exclusion is the primary mea-
sure to protect banana production, which requires accurate diagnosis based not only on visual
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inspection, as this overlooks important aspects of its genetic diversity and epidemiology. New
molecular-based diagnostics rapidly detect TR4 in (pre)symptomatic plants [30], soil, and
water and, hence, can be used for surveillance and containment, which are key to avoiding an
encounter of TR4 with Cavendish monocultures. Additionally, a thorough understanding of
Foc epidemiology and pathology is urgently required, as this facilitates developing effective
methods to destroy infected plants and (biological) soil treatments, thus reducing the inoculum
quantity. Furthermore, we showed that high-throughput genome analyses unveil Foc popula-
tion diversity (Figs 1 and 2), rather than lengthy and cumbersome VCG analyses, which
enables resistance deployment strategies. Finally, effective disease management cannot be
achieved without adequate disease resistance levels. “Cavendish”-based somaclones [31] do not
satisfy local or international industry demands (apart from the epidemiological risks), as this
germplasm is, at most, only partially resistant to TR4 [32]. Instead, the substantial genetic
diversity for TR4 resistance in (wild) banana germplasm, such as accessions ofMusa acumi-
nata ssp.malaccensis [4], can be exploited in breeding programs and/or along with various
transformation techniques [33–35] to develop a new generation of banana cultivars in confor-
mity with consumer preferences. Developing new banana cultivars, however, requires major
investments in research and development and the recognition of the banana as a global staple
and cash crop (rather than an orphan crop) that supports the livelihoods of millions of small-
holder farmers. Until new, commercially viable, and resistant banana cultivars reach markets,
any potential disease management option needs to be scrutinized, thereby lengthening the
commercial lifespan of contemporary banana accessions. The current TR4 epidemic and inher-
ent global attention should be the wake-up call for these much needed strategy changes.

Supporting Information
S1 Table. Isolate collection at Wageningen University and Research Center used in this
study.
(XLSX)
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