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Regulation of natural killer cell activity by glucocorticoids,
serotonin, dopamine, and epinephrine
Silvia Capellino1, Maren Claus1 and Carsten Watzl 1

The immune system and the nervous system are highly complex organs composed of various different cells that must interact with
each other for proper function of the system. This communication can be mediated by soluble factors. The factors released by the
nervous system (neurotransmitters) differ from those released by the immune system (cytokines). Nevertheless, the nervous and
immune systems can influence each other’s activity because immune cells express neurotransmitter receptors, and neurons express
cytokine receptors. Moreover, immune cells can synthesize and release neurotransmitters themselves, thus using neurotransmitter-
mediated pathways via autocrine and paracrine mechanisms. Natural killer (NK) cells are innate lymphocytes that are important for
early and effective immune reactions against infections and cancer. Many studies have shown the strong influence of stress and the
nervous system on NK cell activity. This phenomenon may be one reason why chronic stress leads to a higher incidence of
infections and cancer. Here, we review the effects of neuroendocrine factors on the different activities of NK cells. Understanding
the effects of neuroendocrine factors on NK cell activities during physiological and pathophysiological conditions may result in
novel therapeutic strategies to enhance NK cell functions against tumors.
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INTRODUCTION
Both the immune system and the nervous system are highly
complex organs that have some interesting similarities. Both
organs are composed of various different cells that must interact
with each other for proper function of the system. For this
interaction, cellular communication is key. This communication is
mediated by direct cellular contacts (e.g., synapse formation
between neurons or between immune cells) and by soluble
mediators (neurotransmitters or cytokines). Interestingly, commu-
nication is not limited to cells of each system. Many examples
have shown that the nervous system and the immune system
interact and thereby influence each other’s activity. For example,
during inflammatory responses of the immune system against
infections, the cytokines produced by immune cells can also affect
cells of the nervous system and mediate what is called “sickness
behavior”.1 Communication between the immune system and the
nervous system is bidirectional. In this review, we will focus on
how the nervous system influences the activity of the immune
system using natural killer (NK) cells as an example.

THE NERVOUS SYSTEM AND ITS NEUROTRANSMITTERS
The nervous system is responsible for coordination, movements,
thoughts, and processing, and it is divided into the central and
peripheral nervous systems. The central nervous system consists
of the brain and spinal cord, and is responsible for integrating and
coordinating the activities of the entire body. Through these
physical structures, thought, emotion, and sensation are

experienced, and body movements are coordinated. The periph-
eral nervous system consists of all neurons that exist outside of
the brain and spinal cord, and connects the central nervous
system to various parts of the body. This system includes long
nerve fibers as well as ganglia. Depending on the function, this
system is divided into the autonomous nervous system, respon-
sible for involuntary function, and the somatic nervous system,
which regulates voluntary movements and includes afferent
neurons (Fig. 1).
For nerve-to-nerve communication, some neurons communi-

cate via electrical synapses through the use of gap junctions, but
most neurons synthesize and release neurotransmitters. There are
a large number of neurotransmitters in the human body, varying
from very small purines (adenosine, ATP) to polypeptides such as
somatostatin. Neurotransmitters are normally released in the
synaptic cleft and bind to postsynaptic neurons or undergo
reuptake into the presynaptic neuron. However, they can also
diffuse in the blood and bind to nonneuronal cells, or they can be
released from efferent nerve endings directly in peripheral organs,
such as the spleen, lymph nodes, glands, the intestine, and other
organs.
Catecholamines (adrenaline, noradrenaline, and dopamine),

neurotransmitters of the sympathetic nervous system, and
acetylcholine, neurotransmitters of the parasympathetic nervous
system, are released in many peripheral organs and directly act on
the body to control the fight-or-flight response (sympathetic
nervous system) and the rest-and-digest response (parasympa-
thetic nervous system).2 The amount of dopamine in the
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peripheral organs has been summarized in a recent review,3 which
reported physiologically active concentrations of dopamine in the
colon, heart, lungs, blood, and many other organs. Similarly, the
peripheral concentrations of all three catecholamines and their
effects on peripheral organs and tissues, as well as on memory in
the brain, have been reviewed,2 thus highlighting the complex
and important effect of the sympathetic nervous system on body
functions. In addition, acetylcholine has peripheral effects on
endothelial cells, lymphoid organs, and other nonneuronal cells,
despite the anatomical distance from cholinergic nerves and the
presence of degrading enzymes in the blood. One possible
explanation for the distant action of acetylcholine is the presence
of a high concentration of the acetylcholine-synthesizing enzyme
in human plasma.4

In addition, neurotransmitters of the central nervous system,
such as glutamate,5 are detected in the peripheral organs without
any evidence of peripheral innervation. This phenomenon is
because peripheral, nonneuronal cells can also synthesize and
release neurotransmitters and use them in a paracrine or
autocrine manner. For example, immune cells and other
nonneuronal cells were shown to synthesize catecholamines in
physiologic6–10 as well as in pathologic conditions,11–14 suggesting
that neurotransmitters may have crucial modulatory effects on
these cells. Notably, cholinergic effects in the spleen were shown
to be due to sympathetic activation of T cells, which then produce
and release acetylcholine.15 Acetylcholine synthesis was also
demonstrated in murine NK cells, with upregulation of the NK cell
cholinergic system during autoimmune activation.16 In addition,
many other neurotransmitters can be produced and released
outside of the nervous system,17,18 suggesting a crucial, so far
underestimated role for neurotransmitters in physiology and the
immune response.

NK CELLS
NK cells are innate lymphocytes that are important for early and
effective immune reactions against infections and cancer.19 To
mediate these important responses, NK cells have essentially two
effector mechanisms—cellular cytotoxicity and the production of
cytokines. These activities can be stimulated by different surface
receptors.20 Via cytokine receptors, NK cells can respond to
cytokines that are produced during the early phases of an
infection, such as type I interferon, IL-12, and IL-18. This
phenomenon results in the activation of NK cells and the
production of IFNγ and other cytokines, which initiate and shape
the following adaptive immune response. Via a variety of
activating and inhibitory surface receptors,21 NK cells can interact
with infected or transformed cells and mediate cellular

cytotoxicity. For this activity, close contact between the two cells
is necessary, which is often referred to as the immunological
synapse.22 To form this contact, adhesion receptors such as
integrins are essential. Within this synapse, activating and
inhibitory NK cell receptors can interact with their respective
ligands on the target cell. The integration of their positive and
negative signals inside NK cells ultimately determines whether NK
cells are activated.23 Upon NK cell activation, the synapse is
stabilized, and intracellular vesicles containing cytotoxic mole-
cules, such as perforin and granzymes, are polarized toward the
contact site.24 The content of these vesicles, which are also called
granules, is then released into the synaptic cleft, resulting in the
death of the attached target cell.25 As an alternative mechanism,
NK cells can express ligands for death receptors such as TRAIL or
FasL on their surface, which upon interaction with their respective
receptors, can also induce target cell apoptosis. Both killing
mechanisms seem to be differentially used during the serial killing
activity of NK cells, by which they can eliminate several target cells
in a serial fashion.26

Through their cytokine production and via their cellular
cytotoxicity, NK cells can contribute to effective immune reactions
against viral infections and transformed cells. NK cell responses
against cytomegalovirus (CMV) infections have been very well
characterized, as NK cells seem to be particularly well equipped to
react against this virus via specific receptors.27 In addition, NK cells
are important for immunosurveillance against tumors, and NK cell
responses against hematological malignancies have been well
studied. These analyses have led to the use of NK cells in several
immunotherapeutic approaches against leukemia and other forms
of cancer.28,29

NK cells are part of a larger group of innate lymphocytes,
commonly referred to as innate lymphoid cells (ILCs).30 While NK
cells are cytotoxic effector cells, other ILCs, such as the subgroups
ILC1, ILC2, and ILC3, have a helper function by producing different
cytokines. These helper subsets are mostly found in tissues,
especially at mucosal sites, where they can rapidly react to
infections. Given their location, ILCs have been shown to be
influenced by several different soluble mediators of the nervous
system, which are directly released into the tissue by neurons. As
the regulation of helper ILCs by neurotransmitters and neuropep-
tides has been the subject of several recent reviews,31 we will
focus here on the regulation of NK cell activities by the nervous
system.

REGULATION OF NK CELLS BY GLUCOCORTICOIDS
Glucocorticoids (GCs) are steroid hormones that are released
during the so-called stress response by activation of the

Fig. 1 Diagram showing the major divisions of the human nervous system. The released neurotransmitters are shown in red
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hypothalamic–pituitary–adrenal (HPA) axis (Fig. 2). During this
response, the hypothalamus is activated, resulting in the release of
corticotropin-releasing hormone (CRH). This change stimulates the
secretion of adrenocorticotropic hormone (ACTH) by the pituitary
gland of the anterior lobe. Upon ACTH stimulation, the adrenal
cortex then releases GCs into the bloodstream. While this has a
negative feedback effect on the hypothalamus and the pituitary
gland to inhibit the production of CRH and ACTH, GCs regulate a
wide variety of physiological processes, including metabolism,
circadian rhythm, and immunity. GCs mediate their effects by
binding to GC receptors, which are ubiquitously expressed by
almost all cells. In general, the effect of GCs on the immune
system is considered to be anti-inflammatory by inhibiting the
production of proinflammatory cytokines, such as IL-6, TNF, IL-1ß,
or IL-12 by monocytes, macrophages, and dendritic cells.32 Given
this anti-inflammatory function, GCs are also widely used as
therapeutics to treat inflammatory disorders.
Approximately 40 years ago, GCs were shown to have an

inhibitory effect on NK cell functions.33–35 This finding has been
confirmed by many labs, and more details about the effect of GCs
on NK cell reactivity have been reported.34,36–41 Through binding
to GC receptors, GCs typically alter gene transcription. This change
results in reduced expression of several genes that are important
for NK cell functions.37,39 Via reduced expression of the integrin
LFA-1, adhesion to target cells is reduced by GCs.38,41 In addition,
effector molecules, such as perforin, granzyme B, and granzyme A,
are inhibited in their expression, resulting in reduced cytotoxic
activity of NK cells.38,41 More importantly, the production of IFNγ,
as a key NK cell cytokine, is inhibited by GCs.42,43 These findings
indicate a general inhibition of NK cell activities by GCs (Fig. 3).
Given that GCs are secreted during the stress response, this
phenomenon could provide an important link between (chronic)
stress and the suppression of immune functions, leading to
increased susceptibility to infections and reduced immunosurveil-
lance of tumors under such conditions.
The inhibitory effect of GCs on NK cells is relevant for regulating

immune responses. In mice with an NK cell-specific deletion of the
GC receptor, CMV infections could no longer be controlled,
leading to reduced survival of the deficient animals upon CMV
infection.44 This result was caused by excessive IFNγ production by
NK cells in the spleen of GC receptor-deficient mice. Mechan-
istically, infection by CMV activates the HPA axis, resulting in the
release of GCs. These factors induce the expression of the

inhibitory receptor PD-1 on NK cells in the spleen, which regulates
and limits their IFNγ production (Fig. 3). Without this regulation,
excessive IFNγ production by NK cells causes immune-mediated
pathology, leading to the increased mortality of the GC receptor-
deficient mice during infection. This result demonstrates that the
GC-mediated inhibition of NK cell functions is important for
preventing excess immune reactions and inflammatory disorders.
While the inhibitory effect of GCs on the production of

cytokines such as IFNγ by NK cells is well established, there are
conflicting reports about the regulation of other NK cell activities.
Treatment of NK cells with GCs can result in reduced cytotoxic
activity as described above. However, in the absence of GC-
receptor expression, viral clearance after CMV infection was not
altered compared with that in wt mice.44 As viral clearance is
dependent on NK cell cytotoxicity, this finding would indicate that
GCs produced during CMV infection do not affect NK cell
cytotoxicity while still inhibiting IFNγ production. It could be that
different time frames or concentrations are necessary for GCs to
affect the two different NK cell activities. In addition, the location
of NK cells in different organs may be important. In the CMV
infection model, GCs upregulated PD-1 only on NK cells in the
spleen but not in the liver, which was suggested to be linked to an
IL-12-mediated inhibition of this GC effect.44 Interestingly, IL-12
was also reported to affect other functions of GCs. The
proliferation of NK cells is typically inhibited by GCs. In contrast,
GCs were found to enhance the proliferation of human NK cells
upon exposure to IL-2 and IL-12.43 Therefore, IL-12 signaling may
block or even reverse the effect of GCs on NK cells. This interesting
link between IL-12, which is produced during infections, and GCs
in NK cells, will need to be investigated further (Fig. 3).

REGULATION OF NK CELLS BY MONOAMINES
Monoamines are a group of important bioactive substances of the
CNS that are considered to act as neuromodulators and regulate
important functions, such as motor control, cognition, emotion,
and memory processing. The major monoamines are serotonin,
dopamine, and noradrenaline. Interestingly, all these substances
are known to influence NK cell activities outside of the CNS.

Serotonin
Peripheral serotonin (5-hydroxytryptamine, 5-HT) is a derivative of
tryptophan and is mainly produced by gut chromaffin cells.
Serotonin is taken up from the bloodstream by platelets and
released upon activation.45 Based on sequence homology, 7
classes of serotonin receptors (5-HTR) are known and comprise
several subclasses. Six of these 5-HTRs are members of the G
protein-coupled receptor superfamily and signal through different

Fig. 3 Effects of dopamine, epinephrine, and glucocorticoids on NK
cell activities. Green arrows symbolize activation events, and red
lines symbolize inhibition. See text for details

Fig. 2 Regulation of the hypothalamic–pituitary–adrenal (HPA) axis.
See text for details
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heterotrimeric G proteins: 5-HT1Rs inhibit cAMP production
through Gαi/0, while 5-HT4Rs, 5-HT6Rs, and 5-HT7Rs couple to
Gαs, stimulate adenylate cyclase, and increase cAMP production.
The 5-HT2Rs activate the PLC/IP3/Ca2+ pathway through Gαq/11,
and 5-HT3R belongs to the four-transmembrane-domain ligand-
gated cation channel receptor superfamily and stimulates NO
synthase and cGMP production (reviewed in ref. 46). However,
knowledge about the expression of 5-HTRs on NK cells is very
limited. The first connection between serotonin and NK cell
function was found in the early 1990s, when Hellstrand et al.
identified indirect effects of serotonin on NK cells through the
regulation of monocytes by serotonin. Monocytes can inhibit basal
and stimulated NK cell cytotoxicity, as well as cytokine production
in a cell contact-dependent manner. This inhibition was abrogated
by the addition of serotonin.47,48

Evaluation of lymphocyte subsets in patients suffering from
major depressive disorder who were treated with selective
serotonin reuptake inhibitors (SSRIs) led to varying results. A
short-term 4-week treatment with SSRIs enhanced NK cell
cytotoxicity but not NK cell numbers,49,50 whereas long-term
treatment led to increased NK cell counts.51 However, no evidence
for direct effects of SSRIs on NK cells was found. A flow cytometry-
based study on Alzheimer’s patients suggests that NK cells may
express serotonin receptors. However, the percentages reported
in this study are extremely low, raising the question of functional
significance.52 Recently, a systematic screen of commonly used
drugs on isolated NK cells supported a direct effect of serotonin
on NK cells. The serotonin receptor agonist quipazine was found
to enhance NK cell function, whereas various dopamine/serotonin
antagonists inhibited CD16-mediated NK cell function.53 More-
over, serotonin was shown to enhance the migratory potential,
but not the effector functions of the KHYG-1 NK cell line through
5-HT2AR and 5-HT2BR.

54 Thus, serotonin seems to modulate NK cell
function in direct and indirect ways.

Dopamine
Dopamine is a neurotransmitter of the central nervous system
controlling movement, emotion, cognition, and neuroendocrine
interactions. Dopamine acts on five different dopamine receptors
(DRs) belonging to the 7-transmembrane G protein-coupled
receptor family, which are grouped into two families: the D1-like
dopamine receptors D1- and D5DR, which activate adenylate
cyclase, and the D2-like dopamine receptors D2-, D3-, and D4-DR,
which inhibit adenylate cyclase.55 In addition to the regulation of
cAMP, several studies have revealed that DR can act through
alternative signaling pathways (summarized in ref. 56).
Human immune cells express almost all dopamine receptors (DRs)

(recently summarized in ref. 57). Among leukocytes, B cells and NK
cells have the highest DR expression. A previous publication showed
that human NK cells express D2-D5DR and lack D1DR.58 In general,
the activation of DR seems to have an inhibitory function on human
NK cells, although the literature on this effect is very limited at
present. Upregulation of D5DR in primary human NK cells
prestimulated with IL-2 was demonstrated to suppress the
proliferation of NK cells and IFNγ synthesis through the NFkB
pathway.59 The treatment of freshly isolated human NK cells with
common serotonin/dopamine receptor antagonists was demon-
strated to inhibit NK cell function;53 however, this effect may
function via the serotoninergic receptors as described above.
Many experiments in animal models have confirmed the

modulatory effects of dopamine on the activation of NK cells
(Fig. 3). However, there are some contradictory results that could
be due to different experimental settings. In a mouse model, D1-
like DR stimulation enhanced the cytotoxicity of NK cells from the
spleen, and increased D1-like DR expression and cAMP levels,
whereas D2-like DR stimulation was responsible for NK cell
inhibition.60 In contrast, treatment of mice with haloperidol, a D2-
like DR antagonist, inhibited NK cell activities.61 Paradoxically,

bromocriptine, a D2-like agonist, also inhibited NK cell function in
the same study, and the combination of both drugs reversed the
inhibition. A possible different pathway for the two drugs was
suggested to explain the unexpected results (prolactin-dependent
or prolactin-independent), but the two drugs also act on other
receptors, such as serotoninergic receptors. Interestingly, a study
aiming to test the effect of different drugs on mouse NK cells
showed an inhibitory effect of only 3 out of 7 tested DR
antagonists on NK cells, suggesting that the drugs could also act
via other receptors.62 In APO-SUS rats, which are highly responsive
to dopamine, splenic NK cell activity was much lower than that in
hypodopaminergic APO-UNSUS rats, indicating an inhibitory effect
of dopamine on NK cells.63

Some in vivo stress models also suggested an effect of stress-
induced dopamine on NK cell function. Restrained stress in mice
resulted in impairment of NK cell cytotoxicity, and this effect could
be counteracted by in vivo administration of dopaminergic and
adrenergic antagonists prior to stress induction.64 Another study
demonstrated an increase in cytotoxicity after treatment of male
rats with agroclavine, a D1-like DR- and α-adrenergic receptor
agonist, while the opposite effect was observed in stressed
animals.65 It is not clear, however, whether agroclavine predomi-
nantly acts on dopaminergic or adrenergic receptors.
A different way to study dopaminergic effects on NK cells is the

inactivation of sympathetic or only dopaminergic neurons. The
injection of 6OH-DA in rats led to sympathectomy, thus reducing
the amount of catecholamines, including dopamine, in the blood.
As a consequence, a reduced number of NK cells in the blood and
spleen was observed.66 The specific ablation of dopaminergic
neurons via MPTP treatment led to a decreased immune response
and enhanced tumor growth in a mouse model, thus confirming
the results above.67

Taken together, these results strongly suggest involvement of
the dopaminergic pathway in NK cell function. Because NK cells
also express other receptors, such as adrenergic and serotoniner-
gic receptors, it is difficult to state specific dopaminergic effects of
substances that can bind many of these receptors. Some studies
using more specific DR modulators suggest an inhibitory effect of
dopamine on NK cells, and dopaminergic modulation as a
therapeutic strategy. A recent publication supports the possible
clinical relevance of dopaminergic modulation, as the treatment of
patients with solid refractory tumors with a small-molecule D2
antagonist in a phase II study led to enhanced NK cell tumor
infiltration and induction of cytokines.68 Based on these promising
results, new studies with specific DR agonists and antagonists are
required to better understand how to modulate the dopaminergic
pathway in NK cells to achieve therapeutic relevance.

Epinephrine/Norepinephrine
Epinephrine belongs, together with norepinephrine and dopamine,
to the group of catecholamines. Norepinephrine and subsequently
epinephrine are synthesized from dopamine. They are found in
serum at low concentrations, and can strongly increase during acute
stress or exercise. Compared with the more stable glucocorticoids,
epinephrine mounts a fast and short stress-response signal.69 Both
norepinephrine and epinephrine bind to adrenergic receptors, but
differ in their activation potencies. Adrenergic receptors belong to
the G protein-coupled receptor (GPCR) family and signal through
heterotrimeric G proteins. Alpha 2 adrenergic receptor α2-AR signals
through Gαi, thereby inhibiting adenylate cyclase and cAMP signals.
α1-AR activates the Gαq/11-mediated PLC/IP3/Ca2+ pathway.70 The
beta 2 adrenergic receptor (β2-AR) couples to Gαs and activates the
cAMP/PKA/p‑CREB pathway;70,71 however, prolonged stimulation of
β2-AR can induce switching of G protein specificity toward Gαi,
thereby inhibiting cAMP production.72,73 In addition, adrenergic
receptors can form homo-oligomers and hetero-oligomers with
other GPCRs that exhibit distinct G protein specificity (reviewed in
ref. 74).
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Norepinephrine preferentially activates α-AR, while epinephrine
is a potent stimulator of β-AR. NK cells express high levels of β2-AR
but not β1-AR. In CD16+ lymphocytes, the expression of α1- and
α2-AR was also detected.75,76 The functional effects of epinephrine
were mainly attributed to β2-AR (reviewed in refs. 77,78); however,
epinephrine, but not norepinephrine, was also shown to modulate
the expression levels of α1- and α2-AR on NK cells in vivo.75

In general, epinephrine and norepinephrine seem to inhibit NK
cell cytotoxicity and cytokine production53,71,79 (Fig. 3), but
treatment with submicromolar concentrations of epinephrine
might also enhance NK cell function.80 This hypothesis is further
supported by the finding that chronic stress through repeated
social disruption had a “priming” effect on NK cell function in
mice.81 Infusion of epinephrine or a physiological increase in
epinephrine through stress or exercise increased peripheral NK
cell numbers, possibly by inhibition of integrin-mediated adhesion
to blood vessels.82–84 Interestingly, epinephrine induced the
specific relocalization of distinct, highly differentiated NK cell
subsets.85–87

Stressors can be either acute and short, such as physical trauma
or surgery, or chronic and long lasting, such as working in a
stressful occupation or providing care for a spouse with severe
dementia. Connections between acute stress through trauma or
surgery and immune function were already described in the
1980s: NK cell activity in patients undergoing upper abdominal
surgery or elective coronary artery bypass grafting was found to
be related to the stress response during and after surgery.88,89 In
addition, decreased NK cell function after traumatic or thermal
injury was linked to adrenergic signaling.90 Consequently, many
clinical studies were conducted in which beta-blockers, usually in
combination with COX2 inhibitors, were applied pre- and
perioperatively in cancer surgery. Despite the heterogeneity of
cancer types and drugs used, the data suggest a beneficial effect
of adrenergic receptor blockade on NK cell activity and tumor
control (reviewed in ref. 77). The extent of NK cell modulation and
the resulting diminished tumor control due to surgical stress and
β-AR stimulation are affected by age and gender.91–94

Chronic stress is known to negatively affect immune function.95

Since chronic life stress is difficult to define or control in humans, the
majority of studies were conducted in rodents.96 Prolonged wet-
cage exposure or continuous administration of β2-AR agonists
disrupted the immunostimulatory effects of IL-12 on NK cells in
rats.97 Another study suggested a role for epinephrine in leukemia
progression through reduced NK activity in chronically stressed
rats.98 In addition to tumor control, β2 adrenergic signaling was
shown to affect NK cell function against viral infections. Mice treated
with a β2-AR agonist showed increased susceptibility to MCMV
infection.99 Similar findings have been described in humans. For
example, daughters of breast cancer patients who experienced high
levels of distress exhibited increased concentrations of catechola-
mines, which were paralleled by decreased NK cell activity.100

Moderate physical exercise, psychological interventions, and other
stress-reducing techniques were shown to reduce catecholamine
levels to counteract the negative effects of chronic stress (reviewed
in ref. 101). Moreover, mindfulness-based stress reduction (MBSR)
techniques increased NK cell activity in healthy volunteers102 as well
as in breast cancer patients and HIV-infected patients.103–105

Therefore, stress-reducing activities lead to lower levels of stress
hormones and thus might be beneficial for NK cell function.
Conversely, eustress induced by voluntary wheel running or an

enriched environment led to increased NK cell antitumor activity
in mice. The authors linked these effects to beta-adrenergic
signals, as they could be reversed by the addition of the beta-
blocker propranolol.106,107 In addition to adrenergic signals, other
factors are modulated by enriched environments. The activity of
mouse NK cells against glioma was modulated by housing in an
enriched environment through upregulation of BDNF and IL-15 in
the brain.108,109

Interestingly, the lack of β2-AR expression on NK cells impaired
NK cell expansion and memory formation in response to MCMV
infection, indicating a role of intrinsic β2-AR signaling for optimal
NK cell function.110 Therefore, the effect of epinephrine and
norepinephrine on NK cells is likely dependent on the duration of
the exposure, the dose, and the context, which can be influenced
by other cytokines and factors.

CONCLUDING REMARKS
In addition to the effects of glucocorticoids, serotonin, dopamine,
and epinephrine on the NK cell activities described here, several
other neurotransmitters and neuroendocrine factors have been
shown to influence the activity of these innate immune cells.
These molecules include adenosine, acetylcholine, and neuropep-
tides, and their effects have been reviewed previously.111–113 The
regulation of NK cells by neuroendocrine factors provides one
important mechanistic link between (chronic) stress and changes
in NK cell activities. In addition, other factors, such as air pollution,
have been shown to result in the release of catecholamines,114

which may therefore influence NK cell activities in a similar way. As
NK cells are important immune effector cells against cancer,
blocking neuroendocrine factors, their receptors, or signaling
pathways, may open up novel therapeutic strategies to enhance
NK cell functions against tumors. However, not every form of
stress seems to have a negative impact on NK cell functions. Acute
stress can activate NK cells, and thereby enhance their responses
against infections. Therefore, the timing and context of exposure
to the different neuroendocrine factors seem to be important. This
phenomenon is especially clear during infections. While enhan-
cing NK cell activities during acute infection may help fight the
pathogen, limiting NK cell activities is also important to prevent
immune-mediated pathologies. This process may explain why
neuroendocrine factors were found to have stimulatory and
inhibitory effects on NK cells.
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