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ABSTRACT

Human leukocyte antigen (HLA) genes provide useful information on the relationship be-
tween cancer and the immune system. Despite the ease of obtaining these data through next-
generation sequencing methods, interpretation of these relationships remains challenging
owing to the complexity of HLA genes. To resolve this issue, we developed a Bayesian
method, ALPHLARD-NT, to identify HLA germline and somatic mutations as well as HLA
genotypes from whole-exome sequencing (WES) and whole-genome sequencing (WGS) data.
ALPHLARD-NT showed 99.2% accuracy for WGS-based HLA genotyping and detected
five HLA somatic mutations in 25 colon cancer cases. In addition, ALPHLARD-NT iden-
tified 88 HLA somatic mutations, including recurrent mutations and a novel HLA-B type,
from WES data of 343 colon adenocarcinoma cases. These results demonstrate the potential
of ALPHLARD-NT for conducting an accurate analysis of HLA genes even from low-
coverage data sets. This method can become an essential tool for comprehensive analyses of
HLA genes from WES and WGS data, helping to advance understanding of immune reg-
ulation in cancer as well as providing guidance for novel immunotherapy strategies.

Keywords: Bayesian model, HLA genotyping, HLA mutation calling, whole-exome sequencing,

whole-genome sequencing.

1. INTRODUCTION

Human leukocyte antigen (HLA) genes are essential components of the immune system, which

present peptides to immune cells to facilitate recognition of nonself antigens. HLA genes must be
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highly polymorphic to effectively carry out this function, with many types or alleles recognized, resulting in

high individual variation in immune responses. Therefore, HLA genotyping, in which the specific pair of

HLA types is identified for each HLA locus, is essential to understand the immune system. Recently, the

interaction between cancer and the immune system has attracted attention (Grivennikov et al., 2010;

Schreiber et al., 2011; Kreiter et al., 2015; Rooney et al., 2015; Marty et al., 2017), and somatic mutations in

HLA genes have been shown to accumulate in specific cancer types (The Cancer Genome Atlas Research

Network, 2014; Testoni et al., 2015; The Cancer Genome Atlas Network, 2015; Giannakis et al., 2016;

McGranahan et al., 2017). Therefore, HLA genotyping can further help to understand the link between cancer

and immunity, which would benefit personalized medicine.

There are several approaches currently available for HLA genotyping. Conventional approaches use poly-

merase chain reaction-based methods with sequence-specific oligonucleotides (Saiki et al., 1986), sequence-

specific primers (Olerup and Zetterquist, 1992), and sequence-based typing (Santamaria et al., 1992);

however, these methods are time consuming and labor intensive, and can only provide information on targeted

HLA genes. New methods for HLA genotyping have been developed more recently with advances in mo-

lecular techniques, including whole-exome sequencing (WES), whole-genome sequencing (WGS), and RNA

sequencing (Boegel et al., 2012; Warren et al., 2012; Kim and Pourmand 2013; Liu et al., 2013; Bai et al.,

2014; Szolek et al., 2014; Nariai et al., 2015; Shukla et al., 2015; Dilthey et al., 2016; Xie et al., 2017; Hayashi

et al., 2018; Lee and Kingsford, 2018). With these methods, information of both somatic mutations and HLA

genotypes can be obtained from the entire sequence, which can facilitate investigations on the relationship

between cancer and the immune system. In particular, methods that can specifically call germline or somatic

mutations in HLA genes (Shukla et al., 2015; Hayashi et al., 2018; Lee and Kingsford, 2018) are valuable,

since these mutations have potential to change immune responses, including tumor immune escape. However,

the low coverage of WGS data makes it challenging to detect HLA germline and somatic mutations.

Previously, we developed a Bayesian model, called ALPHLARD (Hayashi et al., 2018), which identifies

HLA genotypes and germline mutations from WGS data. ALPHLARD can also call HLA somatic mutations

by comparing HLA sequences determined from normal and tumor samples. However, the specificity of the

HLA somatic mutation calling is insufficient because ALPHLARD conducts the analyses of normal and

tumor samples independently. To resolve this issue, we extended ALPHLARD to construct a new model

named ALPHLARD-NT for accurately identifying both HLA germline and somatic mutations as well as

HLA genotypes from WGS data. ALPHLARD-NT was validated from WES and WGS data sets from 343

and 25 colon cancer samples, respectively, which demonstrated its good performance in HLA genotyping,

along with the ability to call HLA germline and somatic mutations, even from low-coverage data.

2. METHODS

2.1. Human leukocyte antigen reference data

We used the IPD-IMGT/HLA Database (Robinson et al., 2015) as HLA reference sequences in our

method. Since the database provides incomplete sequences for most HLA types, we replaced the unknown

bases with those of the most similar HLA type. To this end, similarity was determined by measuring the

hamming distance in multiple sequence alignments (MSAs) across HLA types obtained from the IPD-

IMGT/HLA Database. We used the Allele Frequency Net Database (González-Galarza et al., 2015) for

prior information on HLA type frequencies.

2.2. Human leukocyte antigen read filtering and realignment

Filtering of HLA reads must be carefully performed for various reasons. First, it is insufficient to use only a

human genome reference such as GRCh37 or GRCh38 owing to the high polymorphism of HLA genes.

Therefore, a specific HLA database is required, such as the IPD-IMGT/HLA Database. Second, HLA genes

and pseudogenes are paralogs and are, therefore, quite similar. Hence, when performing HLA genotyping, it is

essential to distinguish reads from an HLA gene of interest from those of other HLA genes and pseudogenes.

In our HLA genotyping pipeline, a BAM file whose reference is the human genome is used as input data.

First, sequence reads in the BAM file are filtered by extracting the HLA region, which is defined by

chr6:28,477,797–33,448,354 for GRCh37 and chr6:28,510,120–33,480,577 for GRCh38, and covers the

HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, and -DRB1 genes. Next, the extracted reads are mapped
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to all HLA reference sequences using BWA-MEM (version 0.7.17) with the option to obtain information on

all identified alignments. Each read is classified based on whether or not the HLA genes produced the read,

and if so, which specific gene was involved. This classification is made using alignment scores, which we

call HLA read scores (HR scores), and are calculated as follows. Let xi be the ith read pair that consists of

two single reads xi‚ 0 and xi‚ 1. In the case of single-end sequence data, xi consists of one read, xi‚ 0. In

addition, tk is defined as the kth HLA type. If the read xi‚ j is unmapped to the HLA type tk, then the HR score

si‚ j‚ k for xi‚ j and tk is -1. Otherwise, ~xi‚ j‚ k and ~ti‚ j‚ k are the aligned sequences of xi‚ j and tk, while ~xi‚ j‚ k‚ n

and ~ti‚ j‚ k‚ n are the nth bases or gaps of ~xi‚ j‚ k and ~ti‚ j‚ k, respectively. Moreover, the mismatch probability

~qi‚ j‚ k‚ n of ~xi‚ j‚ k‚ n and ~ti‚ j‚ k‚ n can be calculated by

~qi‚ j‚ k‚ n = 10 -
~bi‚ j‚ k‚ n

10 ‚

where ~bi‚ j‚ k‚ n is the Phred base quality of ~xi‚ j‚ k‚ n. Using the aforementioned definitions, the HR score si‚ j‚ k

is given by

si‚ j‚ k =
X

n

(s(r)
i‚ j‚ k‚ n + s

(p)
i‚ j‚ k‚ n)‚

where

s(r)
i‚ j‚ k‚ n = a(r) (if ~xi‚ j‚ k‚ n 2 B(N))

0 (if ~xi‚ j‚ k‚ n = - )
‚

�

s
(p)
i‚ j‚ k‚ n =

0 (if ~xi‚ j‚ k‚ n‚ ~ti‚ j‚ k‚ n 2 B and ~xi‚ j‚ k‚ n = ~ti‚ j‚ k‚ n)

log (
~qi‚ j‚ k‚ n

3
) (if ~xi‚ j‚ k‚ n‚ ~ti‚ j‚ k‚ n 2 B and ~xi‚ j‚ k‚ n 6¼ ~ti‚ j‚ k‚ n)

a(d‚o) (if ~xi‚ j‚ k‚ n = - and ~xi‚ j‚ k‚ n - 1 6¼ - )

a(d‚e) (if ~xi‚ j‚ k‚ n = - and ~xi‚ j‚ k‚ n - 1 = - )

a(i‚o) (if ~ti‚ j‚ k‚ n = - and ~ti‚ j‚ k‚ n - 1 6¼ - )

a(i‚e) (if ~ti‚ j‚ k‚ n = - and ~ti‚ j‚ k‚ n - 1 = - )

a(N) (if ~xi‚ j‚ k‚ n =N and ~ti‚ j‚ k‚ n 2 B(N) or ~xi‚ j‚ k‚ n 2 B(N) and ~ti‚ j‚ k‚ n =N)

8>>>>>>>>><
>>>>>>>>>:

Here, B = fA‚C‚G‚Tg and B(N) = fA‚C‚G‚T‚Ng. s(r)
i‚ j‚ k‚ n is a reward for the length of the read, and a(r)

is a positive hyperparameter for one base. By contrast, s
(p)
i‚ j‚ k‚ n is a penalty for mismatches between the read

and the HLA type, and a(d‚o), a(d‚e), a(i‚o), a(i‚e), and a(N) are negative hyperparameters for deletion

opening, deletion extension, insertion opening, insertion extension, and an unknown base N in the read or

the HLA type, respectively.

Then, for each read pair xi and each HLA locus l, the score s�i‚ l is defined by

s�i‚ l =
X

j

max
k:tk2Tl

si‚ j‚ k‚

where Tl is a set of HLA types of the HLA locus l. When xi is a paired-end read, it is used for genotyping

the HLA locus l if the following two criteria are satisfied:

s�i‚ l > h(p‚s)‚

s�i‚ l - max
l0 6¼l

s�i‚ l0 > h(p‚d)‚

Here, h(p‚s) is a hyperparameter of a threshold for the maximum HR score of the locus and h(p‚d) is a

hyperparameter of a threshold for the difference between the maximum HR scores of the locus and other

loci. However, if xi is a single-ended read, different thresholds are used; in other words, xi is used for

genotyping the HLA locus l if

s�i‚ l > h(s‚s)‚

s�i‚ l - max
l0 6¼l

s�i‚ l0 > h(s‚d):

The former criterion is necessary to collect reads that are likely to be produced by the locus, whereas the

latter criterion is needed to exclude reads that might be produced by other loci.
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Next, all of the read pairs that satisfy the conditions are realigned to the MSAs of the HLA types of the

HLA locus l. Realignment of the read xi‚ j is performed using the best HLA type whose index is given by

k� = arg max
k:tk2Tl

si‚ j‚ k‚

and the realigned read x̂i‚ j is obtained by aligning xi‚ j to the MSA t̂k� of the HLA type tk� to match the

alignment (~xi‚ j‚ k�‚ ~ti‚ j‚ k�). This is done by simply translating the positions of bases and gaps in ~ti‚ j‚ k� into

those in t̂k� .

2.3. Bayesian model for human leukocyte antigen analysis

We applied a Bayesian model for HLA genotyping and HLA somatic mutation detection, with

basically the same structure as our previous method (Hayashi et al., 2018) except for some additional

parameters. Figure 1 shows the graphical model. Hereafter, we suppose that the sequence reads are

paired-ended for simplicity, and the model for single-ended sequence reads is the same except that the

reads are unpaired.

Input data of the model include both the normal and tumor realigned reads. Let x(n)
i = (x(n)

i‚ 0 ‚ x(n)
i‚ 1 ) be the ith

normal realigned read pair, and x(t)
i = (x(t)

i‚ 0 ‚ x(t)
i‚ 1 ) be the ith tumor realigned read pair, where n and t indicate

parameters for the normal and tumor sample, respectively. For each s 2 fn‚tg, we define x(s)
i‚ j‚ n as the nth

base of x(s)
i‚ j, and q(s)

i‚ j‚ n as the mismatch probability of x(s)
i‚ j‚ n. Note that the first position of each realigned read is

not the beginning of the read but rather that of the MSAs, and x(s)
i‚ j‚ n and q(s)

i‚ j‚ n are undefined if the nth position

is not covered by the read. We define r(s)
i‚ j as a set of positions covered by the read x(s)

i‚ j and r(s)
i as (r(s)

i‚ 0‚ r(s)
i‚ 1).

We denote HLA types of the sample by R(r)
1 and R(r)

2 , normal HLA sequences by S(n‚r)
1 and S(n‚r)

2 , and

tumor HLA sequences by S(t‚r)
1 and S(t‚r)

2 . Here, the sequences of R(r)
1 and R(r)

2 are the MSAs of the HLA

types. S(n‚r)
1 and S(n‚r)

2 are used to consider germline variants in R(r)
1 and R(r)

2 , and S(t‚r)
1 and S(t‚r)

2 are

used to reflect somatic mutations. We also introduce decoy HLA types R(d)
1 ‚ . . . ‚ R(d)

�(d) , decoy normal HLA

sequences S(n‚ d)
1 ‚ . . . ‚ S(n‚d)

�(d) , and decoy tumor HLA sequences S(t‚d)
1 ‚ . . . ‚ S(t‚d)

�(d) , where �(d) is a hy-

perparameter of the number of the decoy parameters. These parameters are essential to make a robust

inference, because their presence can reduce the influence of misclassified reads at the previous filtering

step that were actually produced by other HLA genes or pseudogenes. For convenience, we sometimes

use (R1‚ R2‚ R3‚ . . . ‚ R�(d) + 2), (S(n)
1 ‚ S(n)

2 ‚ S(n)
3 ‚ . . . ‚ S(n)

�(d) + 2
), and (S(t)

1 ‚ S(t)
2 ‚ S(t)

3 ‚ . . . ‚ S(t)

�(d) + 2
) instead of

(R(r)
1 ‚ R(r)

2 ‚ R(d)
1 ‚ . . . ‚ R(d)

�(d) ), (S(n‚r)
1 ‚ S(n‚r)

2 ‚ S(n‚d)
1 ‚ . . . ‚ S(n‚d)

�(d) ), and (S(t‚r)
1 ‚ S(t‚r)

2 ‚ S(t‚d)
1 ‚ . . . ‚ S(t‚d)

�(d) ), re-

spectively. In addition, in some cases, (S1‚ . . . ‚ S2�(d) + 4) is used instead of (S(n)
1 ‚ . . . ‚ S(n)

�(d) + 2
‚ S(t)

1 ‚ . . . ‚ S(t)

�(d) + 2
).

Similar to the notation for read pairs, Rm‚ n and Sm‚ n are defined as the nth base of Rm and Sm, respectively.

Next, let I(n)
i and I(t)

i be parameters that indicate the specific HLA sequence that produced x(n)
i and x(t)

i ,

respectively. In other words, I(s)
i = m means that x(s)

i was produced by Sm. Note that I(n)
i 2 f1‚ . . . ‚ �(d) + 2g

because tumor HLA sequences cannot produce normal sequence reads, and that I(t)
i 2 f1‚ . . . ‚ 2�(d) + 4g

because the tumor sample might also contain normal cells. I(s)
i is independently generated from a distri-

bution governed by F(r)
1 ‚ F(r)

2 ‚ F(d)
1 ‚ . . . ‚ F(d)

�(d) , G, and V (r)
1 ‚ V (r)

2 ‚ V (d)
1 ‚ . . . ‚ V (d)

�(d) . Again, we sometimes use

convenient notations of (F1‚ F2‚ F3‚ . . . ‚ F�(d) + 2) and (V1‚ V2‚ V3‚ . . . ‚ V�(d) + 2) instead of

(F(r)
1 ‚ F(r)

2 ‚ F(d)
1 ‚ . . . ‚ F(d)

�(d) ), and (V (r)
1 ‚ V (r)

2 ‚ V (d)
1 ‚ . . . ‚ V (d)

�(d) ). Fm is a positive real parameter that expresses

the likelihood that a read is produced by S(n)
m and S(t)

m . G is also a positive real parameter and expresses the

ratio of normal cells contained in the tumor sample. Vm is a tuple (Vm‚ 1‚ . . . ‚ Vm‚ N), where N is the length of

MSAs and Vm‚ n is a parameter of 0 or 1, which indicates whether S(n)
m‚ n and S(t)

m‚ n are valid, as described in

more detail hereunder.

The posterior probability of the parameters is given by

p(R‚S(n)‚S(t)‚F ‚V‚ I (n)‚ I (t)jX (n)‚X (t))

/ p(X (n)jS(n)‚ I (n))p(X (t)jS(n)‚S(t)‚ I (t))

· p(S(t)jS(n))p(S(n)jR)p(R)

· p(I (n)jF ‚V)p(I (t)jF ‚ G‚V)p(F )p(G)p(V)‚
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where R = (R1‚ . . . ‚ R�(d) + 2), S(n) = (S(n)
1 ‚ . . . ‚ S(n)

�(d) + 2
), S(t) = (S(t)

1 ‚ . . . ‚ S(t)

�(d) + 2
), F = (F1‚ . . . ‚ F�(d) + 2),

V = (V1‚ . . . ‚ V�(d) + 2), I (n) = (I(n)
1 ‚ I(n)

2 ‚ . . . ), I (t) = (I(t)
1 ‚ I(t)

2 ‚ . . . ), X (n) = (x(n)
1 ‚ x(n)

2 ‚ . . . ), and

X (t) = (x(t)
1 ‚ x(t)

2 ‚ . . . ).

The likelihoods of sequence read pairs are given by

p(X (n)jS(n)‚ I (n)) =
Y

i

Y
j

Y
n

p(x(n)
i‚ j‚ njSI(n)

i
‚ n)‚

p(X (t)jS(n)‚S(t)‚ I (t)) =
Y

i

Y
j

Y
n

p(x(t)
i‚ j‚ njSI(t)

i
‚ n

)‚

where

FIG. 1. Graphical representation of our method.
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p(xi‚ j‚ njSm‚ n 2 B)

=

(1 - p(e‚d))(1 - p(e‚N))(1 - pi‚ j‚ n) (if xi‚ j‚ n = Sm‚ n)

(1 - p(e‚d))(1 - p(e‚N))
pi‚ j‚ n

3
(if xi‚ j‚ n 2 B and xi‚ j‚ n 6¼ Sm‚ n)

(1 - p(e‚d))p(e‚N) (if xi‚ j‚ n = N)

p(e‚d) (if xi‚ j‚ n = - )

‚

8>>>><
>>>>:

p(xi‚ j‚ njSm‚ n = - )

=

p(e‚i)(1 - p(e‚N)) 1
4

(if xi‚ j‚ n 2 B)

p(e‚i)p(e‚N) (if xi‚ j‚ n = N)

1 - p(e‚i) (if xi‚ j‚ n = - )

‚

8>><
>>:

p(xi‚ j‚ njSm‚ n =N)

=
(1 - p(e‚N)) 1

5
(if xi‚ j‚ n 2 B or xi‚ j‚ n - )

p(e‚N) (if xi‚ j‚ n =N)

(

Here, p(e‚d), p(e‚i), and p(e‚N) are hyperparameters of probabilities of a deletion error, insertion error,

and N in a sequence read, respectively.

The prior probability of tumor HLA sequences is given by

p(S(t)jS(n)) =
Y

m

Y
n

p(S(t)
m‚ njS(n)

m‚ n)‚

where

p(S(t)
m‚ njS(n)

m‚ n 2 B)

=

(1 - p(s‚N))(1 - p(s‚d))(1 - p(s‚s)) (if S(t)
m‚ n = S(n)

m‚ n)

(1 - p(s‚N))(1 - p(s‚d)) p(s‚s)

3
(if S(t)

m‚ n 2 B and S(t)
m‚ n 6¼ S(n)

m‚ n)

(1 - p(s‚N))p(s‚d) (if S(t)
m‚ n = - )

p(s‚N) (if S(t)
m‚ n = N)

‚

8>>>>><
>>>>>:

p(S(t)
m‚ njS(n)

m‚ n = - )

=

(1 - p(s‚N))p(s‚i) 1
4

(if S(t)
m‚ n 2 B)

(1 - p(s‚N))(1 - p(s‚i)) (if S(t)
m‚ n = - )

p(s‚N) (if S(t)
m‚ n = N)

‚

8>><
>>:

p(S(t)
m‚ njS(n)

m‚ n =N)

=
(1 - p(s‚N)) 1

5
(if S(t)

m‚ n 2 B or S(t)
m‚ n = - )

p(s‚N) (if S(t)
m‚ n = N)

(

Here, p(s‚s), p(s‚d), p(s‚i), and p(s‚N) are hyperparameters of probabilities of a somatic substitution,

somatic deletion, somatic insertion, and N in a tumor HLA sequence, respectively.

The prior probability of normal HLA sequences is given by

p(S(n)jR) =
�Y

m

Y
n

p
�
S(n‚r)

m‚ n jR(r)
m‚ n

���Y
m

Y
n

p
�
S(n‚ d)

m‚ n jR(d)
m‚ n

��
‚

where
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p(S(n‚r)
m‚ n jR(r)

m‚ n 2 B‚ R(r)
m‚ n is original)

=

(1 - p(g‚r‚o‚N))(1 - p(g‚r‚o‚d))(1 - p(g‚r‚o‚s)) (if S(n‚r)
m‚ n = R(r)

m‚ n)

(1 - p(g‚r‚o‚N))(1 - p(g‚r‚o‚d)) p(g‚r‚o‚s)

3
(if S(n‚r)

m‚ n 2 B and S(n‚r)
m‚ n 6¼ R(r)

m‚ n)

(1 - p(g‚r‚o‚N))p(g‚r‚o‚d) (if S(n‚r)
m‚ n = - )

p(g‚r‚o‚N) (if S(n‚r)
m‚ n =N)

‚

8>>>>><
>>>>>:

p(S(n‚r)
m‚ n jR(r)

m‚ n = - ‚ R(r)
m‚ n is original)

=

(1 - p(g‚r‚o‚N))p(g‚r‚o‚i) 1
4

(if S(n‚r)
m‚ n 2 B)

(1 - p(g‚r‚o‚N))(1 - p(g‚r‚o‚i)) (if S(n‚r)
m‚ n = - )

p(g‚r‚o‚N) (if S(n‚r)
m‚ n =N)

‚

8>><
>>:

p(S(n‚r)
m‚ n jR(r)

m‚ n =N‚ R(r)
m‚ n is original)

=
(1 - p(g‚r‚o‚N)) 1

5
(if S(n‚r)

m‚ n 2 B or S(n‚r)
m‚ n = - )

p(g‚r‚o‚N) (if S(n‚r)
m‚ n =N)

‚

(

p(S(n‚r)
m‚ n jR(r)

m‚ n 2 B‚ R(r)
m‚ n is imputed)

=

(1 - p(g‚r‚i‚N))(1 - p(g‚r‚i‚d))(1 - p(g‚r‚i‚s)) (if S(n‚r)
m‚ n = R(r)

m‚ n)

(1 - p(g‚r‚i‚N))(1 - p(g‚r‚i‚d)) p(g‚r‚i‚s)

3
(if S(n‚r)

m‚ n 2 B and S(n‚r)
m‚ n 6¼ R(r)

m‚ n)

(1 - p(g‚r‚i‚N))p(g‚r‚i‚d) (if S(n‚r)
m‚ n = - )

p(g‚r‚i‚N) (if S(n‚r)
m‚ n =N)

‚

8>>>>><
>>>>>:

p(S(n‚r)
m‚ n jR(r)

m‚ n = - ‚ R(r)
m‚ n is imputed)

=

(1 - p(g‚r‚i‚N))p(g‚r‚i‚i) 1
4

(if S(n‚r)
m‚ n 2 B)

(1 - p(g‚r‚i‚N))(1 - p(g‚r‚i‚i)) (if S(n‚r)
m‚ n = - )

p(g‚r‚i‚N) (if S(n‚r)
m‚ n =N)

‚

8>><
>>:

p(S(n‚r)
m‚ n jR(r)

m‚ n =N‚ R(r)
m‚ n is imputed)

=
(1 - p(g‚r‚i‚N)) 1

5
(if S(n‚r)

m‚ n 2 B or S(n‚r)
m‚ n = - )

p(g‚r‚i‚N) (if S(n‚r)
m‚ n =N)

‚

(

p(S(n‚d)
m‚ n jR(d)

m‚ n 2 B‚ R(d)
m‚ n is original)

=

(1 - p(g‚d‚o‚N))(1 - p(g‚d‚o‚d))(1 - p(g‚d‚o‚s)) (if S(n‚d)
m‚ n = R(d)

m‚ n)

(1 - p(g‚d‚o‚N))(1 - p(g‚d‚o‚d)) p(g‚d‚o‚s)

3
(if S(n‚d)

m‚ n 2 B and S(n‚d)
m‚ n 6¼ R(d)

m‚ n)

(1 - p(g‚d‚o‚N))p(g‚d‚o‚d) (if S(n‚d)
m‚ n = - )

p(g‚d‚o‚N) (if S(n‚d)
m‚ n =N)

‚

8>>>>><
>>>>>:

p(S(n‚d)
m‚ n jR(d)

m‚ n = - ‚ R(d)
m‚ n is original)

=

(1 - p(g‚d‚o‚N))p(g‚d‚o‚i) 1
4

(if S(n‚d)
m‚ n 2 B)

(1 - p(g‚d‚o‚N))(1 - p(g‚d‚o‚i)) (if S(n‚d)
m‚ n = - )

p(g‚d‚o‚N) (if S(n‚d)
m‚ n =N)

‚

8>><
>>:

p(S(n‚d)
m‚ n jR(d)

m‚ n = N‚ R(d)
m‚ n is original)

=
(1 - p(g‚d‚o‚N)) 1

5
(if S(n‚d)

m‚ n 2 B or S(n‚d)
m‚ n = - )

p(g‚d‚o‚N) (if S(n‚d)
m‚ n =N)

‚

(
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p(S(n‚d)
m‚ n jR(d)

m‚ n 2 B‚ R(d)
m‚ n is imputed)

=

(1 - p(g‚d‚i‚N))(1 - p(g‚d‚i‚d))(1 - p(g‚d‚i‚s)) (if S(n‚d)
m‚ n = R(d)

m‚ n)

(1 - p(g‚d‚i‚N))(1 - p(g‚d‚i‚d)) p(g‚d‚i‚s)

3
(if S(n‚d)

m‚ n 2 B and S(n‚d)
m‚ n 6¼ R(d)

m‚ n)

(1 - p(g‚d‚i‚N))p(g‚d‚i‚d) (if S(n‚d)
m‚ n = - )

p(g‚d‚i‚N) (if S(n‚d)
m‚ n =N)

‚

8>>>>><
>>>>>:

p(S(n‚d)
m‚ n jR(d)

m‚ n = - ‚ R(d)
m‚ n is imputed)

=

(1 - p(g‚d‚i‚N))p(g‚d‚i‚i) 1
4

(if S(n‚d)
m‚ n 2 B)

(1 - p(g‚d‚i‚N))(1 - p(g‚d‚i‚i)) (if S(n‚d)
m‚ n = - )

p(g‚d‚i‚N) (if S(n‚d)
m‚ n =N)

‚

8>><
>>:

p(S(n‚d)
m‚ n jR(d)

m‚ n =N‚ R(d)
m‚ n is imputed)

=
(1 - p(g‚d‚i‚N)) 1

5
(if S(n‚d)

m‚ n 2 B or S(n‚d)
m‚ n = - )

p(g‚d‚i‚N) (if S(n‚d)
m‚ n =N)

(

Here, p(g‚r‚o‚s), p(g‚r‚o‚d), p(g‚r‚o‚i), and p(g‚r‚o‚N) are hyperparameters of probabilities of a

germline substitution, germline deletion, germline insertion, and N, respectively, in a nondecoy normal

HLA sequence at the position where the reference is an original base. The other hyperparameters are also

defined in a similar way. The probabilities for an imputed reference base should be larger than those for an

original base to reduce the influence of misimputation. In addition, the probabilities for a decoy normal

HLA sequence should also be larger than those for a nondecoy normal HLA sequence to achieve robustness

against misclassified reads.

The prior probability of HLA types is given by

p(R) =
�Y

m

p
�
R(r)

m

���Y
m

p
�
R(d)

m

��
‚

where

p(R(r)
m = t) = pt‚

p(R(d)
m ) / 1:

Here, pt is a prior probability of the HLA type t, which was calculated using the Allele Frequency Net

Database.

The prior probability of normal indicator variables is given by

p(I (n)jF ‚V) =
Y

i

p(I(n)
i jF ‚V)‚

where

p(I(n)
i = mjF ‚V) / ( max

n2[jr
(n)
i‚ j

Vm)Fm:

This formula means that the read cannot be produced by an HLA sequence without a valid position

covered by the read, which is controlled by V. Similarly, the prior probability of tumor indicator variables is

given by

p(I (t)jF ‚ G‚V) =
Y

i

p(I(t)
i jF ‚ G‚V)‚

where

p(I(t)
i = m 2 M(n)jF ‚ G‚V) / ( max

n2[jr
(t)
i‚ j

Vm)FmG‚
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p(I(t)
i = m 2 M(t)jF ‚ G‚V) / ( max

n2[jr
(t)
i‚ j

Vm - (�(d) + 2))Fm - (�(d) + 2)‚

M(n) = f1‚ . . . ‚ �(d) + 2g‚

M(t) = f�(d) + 3‚ . . . ‚ 2�(d) + 4g

Note that I(t)
i 2 M(n) indicates that the read was derived from a normal cell, and I(t)

i 2 M(t) indicates

that the read was derived from a tumor cell. Furthermore, matched normal-tumor HLA sequences S(n)
m and

S(t)
m share Vm and Fm.

The prior probability of F is given by

p(F ) =
�Y

m

p
�
F(r)

m

���Y
m

p
�
F(d)

m

��
‚

where

p(F(r)
m ) =LN (F(r)

m jl(f‚r)‚ (r(f‚r))2)‚

p(F(d)
m ) =LN (F(d)

m jl(f‚d)‚ (r(f‚d))2)

Here, LN is a log-normal distribution, l(f‚r) and (r(f‚r))2 are hyperparameters of the mean and

variance for the nondecoy parameters, and l(f‚d) and (r(f‚d))2 are hyperparameters of the mean and

variance for the decoy parameters. l(f‚d) should be smaller than l(f‚r) because sequence reads mapped to

decoy HLA sequences should be removed at the filtering step.

The prior probability of G is given by

p(G) =LN (Gjl(g)‚ (r(g))2)‚

where l(g) and (r(g))2 are hyperparameters of the mean and variance for normal contamination.

The prior probability of V is given by

p(V) =
�Y

m

Y
n

p
�
V (r)

m‚ n

�� �Y
m

Y
n

p
�
V (d)

m‚ njV
(d)
m‚ n - 1

��
‚

where

p(V (r)
m‚ n) =

0 (if V (r)
m‚ n = 0)

1 (if V (r)
m‚ n = 1)

‚

(

p(V (d)
m‚ njV

(d)
m‚ n - 1 = 0) =

1 - p(v‚o) (if V (d)
m‚ n = 0)

p(v‚o) (if V (d)
m‚ n = 1)

‚

(

p(V (d)
m‚ njV

(d)
m‚ n - 1 = 1) =

1 - p(v‚e) (if V (d)
m‚ n = 0)

p(v‚e) (if V (d)
m‚ n = 1)

(

Here, p(v‚o) and p(v‚e) are hyperparameters of probabilities of a validity flag opening and a validity flag

extension, respectively. Note that V (r)
m‚ n must always be 1.

2.4. Markov chain Monte Carlo-based parameter sampling

The parameters are sampled from the Bayesian model using Markov chain Monte Carlo. Gibbs sampling

is primarily used to sample all parameters except for Fm and Vm.

A candidate parameter, F�m, is first sampled using the Metropolis–Hastings algorithm whose proposal

distribution is given by

F�m*LN ( log Fm‚ (r(f‚p)
m )2)‚

where (r(f‚p)
m )2 is a hyperparameter of the variance of the proposal distribution. The acceptance ratio r� is

calculated by
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r� =
p(I (n)jF �‚V)p(I (t)jF �‚V)p(F�m)

p(I (n)jF ‚V)p(I (t)jF ‚V)p(Fm)
‚

where F� = (F1‚ . . . ‚ Fm - 1‚ F�m‚ Fm + 1‚ . . . ‚ F�(d) + 2). A candidate parameter, V�m, is sampled using the

Metropolis–Hastings algorithm whose proposal distribution is analogous to the Wolff algorithm

(Wolff, 1989), which is used for sampling of the Ising model. V�m is generated by Algorithm 1. Then,

I (n)� and I (t)� are also sampled using Gibbs sampling given V�m. The acceptance ratio r� is calcu-

lated by

r� =
Qr + 1

n = 1 p(V�m‚ njV�m‚ n - 1)Qr + 1
n = 1 p(Vm‚ njVm‚ n - 1)

·
(p(v‚p)

v )
r - l

(1 - p(v‚p)
v )

[l 6¼1^Vl - 1 6¼v] + [r 6¼N^Vr + 1 6¼v]

(p(v‚p)
1 - v )

r - l
(1 - p(v‚p)

1 - v )
[l 6¼1^Vl - 1 6¼v] + [r 6¼N^Vr + 1 6¼v]

·
p(X (n)jS(n)‚V�)p(X (t)jS(n)‚S(t)‚V�)
p(X (n)jS(n)‚V)p(X (t)jS(n)‚S(t)‚V)

:

We set 1 - p(v‚o) and p(v‚e) to p(v‚p)
0 and p(v‚p)

1 , respectively, so that the acceptance ratio can be

calculated by

r� =
p(Vm‚ l 6¼ vjVm‚ l - 1)p(Vm‚ r + 1jVm‚ r 6¼ v)

p(Vm‚ l = vjVm‚ l - 1)p(Vm‚ r + 1jVm‚ r = v)

·
p(Vm‚ n 6¼ vjVm‚ n - 1 = v)

[l6¼1^Vl - 1 6¼v] + [r 6¼N^Vr + 1 6¼v]

p(Vm‚ n = vjVm‚ n - 1 6¼ v)
[l6¼1^Vl - 1 = v] + [r 6¼N^Vr + 1 = v]

·
p(X (n)jS(n)‚V�)p(X (t)jS(n)‚S(t)‚V�)
p(X (n)jS(n)‚V)p(X (t)jS(n)‚S(t)‚V)

:

2.5. Efficient sampling from multimodal posteriors

In addition to the standard sampling approaches mentioned earlier, we applied some additional elaborate

sampling schemes to prevent the parameters from becoming stuck in a local optimum. One such scheme

swaps parts of the nondecoy and decoy HLA sequences. First, a nondecoy index m 2 f1‚ 2g, decoy index

m0 2 f3‚ � � � ‚ �(d) + 2g, and interval i such that 8n 2 i; Vm0‚ n = 1 are sampled uniformly. Next, S(n)
m‚ n and

S(n)
m0‚ n, and S(t)

m‚ n and S(t)
m0‚ n are swapped for all n 2 i. Finally, R�m, R�m0 , I (n)�, and I (t)� are sampled using

Gibbs sampling given S(n)� and S(t)�, which are the normal and tumor HLA sequences after swapping.

Consequently, the acceptance ratio r� is given by

r� =
p(X (n)jS(n)�‚V)p(X (t)jS(n)�‚S(t)�‚V)p(S(n)�)

p(X (n)jS(n)‚V)p(X (t)jS(n)‚S(t)‚V)p(S(n))
:

This sampling method helps to determine which HLA sequences should be decoys.

Another scheme involves sampling an HLA type and matched normal-tumor HLA sequences simulta-

neously. For all m 2 f1‚ . . . ‚ �(d) + 2g, S(n‚N)
m and S(t‚N)

m are defined by

S(n‚N)
m‚ n =

S(n)
m‚ n (ifDm‚ n> 0)

N (ifDm‚ n = 0)
‚

�

S(t‚N)
m‚ n =

S(t)
m‚ n (ifDm‚ n> 0)

N (ifDm‚ n = 0)
‚

(

Dm‚ n = D(n)
m‚ n + D(t)

m‚ n + D(t)

m + �(d) + 2‚ n
‚

D(n)
m‚ n = jf(i‚ j)jI(n)

i = m‚ n 2 ri‚ jgj‚
D(t)

m‚ n = jf(i‚ j)jI(t)
i = m‚ n 2 ri‚ jgj
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In other words, S(n‚N)
m and S(t‚N)

m are basically the same as S(n)
m and S(t)

m , and bases not covered by any

read are replaced with Ns. Next, R�m is sampled given S(n‚N)
m , S(n)�

m is sampled given R�m and S(t‚N)
m , and S(t)�

m

is sampled given S(n)�
m in order. Then, the acceptance ratio r� is given by

r� =
p(S(n‚N)

m jRm)

p(S(n‚N)
m jR�m)

p(X (t)jS(n)‚S(t‚N)‚ I (t))

p(X (t)jS(n)�‚S(t‚N)‚ I (t))

·
p(S(t‚N)

m jS(n)
m )

p(S(t‚N)
m jS(n)�

m )

p(S(t‚N)
m ‚X (n)‚X (t)jRm

�‚ I (n)‚ I (t))

p(S(t‚N)
m ‚X (n)‚X (t)jRm‚ I (n)‚ I (t))

p(X (t)jS(n)�‚S(t)
- m‚ I (t))

p(X (t)jS(n)‚S(t)
- m‚ I (t))

:

This sampling functions in a similar way to blocked Gibbs sampling of Rm, S(n)
m , and S(t)

m . This blocked

Gibbs sampling requires substantial computation time because S(n)
m and S(t)

m must be integrated out for each

HLA type. By contrast, our scheme requires much less time because S(n)
m and S(t)

m are integrated out only for

Rm and R�m.

Other strategies were further used to obtain better parameters. First, reference sequences are peri-

odically copied to HLA sequences. Second, sequence reads are assigned to decoy sequences if there are

mismatches between the sequence reads and the reference sequences. These approaches help to reduce

the incidence of false-positive mutations and retain only the mutations that seem true. The multistart

method is also used to obtain better initial parameters. Moreover, parallel tempering is used to move

parameters from mode to mode.

2.6. Human leukocyte antigen analysis from sampled parameters

HLA analysis is conducted based on the sampled parameters. HLA genotyping is performed by counting

the number of sampled HLA types, and germline or somatic mutations are identified by finding different bases

between HLA types and normal HLA sequences, or between normal and tumor HLA sequences, respectively.

3. RESULTS

3.1. Human leukocyte antigen genotyping from whole-genome sequencing data

We first evaluated the accuracy of this method for HLA genotyping from a WGS data set. For com-

parison, we applied ALPHLARD-NT, ALPHLARD (Hayashi et al., 2018), and POLYSOLVER (Shukla

et al., 2015) to WGS data of 25 colon cancer samples, which were used by Hayashi et al. (2018). The

performance comparison is summarized in Table 1. Overall, ALPHLARD-NT outperformed POLY-

SOLVER at all resolutions for all HLA loci. ALPHLARD-NT also achieved slightly higher accuracy than

ALPHLARD because ALPHLARD-NT can use information from both normal and tumor samples, whereas

ALPHLARD can only use information from normal samples.

3.2. Detection of human leukocyte antigen mutations from whole-genome sequencing data

We also searched for HLA class I somatic mutations among the WGS data from the 25 colon cancer samples

using ALPHLARD-NT, POLYSOLVER, and EBCall (Shiraishi et al., 2013), which is a standard mutation

caller. ALPHLARD-NT called one substitution, two insertions, and two deletions, all of which were verified by

the TruSight HLA Sequencing Panels (Weimer et al., 2016). All four indels called are known to lead to the loss

of function of the HLA alleles, and might contribute to immune escape. However, POLYSOLVER and EBCall

detected no and one mutation, respectively, which was likely due to the low coverage of the data set.

3.3. Detection of human leukocyte antigen mutations from whole-exome sequencing data

Next, we applied ALPHLARD-NT, POLYSOLVER, and EBCall to a WES data set of 343 colon

adenocarcinoma cases from The Cancer Genome Atlas (TCGA). Figure 2 shows the Venn diagrams of

the identified HLA class I somatic mutations with each method. This figure demonstrates the high

sensitivity of ALPHLARD-NT (88 mutations) compared with POLYSOLVER (60 mutations) and
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EBCall (80 mutations), which is especially remarkable for insertions. ALPHLARD-NT detected seven

insertions at the beginning of exon 4 of HLA class I genes, which is a known hotspot of indels (Mizuno

et al., 2018), whereas POLYSOLVER and EBCall identified no and three insertions at this hotspot,

respectively. ALPHLARD-NT also identified 12 deletions at the same position. These recurrent

frameshift indels seemed to be positively selected for immune escape caused by loss of function of the

HLA alleles.

In addition, ALPHLARD-NT detected a novel HLA-B allele whose exon sequence is the same as HLA-

B*35:08:01 except that the 25th base is C rather than G, which changes the 9th amino acid from V to L.

The protein produced by the new allele is also novel and not registered in the IPD-IMGT/HLA Database,

indicating that the allele defines a new HLA type name at the second field.

Table 1. Comparison of the Accuracy of Whole-Genome Sequencing-Based Human Leukocyte

Antigen Genotyping with ALPHLARD-NT, ALPHLARD, and POLYSOLVER

ALPHLARD-NT ALPHLARD POLYSOLVER

HLA-A

First 100% (50/50) 100% (50/50) 100% (50/50)

Second 100% (50/50) 98.0% (49/50) 98.0% (49/50)

Third 98.0% (49/50) 98.0% (49/50) 90.0% (45/50)

HLA-B

First 100% (48/48) 100% (48/48) 91.7% (44/48)

Second 100% (48/48) 100% (48/48) 85.4% (41/48)

Third 97.9% (47/48) 95.8% (46/48) 81.3% (39/48)

HLA-C

First 100% (50/50) 100% (50/50) 100% (50/50)

Second 100% (50/50) 98.0% (49/50) 90.0% (45/50)

Third 100% (50/50) 98.0% (49/50) 86.0% (43/50)

HLA-DPA1

First 100% (24/24) 100% (24/24) N/A

Second 100% (24/24) 100% (24/24) N/A

Third 100% (24/24) 100% (24/24) N/A

HLA-DPB1

First 100% (22/22) 100% (22/22) N/A

Second 100% (22/22) 100% (22/22) N/A

Third 100% (22/22) 100% (22/22) N/A

HLA-DQA1

First 100% (24/24) 100% (24/24) N/A

Second 95.8% (23/24) 95.8% (23/24) N/A

Third 95.8% (23/24) 95.8% (23/24) N/A

HLA-DQB1

First 100% (18/18) 100% (18/18) N/A

Second 94.4% (17/18) 94.4% (17/18) N/A

Third 94.4% (17/18) 94.4% (17/18) N/A

HLA-DRB1

First 100% (24/24) 100% (24/24) N/A

Second 100% (24/24) 100% (24/24) N/A

Third 100% (24/24) 100% (24/24) N/A

Total

First 100% (260/260) 100% (260/260) 97.3% (144/148)

Second 99.2% (258/260) 98.5% (256/260) 91.2% (135/148)

Third 98.5% (256/260) 97.7% (254/260) 85.8% (127/148)

N/A indicates that the method does not support the HLA locus.

HLA, human leukocyte antigen.

Bold values indicate that the method achieved the highest accuracy for the HLA locus at the resolution.
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FIG. 2. Venn diagrams of the number of HLA somatic mutations identified by ALPHLARD-NT, POLYSOLVER,

and EBCall for (a) substitutions, (b) insertions, (c) deletions, and (d) all mutations. HLA, human leukocyte antigen.

Algorithm 1 Generate a candidate parameter V� using the Wolff algorithm

Input:

V: the current parameter

N: the length of V

p(v‚p)
0 : probability for 0-cluster extension

p(v‚p)
1 : probability for 1-cluster extension

Output:

V�: candidate parameter

1: function Wolff (V‚ p(v‚p)
0 ‚ p(v‚p)

1 )

2: Sample a position p uniformly

3: v)Vp

4: b)p

5: while b > 1 and Vb - 1 = v do

6: break with probability 1 - p(v‚p)
v

7: b)b - 1

8: end while

9: e)p

10: while e < N and Ve + 1 = v do

11: break with probability 1 - p(v‚p)
v

12: e)e + 1

13: end while

14: V�)V

15: for n)b to e do

16: V�n )1 - v

17: end for

18: return V�

19: end function
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4. CONCLUSION

In this article, we have presented a new Bayesian method, ALPHLARD-NT, which identifies HLA

germline and somatic mutations as well as HLA genotypes. Comparison of the performance of

ALPHLARD-NT clearly demonstrated its higher accuracy than existing methods for WGS-based HLA

genotyping. ALPHLARD-NT also detected HLA somatic mutations from both WES and WGS data. In

general, HLA mutation calling is difficult mainly due to the similarity of HLA genes and pseudogenes. We

dealt with this problem by applying sophisticated filtering criteria and using decoy-related parameters that

reduced the influence of misclassified reads at the filtering step. Although these approaches work well for

HLA class I mutation calling, identification of HLA class II mutations remains a challenge, since databases

tend to be relatively incomplete for identifying class II genes and pseudogenes compared with class I genes.

With the continuous accumulation of large amounts of WES and WGS data, HLA mutation calling from

these data sets is a fundamental step in cancer immunogenomics. Thus, we expect that our method will be

an essential tool for comprehensive analyses of HLA genes from WES and WGS data.
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