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Abstract8

Cross-modal temporal recalibration guarantees stable temporal perception across ever-9

changing environments. Yet, the mechanisms of cross-modal temporal recalibration remain10

unknown. Here, we conducted an experiment to measure how participants’ temporal percep-11

tion was affected by exposure to audiovisual stimuli with consistent temporal delays. Consis-12

tent with previous findings, recalibration effects plateaued with increasing audiovisual asyn-13

chrony and varied by which modality led during the exposure phase. We compared six observer14

models that differed in how they update the audiovisual temporal bias during the exposure15

phase and whether they assume modality-specific or modality-independent precision of arrival16

latency. The causal-inference observer shifts the audiovisual temporal bias to compensate for17

perceived asynchrony, which is inferred by considering two causal scenarios: when the audio-18

visual stimuli have a common cause or separate causes. The asynchrony-contingent observer19

updates the bias to achieve simultaneity of auditory and visual measurements, modulating20

the update rate by the likelihood of the audiovisual stimuli originating from a simultaneous21

event. In the asynchrony-correction model, the observer first assesses whether the sensory22

measurement is asynchronous; if so, she adjusts the bias proportionally to the magnitude of23

the measured asynchrony. Each model was paired with either modality-specific or modality-24

independent precision of arrival latency. A Bayesian model comparison revealed that both25

the causal-inference process and modality-specific precision in arrival latency are required to26

capture the nonlinearity and asymmetry observed in audiovisual temporal recalibration. Our27

findings support the hypothesis that audiovisual temporal recalibration relies on the same28

causal-inference processes that govern cross-modal perception.29
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1 Introduction30

Perception is not rigid but rather can adapt to the environment. In a multimodal envi-31

ronment, misalignment across the senses can occur because signals in different modalities32

may arrive with different physical and neural delays in the relevant brain areas (Fain, 2019;33

Pöppel, 1988; Spence & Squire, 2003). Perceptual misalignment can also arise from changes34

in the perceptual system relative to the environment, such as when wearing a virtual reality35

headset or adapting to hearing aids. Cross-modal temporal recalibration serves as a critical36

mechanism to maintain perceptual synchrony despite changes in the perceptual systems and37

the environment (reviewed in King, 2005; Vroomen and Keetels, 2010). This phenomenon is38

exemplified in audiovisual temporal recalibration, where consistent exposure to audiovisual39

stimulus-onset asynchrony (SOA) shifts the point of subjective simultaneity between auditory40

and visual stimuli; as a result, stimuli perceived as temporally discrepant at first are gradually41

perceived as more synchronous (Di Luca et al., 2009; Fujisaki et al., 2004; Hanson et al., 2008;42

Harrar & Harris, 2008; Heron et al., 2007; Keetels & Vroomen, 2007; Navarra et al., 2005;43

Roach et al., 2011; Tanaka et al., 2011; Vatakis et al., 2007, 2008; Vroomen & de Gelder,44

2004; Vroomen & Keetels, 2010).45

However, the mechanisms of cross-modal temporal recalibration remain unknown. The46

current models of audiovisual temporal recalibration either did not specify the recalibration47

process (Di Luca et al., 2009; Navarra et al., 2009; Yarrow et al., 2015), or cannot fully capture48

the characteristics of recalibration effects (Roach et al., 2011; Sato & Aihara, 2011; Yarrow et49

al., 2015). Specifically, audiovisual temporal recalibration shows two distinct characteristics:50

the amount of recalibration is nonlinear and asymmetric as a function of the SOA participants51

are adapted to (adapter SOA). The amount of recalibration is not proportional to the adapter52

SOA, but instead plateaus at an SOA of approximately 100–300 ms (Fujisaki et al., 2004;53

Vroomen & de Gelder, 2004). Recalibration can also be asymmetrical: the magnitude of54

recalibration differs when the visual stimulus leads during the exposure phase compared to55

when the auditory stimulus leads (Fujisaki et al., 2004; O’Donohue et al., 2022; Van der Burg56

et al., 2013). These observations can provide insights into the mechanisms of cross-modal57

temporal recalibration.58

Here, we propose a causal-inference model to explain the mechanism of audiovisual tem-59

poral recalibration. Causal inference is the process in which the observer determines whether60

multisensory signals originate from a common source and should be integrated or kept separate61

(Sato et al., 2007; Shams & Beierholm, 2010; Wei & Körding, 2009). Bayesian models based62

on causal inference have been proposed to explain multisensory integration effects (Körding63

et al., 2007; Sato et al., 2007), and these models have been empirically validated in studies of64

spatial audiovisual and visual-tactile integration (Badde, Navarro, & Landy, 2020; Beierholm65

et al., 2009; Rohe & Noppeney, 2015; Wozny et al., 2010). In the temporal domain, some66

studies have successfully used causal inference to model the integration of cross-modal relative67

timing, accurately predicting simultaneity judgments in audiovisual speech (Magnotti et al.,68

2013) and more complex scenarios involving one auditory and two visual stimuli (Sato, 2021).69

In the context of cross-modal recalibration, causal inference is expected to play a role70

based on the intuition that recalibration should be reduced when the multisensory signals71

are not perceived as causally related (Fujisaki et al., 2004; Hsiao et al., 2022; Vroomen &72

de Gelder, 2004). Supporting this, causal-inference models successfully predicted cross-modal73

spatial recalibration of visual-auditory (Hong, 2023; Hong et al., 2021; Sato et al., 2007) and74

visuo-tactile (Badde, Navarro, & Landy, 2020) signals. Building on this framework, here75

we propose a causal-inference model for cross-modal temporal recalibration that derives the76

multisensory percept based on inferences about the shared origin of the signals and updates77

the cross-modal temporal biases such that subsequent measurements are shifted toward the78

percept.79

The first aim of this study is to test whether performing causal inference is necessary to80

explain the nonlinearity of audiovisual temporal recalibration across different adapter SOAs.81

To this aim, we compared the causal-inference model with two alternatives: an asynchrony-82

contingent model and an asynchrony-correction model. The asynchrony-contingent model83

scales the amount of recalibration by the likelihood that the sensory measurement of SOA84

was caused by a synchronous audiovisual stimulus pair. The model predicts a nonlinear85

recalibration effect across adapter SOAs without requiring observers to perform full Bayesian86

inference. The asynchrony-correction model assumes that recalibration only occurs when87

an asynchronous onset of the cross-modal stimuli is registered, followed by the update of88

the cross-modal temporal bias to compensate for this SOA measurement. This account is89
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based on the intuitive rationale that repeated measurements of asynchrony can prompt the90

perceptual system to restore coherence. In contrast, this model predicts minimal recalibration91

when the adapter SOA falls within the range of measured asynchronies that can arise with92

simultaneously presented stimuli due to sensory noise. This model serves as the baseline for93

model comparison.94

The second aim was to examine factors that had the potential to drive the asymmetry of95

recalibration across visual-leading and auditory-leading adapter SOAs. It has been suggested96

that the asymmetry may be explained by physical and neural latency differences between97

signals (O’Donohue et al., 2022; Van der Burg et al., 2013). These latency differences can98

vary significantly based on the physical distance between the stimulus and the sensors, as well99

as the neural transmission time required for the signal to reach the relevant sensory region100

(Badde, Navarro, & Landy, 2020; Hirsh & Sherrick, 1961; King, 2005). While these latency101

differences can explain the audiovisual temporal bias observed in most humans, they would102

affect recalibration to different adapter SOAs equally, making it unlikely for any asymmetry103

to arise. In contrast to latency differences, sensory uncertainty has been shown to affect104

the degree of cross-modal recalibration in a complex fashion (Badde, Navarro, & Landy,105

2020; Hong et al., 2021; van Beers et al., 2002). We hypothesized that the difference across106

modalities in the variability of the arrival times, the time it takes visual and auditory signals107

to arrive in the relevant brain areas, plays a critical role in the asymmetry of cross-modal108

temporal recalibration.109

To examine the mechanism underlying audiovisual temporal recalibration, we manipu-110

lated the adapter SOA cross sessions, introducing asynchronies up to 0.7 s of either auditory111

or visual lead. Before and after the exposure phase in each session, we measured participants’112

perception of audiovisual relative timing using a ternary temporal-order-judgement (TOJ)113

task. To preview the empirical results, we confirmed the nonlinearity of the recalibration114

effect: recalibration magnitude increased linearly for short adapter SOAs, but then reached115

an asymptote or even decreased with increasing adapter SOAs. Furthermore, participants116

showed idiosyncratic asymmetries of the recalibration effect across modalities; for most par-117

ticipants, the amount of recalibration was larger when the auditory stimulus led than when118

it lagged, but the opposite was found for other participants. To scrutinize the factors that119

might drive the nonlinearity and asymmetry of temporal recalibration, we fitted six models120

to the data. These models based the amount of recalibration either on perceptual causal-121

inference processes, a heuristic evaluation of the common cause of the audiovisual stimuli,122

or a fixed criterion for the need to correct asynchrony. For each of these three models we123

implemented either modality-specific or modality-independent precision of the arrival times.124

The model comparison revealed that the assumptions of Bayesian causal inference combined125

with modality-specific precision are essential to accurately capture the nonlinearity and id-126

iosyncratic asymmetry of temporal recalibration.127
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2 Results128

2.1 Behavioral results129
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Figure 1: Task timing. (A) Temporal-order-judgment task administered in the pre- and post-tests.
In each trial, participants made a temporal-order judgment in response to an audiovisual stimulus
pair with a varying stimulus-onset asynchrony (SOA). Negative values: auditory lead; positive
values: visual lead. The contrast of the visual stimulus has been increased for this illustration.
(B) Oddball-detection task performed in the exposure phase and top-up trials during the post-
exposure test phase. Participants were repeatedly presented with an audiovisual stimulus pair with
a SOA that was fixed within each session but varied across sessions. Occasionally, the intensity
of either one or both of the stimuli was increased. Participants were instructed to press a key
corresponding to the auditory, visual, or both oddballs whenever an oddball stimulus appeared.

We adopted a classical three-phase recalibration paradigm in which participants completed130

a pre-test, an exposure phase, and a post-test in each session. In pre- and post-tests, we131

measured participants’ perception of audiovisual relative timing using a ternary TOJ task:132

participants reported the perceived order (“visual first,” “auditory first,” or “simultaneous”)133

of audiovisual stimulus pairs with varying SOA (range: from -0.5 to 0.5 s with 15 levels;134

Figure 1A). In the exposure phase, we induced temporal recalibration by having participants135

perform a control task, the oddball-detection task. Specifically, participants were exposed136

to a series of audiovisual stimuli with a consistent SOA (250 trials; Figure 1B). To ensure137

that participants were attentive to the stimuli, we inserted oddball stimuli with greater in-138

tensity in either one or both modalities (5% of the total trials independently sampled for each139

modality). Participants were instructed to press a key corresponding to the auditory, visual,140

or both oddballs whenever an oddball stimulus appeared. The high d′ of oddball-detection141

performance (auditory d′ = 3.34±0.54, visual d′ = 2.44±0.72) indicates that participants paid142

attention to both modalities. The post-test was almost identical to the pre-test, except that143

before every temporal-order-judgment trial, there were three top-up oddball-detection trials144

to maintain the recalibration effect. In total, participants completed nine sessions on separate145

days. The adapter SOA (range: -0.7 to 0.7 s) was fixed within a session, but varied randomly146

across sessions and participants.147
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Figure 2: Behavioral results. (A) The probability of reporting that the auditory stimulus came
first (blue), the two arrived at the same time (green), or the visual stimulus came first (red) as a
function of SOA for a representative participant in a single session. The adapter SOA was -0.3 s
for this session. Curves: best-fitting psychometric functions estimated jointly using the data from
the pre-test (dashed) and post-test (solid). Shaded areas: 95% bootstrapped confidence intervals.
(B) Mean recalibration effects averaged across all participants as a function of adapter SOA. The
recalibration effects are defined as the shifts in the point of subjective simultaneity (PSS) from
the pre- to the post-test, where the PSS is the physical SOA at which the probability of reporting
simultaneity is maximized. Error bars: ±SEM.

We compared the temporal-order judgments between the pre- and post-tests to examine148

the amount of audiovisual temporal recalibration induced by the audiovisual stimuli during149

the exposure phase. Specifically, we fitted the data from the pre- and post-tests jointly assum-150

ing different points of subjective simultaneity (PSS) between the two tests while assuming151

the same shape for the psychometric functions that is determined by the relative arrival-152

latencies, their precision, and fixed response criteria (Figure 2A; see Supplement Section 1 for153

the formalization of the atheoretical model and an alternative model assuming a shift in the154

response criteria due to recalibration). The PSS is the physical SOA that corresponds to the155

maximum probability of reporting simultaneity (Sternberg & Knoll, 1973). The amount of156

audiovisual temporal recalibration was defined as the difference between the two PSS’s. At157

the group level, we observed a nonlinear pattern of recalibration as a function of the adapter158

SOA: the amount of recalibration in the direction of the adapter SOA first increased but159

then plateaued with increasing magnitude of the adapter SOA, the SOA of the pairs pre-160

sented during the exposure phase (Figure 2B). Additionally, we observed an asymmetry in161

the amount of recalibration between auditory-leading and visual-leading adapter SOAs, with162

auditory-leading adapter SOAs inducing a greater amount of recalibration (Figure 2B; see163

Supplement Figure S2A for individual participants’ data). To quantify this asymmetry for164

each participant, we calculated an asymmetry index, defined as the sum of the recalibration165

effects across all adapter SOAs (zero: no evidence for asymmetry; positive values: greater166

recalibration given visual-lead adapters; negative: greater recalibration given auditory-lead167

adapters). For each participant, we bootstrapped the temporal-order judgments to obtain a168

95% confidence interval for the asymmetry index. Eight out of nine participants showed an169

asymmetry index significantly different from zero, with the majority showing greater recali-170

bration for auditory-leading adapter SOAs, suggesting a general asymmetry in recalibration171

(Supplement Figure S2B).172
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2.2 Modeling results173

In the following sections, we describe our models for cross-modal temporal recalibration by174

first laying out the general assumptions of these models, and then elaborating on the differ-175

ences between them. Then, we compare the models’ ability to capture the observed data.176
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Figure 3: Illustration of the six observer models of cross-modal temporal recalibration. (A) Left:
Arrival-latency distributions for auditory (blue) and visual (red) sensory signals. When the preci-
sion of arrival latency is modality-independent, these two exponential distributions have identical
shape. Right: The resulting symmetrical double-exponential measurement distribution of the
SOA of the stimuli. (B) When the precision of the arrival latencies is modality-dependent, the
arrival-latency distributions for auditory and visual signals have different shapes, and the result-
ing measurement distribution of the SOA is asymmetrical. (C) Bias update rules and predicted
recalibration effects for the three contrasted recalibration models: The causal-inference model up-
dates the audiovisual bias based on the difference between the estimated and measured SOA. The
asynchrony-contingent model updates the audiovisual bias by a proportion of the measured SOA
and modulates the update rate by the likelihood that the measured sensory signals originated from
a simultaneous audiovisual pair. The asynchrony-correction model adjusts the audiovisual bias by
a proportion of the measured SOA when this measurement exceeds fixed critera for simultaneity.

2.2.1 General model assumptions177

We formulated six process models of cross-modal temporal recalibration (Figure 3). These178

models share several assumptions about audiovisual temporal perception and recalibration179

that we selected based on a comparison of atheoretical, descriptive models of our data (Sup-180

plement Section 1). First, when an auditory and a visual signal are presented, the correspond-181

ing neural signals arrive in the relevant brain areas with a variable latency due to internal182

and external noise. We assume arrival times for the two modalities are independent and that183

the arrival latencies are exponentially distributed (Garćıa-Pérez & Alcalá-Quintana, 2012)184

(Figure 3A, left panel). Moreover, we assume a constant offset between auditory and visual185

arrival times, reflecting an audiovisual temporal bias. A simple derivation shows that the186

resulting measurement of SOA has a double-exponential distribution (Figure 3A, right panel;187

see derivation in Supplement Section 3). The probability density function peaks at a SOA188
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that is the physical SOA of the stimuli plus the participant’s audiovisual temporal bias. The189

slopes of the measurement distribution reflect the precision of the arrival times; the steeper190

the slope, the more precise the measured latency. When the precision differs between modal-191

ities, the measurement distribution of the SOA between the auditory and visual stimuli is192

asymmetrical (Figure 3B).193

Second, these models define temporal recalibration as the accumulation of updates to the194

audiovisual temporal bias after each encounter with an SOA. The accumulated shift in the195

audiovisual bias at the end of the exposure phase is then carried over to the post-test phase196

and persists throughout. Lastly, the bias is assumed to be reset to the same initial value in197

the pre-test across all nine sessions, reflecting the stability of the audiovisual temporal bias198

over time (Grabot & van Wassenhove, 2017).199

2.2.2 Models of cross-modal temporal recalibration200

The six models we tested differed in the mechanism governing the updates of the audiovisual201

bias during the exposure phase as well as the modality-specificity of the precision of arrival202

times.203

We formulated a temporal variant of the spatial Bayesian causal-inference model of recal-204

ibration (Badde, Navarro, & Landy, 2020; Hong, 2023; Hong et al., 2021; Sato et al., 2007)205

to describe the recalibration of the relative timing between cross-modal stimuli (Figure 3C,206

left panel). In this model, when an observer is presented with an audiovisual stimulus pair207

during the exposure phase, they compute two intermediate estimates of the SOA between the208

stimuli, one for the common-cause scenario and the other for the separate-cause scenario. In209

the common-cause scenario, the estimated SOA of the stimuli is smaller than the measured210

SOA as it is combined with a prior distribution over SOA that reflects simultaneity. In the211

separate-causes scenario, the estimated SOA is approximately equal to the measured SOA.212

The two estimates are then averaged with each one weighted by the posterior probability of213

the corresponding causal scenario. The audiovisual bias is then updated to reduce the dif-214

ference between the measured SOA and the combined estimate of the SOA. In other words,215

causal inference regulates the recalibration process by shifting the measured SOA to more216

closely match the percept, which in turn is computed based on the inferred causal structure.217

The asynchrony-contingent model assumes that the observer estimates the likelihood that218

the sensory signals originated from a simultaneous audiovisual pair and updates the audio-219

visual bias by a proportion of measured SOA scaled by this likelihood (Figure 3C, middle220

panel). There is a key distinction between the likelihood of simultaneity and the likelihood221

of a common cause. The likelihood of a common cause considers the prior distribution of222

SOAs when signals originate from the same source, including nonzero probabilities for SOAs223

̸= 0. In contrast, the likelihood of simultaneity exclusively considers the case when SOA224

= 0. Additionally, we assume that asynchrony-contingent observer computes the likelihood225

of simultaneity based on the knowledge of the double-exponential measurement distribution,226

instead of assuming a Gaussian measurement distribution as was done previously (Maij et al.,227

2009). The update rate of the audiovisual bias is proportional to this likelihood. For a stimu-228

lus pair with a large SOA, the average likelihood of the stimuli being physically simultaneous229

decreases, leading to reduced recalibration effects compared to stimulus pairs with smaller230

SOAs. Thus, this asynchrony-contingent model is capable of replicating the nonlinearity of231

recalibration across adapter SOAs without requiring the observer to perform full Bayesian232

inference.233

The asynchrony-correction model assumes that the observer first compares the sensory234

measurement of SOA to their criteria for audiovisual simultaneity to decide whether to recal-235

ibrate in a given trial. If the measured SOA falls within the range perceived as simultaneous236

according to the fixed criteria, the observer might attribute a non-zero measurement of SOA237

to sensory noise and omit recalibration. On the other hand, if the measured SOA exceeds this238

range, the observer perceives the stimuli as asynchronous, and shifts the audiovisual bias by a239

proportion of the measurement of SOA (Figure 3C, right panel). This model serves as a direct240

contrast to the causal-inference model, as it predicts an opposite pattern: a nonlinear but241

monotonic increase in temporal recalibration, with minimal recalibration when the measured242

SOA falls within the simultaneity range and increasing recalibration as the measured SOA243

moves further outside of this range.244

We additionally assumed either modality-specific or modality-independent precision of the245

arrival times. Each choice suggests a different origin of the variability. Either the variability246

of the arrival times is limited by neural-latency noise in each sensory channel (Yarrow et al.,247
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2022) and thus is modality-specific or the variability of arrival times results from the variability248

in a central timing mechanism (Hirsh & Sherrick, 1961) and is thus modality-independent.249

2.2.3 Model fitting and model comparison250

We fitted six models to each participant’s data. Each model was constrained jointly by the251

temporal-order judgments from the pre- and post-tests of all nine sessions. To quantify model252

performance, we calculated model evidence, i.e., the likelihood of each model given the data253

marginalized over all possible parameters, which revealed that the causal-inference model had254

the strongest model evidence at the group level and best fit the data of most participants,255

followed by the asynchrony-contingent model and then the asynchrony-correction model. To256

quantify the differences between model performance, we performed a Bayesian model compar-257

ison by computing the Bayes factor for each model relative to the worst-performing model, the258

asynchrony-correction model with modality-independent arrival-latency precision (Figure 4A,259

see Supplement Figure S3 for individual-level model comparison). Within each of these three260

model categories, the version incorporating modality-specific precision consistently outper-261

formed the modality-independent version.262
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2.2.4 Model prediction263
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Figure 4: Model comparison and predictions. (A) Model comparison based on model evidence.
Each bar represents the group-averaged log Bayes Factor of each model relative to the asynchrony-
correction, modality-independent-precision model, which had the weakest model evidence. (B)
Empirical data (points) and model predictions (lines and shaded regions) for the recalibration
effect as a function of adapter SOA.

To inspect the quality of the model fit, for every model, we used the best-fitting parameter264

estimates for each participant to predict the group-average recalibration effect as a function265

of adapter SOA (Figure 4B). The nonlinearity of audiovisual temporal recalibration across266

adapter SOAs was captured by both the asynchrony-contingent and causal-inference mod-267

els. Nonetheless, the causal-inference model outperformed the asynchrony-contingent model268

by accurately predicting a non-zero average recalibration effect at adapter SOAs of 0.7 s269

and -0.7 s, where the asynchrony-contingent model predicted no recalibration. Additionally,270

incorporating modality-specific precision enabled both the asynchrony-contingent and causal-271

inference models to more accurately predict increased recalibration when the adapter SOA272

was auditory-leading. Overall, the model that relies on causal inference during the exposure273

phase and assumes modality-specific precision of arrival times most accurately captured both274

the nonlinearity and asymmetry of the recalibration effect. This model could also account275
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for individual participants’ idiosyncratic asymmetry in temporal recalibration to auditory-276

and visual-leading adapter SOAs (see Supplement Figure S4 for predictions of individual277

participants’ recalibration effects of all models; see Figure S6 for predictions of individual278

participants’ TOJ responses using the causal-inference models with modality-specific preci-279

sion).280

2.2.5 Model simulation281

-0.
7

-0.
3
-0.

2
-0.

1 0 0.1 0.2 0.3 0.7
-0.1

0

0.1

-0.
7

-0.
3
-0.

2
-0.

1 0 0.1 0.2 0.3 0.7
-0.1

0

0.1

-0.1

0

0.1

-0.
7

-0.
3
-0.

2
-0.

1 0 0.1 0.2 0.3 0.7
-0.1

0

0.1

-0.
7

-0.
3
-0.

2
-0.

1 0 0.1 0.2 0.3 0.7

Auditory and
visual latency noise (s)

R
ec

al
ib

ra
tio

n 
ef

fe
ct

 (s
)

A

Adapter SOA (s)

Prior of
a common cause

Auditory-lead Visual-lead

B

Adapter SOA (s)

C

R
ec

al
ib

ra
tio

n 
ef

fe
ct

 (s
)

Auditory
 latency noise (s)

0.04
0.05
0.06
0.07
0.08

Visual
 latency noise (s)

0.04
0.05
0.06
0.07
0.08

Visual latency noise: 0.08 s Auditory latency noise: 0.08 s

0
0.17
0.33
0.50
0.67
0.83
1

0.04
0.05
0.06
0.07
0.08
0.09

Auditory-lead Visual-lead

Figure 5: Simulation of temporal recalibration using the causal-inference model. (A) The influence
of the observer’s prior assumption of a common cause: the stronger the prior, the larger the recal-
ibration effects. (B) The influence of latency noise: recalibration effects increase with decreasing
sensory precision (i.e., increasing latency noise captured by the exponential time constant) of both
modalities. (C) The influence of auditory/visual latency noise: recalibration effects are asymmet-
ric between auditory-leading and visual-leading adapter SOAs due to differences in the precision
of auditory and visual arrival latencies. Left panel: Increasing auditory latency precision (i.e.,
reducing auditory latency noise) reduces recalibration in response to visual-leading adapter SOAs.
Right panel: Increasing visual precision (i.e., reducing visual latency noise) reduces recalibration
in response to auditory-leading adapter SOAs.

Simulations with the causal-inference model revealed which factors of the modeled recalibra-282

tion process determine the degree of nonlinearity and asymmetry of cross-modal temporal283

recalibration to different adapter SOAs. The prior belief that the auditory and visual stimuli284

share a common cause plays a crucial role in adjudicating the relative influence of the two285

causal scenarios (Figure 5A). When the observer has a prior belief that audiovisual stimuli286

always originate from the same source, they recalibrate by a proportion of the perceived287

SOA no matter how large the measured SOA is, mirroring the behavior of the asynchrony-288

correction model when its criteria for simultaneity are such that no stimuli are treated as289

simultaneous. On the other hand, when the observer believes that the audiovisual stimuli290

always have separate causes, they treat the audiovisual stimuli as independent of each other291

and do not recalibrate. Estimates of the common-cause prior for our participants fall between292

the two extreme beliefs, resulting in the nonlinear pattern of recalibration that lies between293
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the extremes of no recalibration and the proportional recalibration effects as a function of the294

adapter SOA (see Supplement Section 6.1 for parameter estimates for individual participants).295

Simulations also identified key model elements of the causal-inference model that predict296

a non-zero recalibration effect even at large SOAs, a feature that distinguishes the causal-297

inference from the asynchrony-contingent model. This non-zero recalibration effect for large298

adapter SOAs can be replicated by either assuming a strong prior for a common cause (Fig-299

ure 5A) or by assuming low sensory precision of arrival times (Figure 5B). Both relationships300

are intuitive: observers with a stronger prior belief in a common cause and ideal observers301

with lower sensory precision are more likely to assign a higher posterior probability to the302

common-cause scenario, leading to greater recalibration. A decrease of the spread of the prior303

distribution over SOA conditioned on a common cause increases the recalibration magnitude,304

but only over a small range of SOAs for which there is a higher probability of the common-305

cause scenario (Supplement Figure S8A), and thus cannot account for non-zero recalibration306

for large SOAs.307

Differences in arrival-time precision between audition and vision result in an asymmetry308

of audiovisual temporal recalibration across adapter SOAs (Figure 5C). The amount of re-309

calibration is attenuated when the modality with the higher precision lags the less precise310

one during the exposure phase. When the more recent stimulus component in a cross-modal311

pair is more precise, the perceptual system is more likely to attribute the asynchrony to sep-312

arate causes and thus recalibrate less. In addition, the fixed audiovisual bias does not affect313

asymmetry, but shifts the recalibration function laterally and determines the adapter SOA314

for which no recalibration occurs (Supplement Figure S8B).315

3 Discussion316

This study scrutinized the mechanism underlying audiovisual temporal recalibration. We317

measured the effects of exposure to audiovisual stimulus pairs with a constant temporal offset318

(adapter SOA) on audiovisual temporal-order perception across a wide range of adaptor319

SOAs. Recalibration effects changed nonlinearly with the magnitude of adapter SOAs and320

were asymmetric across auditory-leading and visual-leading adapter SOAs. We then compared321

the predictions of different observer models for the amount of recalibration as a function of322

adapter SOA. A Bayesian causal-inference model with modality-specific precision of the arrival323

latencies fit the observed data best. These findings suggest that human observers rely on324

causal-inference-based percepts to recalibrate cross-modal temporal perception. These results325

align closely with studies that have demonstrated the role of causal inference in audiovisual326

(Hong et al., 2021) and visual-tactile spatial recalibration (Badde, Navarro, & Landy, 2020).327

Our results are also consistent with previous recalibration models that assumed a strong328

relation between perception and recalibration (Sato, 2021; Sato et al., 2007). Hence, we329

suggest that the same mechanisms underly cross-modal perception and recalibration across330

different sensory features.331

The observed recalibration results could not be predicted by the asynchrony-contingent332

model that employed a heuristic approximation of the causal-inference process. Even though333

this model was capable of predicting a nonlinear relationship between the recalibration effect334

and the adapter SOA, it failed to capture a non-zero recalibration effect at large adapter335

SOAs shown by several of our participants. The reason for that is that this model uses the336

likelihood of a synchronous audiovisual stimulus pair given the measured SOA to modulate337

the update rate of audiovisual bias, which will be very small on average for large SOAs.338

Therefore, the model predicts little to no recalibration at large adaptor SOAs. In contrast,339

the causal-inference model can capture the non-zero recalibration effect because the common-340

cause scenario always influences the amount of recalibration even when the adapter SOA is341

too large to be perceived as synchronous. Simulation (Figure 5A, B) shows that a strong prior342

belief in a common cause or less precision of arrival times can result in non-zero recalibration343

effects following exposure to clearly asynchronous stimulus pairs. Notably, even though it344

might at first seem counter-intuitive that cross-modal temporal recalibration can be elicited345

by clearly asynchronous streams of sensory information, many of us have experienced this346

effect during laggy, long video conferences.347

The asynchrony-correction model assumes that observers recalibrate to restore temporal348

synchrony whenever the SOA measurement indicates a temporal discrepancy, but this model349

predicts recalibration effects across adapter SOAs that are contrary to our observations. This350

suggests that cross-modal temporal recalibration is not merely triggered by an asynchronous351
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sensory measurement of SOA and an attempt to correct it. In contrast, the causal-inference352

model accurately captured the plateau of the recalibration effects as adapter SOA increased,353

because the probability that the auditory and visual stimuli have separate causes also in-354

creased. This resulted in a smaller discrepancy between the sensory measurement and the355

final percept of the SOA, leading to less recalibration.356

We found that most of our participants exhibited larger recalibration effects in response357

to exposure to audiovisual stimuli with a consistent auditory lead compared to exposure to358

a visual lead. This result is consistent with a previous study that reported greater cumula-359

tive recalibration in response to audiovisual stimuli with an auditory-lead at the group level360

(O’Donohue et al., 2022). Our simulation results further suggested that this asymmetry in361

recalibration effects might be due to higher precision of auditory compared to visual arrival362

latencies. A few participants displayed the opposite pattern: stronger recalibration effects363

following exposure to visual-leading audiovisual stimuli. This is not surprising, as causal-364

inference models often reveal substantial individual differences in sensory noise (Hong et al.,365

2021; Magnotti et al., 2013). A recent EEG study further provided neural correlates for366

individual sensory noise by identifying correlations between neural-latency noise and behav-367

ioral sensory noise measured from simultaneity-judgment tasks for audiovisual, visuo-tactile,368

and audio-tactile pairs (Yarrow et al., 2022). Therefore, our model explains how individual369

differences in precision of arrival latency could contribute to the asymmetry in cross-modal370

temporal recalibration observed in previous studies. For example, Fujisaki et al. (2004) found371

a slightly larger recalibration in response to audiovisual stimuli with a visual lead compared372

to an auditory lead, while their pilot results with the same design but a wider range of adapter373

SOAs showed the opposite pattern.374

In order to incorporate causal inference in our recalibration models, we modeled recalibra-375

tion as a shift of audiovisual bias. Building on previous latency-shift models (Di Luca et al.,376

2009; Navarra et al., 2009), we specified a mechanism for how the audiovisual bias is updated377

during the exposure to an audiovisual SOA. Our model is not mutually exclusive with other378

models that implement recalibration as a shift of simultaneity criteria (Yarrow, Jahn, et al.,379

2011; Yarrow et al., 2015), or a change of sensitivity to discriminate SOA (Roseboom et al.,380

2015). A possible implementation of recalibration at the circuity level is given by models381

assuming that audiovisual offsets are encoded by populations of neurons tuned to different382

SOAs. In these models, recalibration is the consequence of selective gain reduction of neurons383

tuned to SOAs similar to the adapter SOA (Cai et al., 2012; Roach et al., 2011; Yarrow384

et al., 2015). Simulations show that this model can predict nonlinear recalibration effects385

as a function of adapter SOA depending on the number of neurons and the range of pre-386

ferred SOAs (Supplementary Section S8). However, to capture the asymmetric recalibration387

effects depending on which modality leads, one needs to incorporate inhomogenous neuronal388

selectivity, i.e., unequal tuning curves, for auditory-leading and visual-leading SOAs.389

Causal inference may effectively function as a credit-assignment mechanism to enhance390

perceptual accuracy during recalibration. In sensorimotor adaptation, humans correct mo-391

tor errors that are more likely attributed to their own motor system rather than to the392

environment (Berniker & Kording, 2008; Wei & Körding, 2009). In visuomotor adaptation,393

substantial temporal recalibration occurs in response to exposure to movement-leading SOAs394

but less so to visual-leading SOAs (Rohde & Ernst, 2012; Rohde et al., 2014), because only395

movement-leading SOAs can be interpreted as causally linked sensory feedback from a pre-396

ceding movement.397

Causal-inference-based recalibration can further solve the conundrum that humans, de-398

spite our ability for cross-modal temporal recalibration, show persistent temporal biases399

(Grabot & van Wassenhove, 2017). These audiovisual and visual-tactile temporal biases400

appear to be shaped by early sensory experience (Badde, Ley, et al., 2020) and seem to be re-401

sistant to recalibration. The persistence of these biases contradicts recalibration models that402

reduce the measured cross-modal asynchrony. Instead, our causal-inference-based models of403

recalibration include an assumption that recalibration eliminates the discrepancy between404

measured and inferred asynchrony, both of which are influenced by cross-modal biases.405

Previous studies have probed the role of causal inference for temporal recalibration and406

perception by experimentally varying task-irrelevant cues to a shared origin of the cross-modal407

stimuli, with mixed results. Earlier studies found no significant change in temporal recalibra-408

tion when altering the sound presentation method (headphones versus a speaker) or switching409

the presentation ear (Fujisaki et al., 2004), nor did recalibration effects vary with the spatial410

alignment of the audiovisual stimulus pair (Keetels & Vroomen, 2007). However, subsequent411

studies provide evidence that spatial grouping influences temporal recalibration, with the PSS412
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shifting toward the temporal relationship suggested by spatially co-located stimuli (Heron et413

al., 2012; Yarrow, Roseboom, & Arnold, 2011). Others found that spatial cues (Heron et al.,414

2012; Yuan et al., 2012) and featural content cues (Roseboom & Arnold, 2011; Roseboom415

et al., 2013; Yuan et al., 2012) are both determinants of cross-modal temporal recalibration.416

The feature content cues can be natural stimuli, such as male or female audiovisual speech,417

or simple stimuli, such as high-pitch sounds paired with vertically oriented Gabor patches.418

Recent studies on audiovisual integration have extended causal-inference models to account419

for both the spatial position and temporal discrepancy of audiovisual signals (Hong, 2023;420

McGovern et al., 2016). These studies suggest that both temporal and spatial information421

are taken into account for causal inference. In contrast, perceived conflicts in task-irrelevant422

features of visual-haptic stimuli do not influence the integration of task-relevant features,423

suggesting that causal inference is feature-specific rather than pertaining to whole objects424

(Badde et al., 2023).425

4 Conclusion426

In sum, we found that both causal inference and modality-specific precision are essential427

for accurately modeling audiovisual temporal recalibration. Although cross-modal temporal428

recalibration is typically viewed as an early-stage, low-level perceptual process, our findings429

indicate that it is closely connected to higher cognitive functions.430

5 Methods431

5.1 Participants432

Ten students from New York University (three males; age: 24.4 ± 1.77; all right-handed)433

participated in the experiment. They all reported normal or corrected-to-normal vision. All434

participants provided informed written consent before the experiment and received $15/hr435

as monetary compensation. The study was conducted in accordance with the guidelines laid436

down in the Declaration of Helsinki and approved by the New York University institutional437

review board. One out of ten participants was identified as an outlier and therefore excluded438

from further data analysis (Supplement Figure S9).439

5.2 Apparatus and stimuli440

Participants completed the experiments in a dark and semi sound-attenuated room. They441

were seated 1 m from an acoustically transparent, white screen (1.36 × 1.02 m, 68 × 52° visual442

angle) and placed their head on a chin rest. An LCD projector (Hitachi CP-X3010N, 1024 ×443

768 pixels, 60 Hz) was mounted above and behind participants to project visual stimuli on the444

screen. The visual and auditory stimulus durations were 33.33 ms. The visual stimulus was445

a high-contrast (36.1 cd/m2) Gaussian blob (SD: 3.6°) on a gray background (10.2 cd/m2)446

projected onto the screen. The auditory stimulus was a 500 Hz beep (50 dB SPL) without447

a temporal window due to its short duration, which was played by a loudspeaker located448

behind the center of the screen. Some visual and auditory stimuli were of higher intensity,449

the parameters of these stimuli were determined individually (see Intensity-discrimination450

task). We adjusted the timing of audiovisual stimulus presentation and verified the timing451

using an oscilloscope (PICOSCOPE 2204A).452

5.3 Procedure453

The experiment consisted of nine sessions, which took place on nine separate days. In each454

session, participants completed a pre-test, an exposure, and a post-test phase in sequence.455

The adapter SOA was fixed within a session, but varied across sessions (±700, ±300, ±200,456

±100, 0 ms). The order of the adapter SOA was randomized across participants, with sessions457

separated by at least one day. The intensities of the oddball stimuli were determined prior458

to the experiment for each participant using an intensity-discrimination task to equate the459

difficulty of detecting oddball stimuli between participants and across modalities.460
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5.3.1 Pre-test phase461

Participants completed a ternary TOJ task during the pre-test phase. Each trial started a462

fixation cross (0.1–0.2 s, uniform distribution; Fig. 1A), followed by a blank screen (0.4–0.6 s,463

uniform distribution). Then, an auditory and a visual stimulus (0.033 s) were presented with464

a variable SOA. There were a total of 15 possible test SOAs (±0.5 s and from -0.3 to 0.3 s in465

steps of 0.05 s), with positive values representing visual lead and negative values representing466

auditory lead. Following stimulus presentation there was another blank screen (0.4–0.6 s, uni-467

form distribution), and then a response probe appeared on the screen. Participants indicated468

by button press whether the auditory stimulus occurred before or after the visual stimulus, or469

the two were simultaneous. There was no time limit for the response, and response feedback470

was not provided. The inter-trial interval (ITI) was 0.2–0.4 s (uniform distribution). Each471

test SOA was presented 20 times in pseudo-randomized order, resulting in 300 trials in total,472

divided into five blocks. Participants usually took around 15 minutes to finish the pre-test473

phase.474

5.3.2 Exposure phase475

Participants completed an oddball-detection task during the exposure phase. In each trial,476

participants were presented with an audiovisual stimulus pair with a fixed SOA (adapter477

SOA). In 10% of trials, the intensity of either the visual or the auditory component (or both)478

was greater than in the other trials. Participants were instructed to press the corresponding479

button as soon as possible to indicate whether there was an auditory oddball, a visual oddball,480

or both stimuli were oddballs. The task timing (Fig. 1B) was almost identical to the ternary481

TOJ task, except that there was a response time limit of 1.4 s. Prior to the exposure phase,482

participants practiced the task for as long as needed to familiarize themselves with the task.483

During this practice, they were presented with bimodal stimuli with the same adapter SOA484

used in the exposure phase. There were a total of 250 trials, divided into five blocks. At the485

end of each block, we presented a performance summary with the hit rate and false alarm486

rate of each modality. Participants usually took 15 minutes to complete the exposure phase.487

5.3.3 Post-test phase488

Participants completed the ternary TOJ task as well as the oddball-detection task during the489

post-test phase. Specifically, each temporal-order judgment was preceded by three top-up490

(oddball-detection) trials. The adapter SOA in the top-up trials was the same as that in491

the exposure phase to prevent dissipation of temporal recalibration (Machulla et al., 2012).492

Both visual and auditory d′ remained consistent from the exposure to post-test phases, in-493

dicating similar performance in the top-up trials to performance during the exposure phase494

(Supplement Figure S10). To facilitate task switching, the ITI between the last top-up trial495

and the following TOJ trial was longer (with the additional time jittered around 1 s). Addi-496

tionally, the fixation cross was displayed in red to signal the start of a TOJ trial. As in the497

pre-test phase, there were 300 TOJ trials (15 test SOAs × 20 repetitions) with the addition of498

900 top-up trials, grouped into six blocks. At the end of each block, we provided a summary499

of the oddball-detection performance. Participants usually took around 1 hour to complete500

the post-test phase.501

5.3.4 Intensity-discrimination task502

This task was conducted to estimate the just-noticeable-difference (JND) in intensity for a503

standard visual stimulus with a luminance of 36.1 cd/m2 and a standard auditory stimulus504

with a volume of 40 dB SPL. The task was two-interval, forced choice. The trial started505

with a fixation (0.1–0.2 s) and a blank screen (0.4–0.6 s). Participants were presented with506

a standard stimulus (0.033 s) in one randomly selected interval and a comparison stimulus507

(0.033 s) in the other interval, temporally separated by an inter-stimulus interval (0.6–0.8 s).508

They indicated which interval contained the brighter/louder stimulus without time constraint.509

Seven test stimulus levels (luminance range: 5%–195% relative to the standard visual stimulus510

intensity; volume range: 50%–150% relative to the standard auditory stimulus’ amplitude)511

were repeated 20 times, resulting in 140 trials for each task. We fit a cumulative Gaussian512

distribution function to these data and defined the oddball as an auditory or visual stimulus513

with an intensity judged as more intense than the standard 90% of the time. A higher514
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probability than the standard JND of 75% was selected because the pilot studies showed that515

the harder oddball detection task became too demanding during the one-hour post-test.516

5.4 Modeling517

In this section, we first outline general assumptions, shared across all candidate models,518

regarding sensory noise, measurements, and bias. Then, we formalize three process models of519

recalibration that differ in the implementation of recalibration. In each recalibration model,520

we also provide a formalization of the ternary TOJ task administered in the pre- and the521

post-test phases, data from which were used to constrain the model parameters. Finally, we522

describe how the models were fit to the data.523

5.4.1 General modal assumptions regarding sensory noise, measurements524

and bias525

When an audiovisual stimulus pair with a SOA, s = tA − tV , is presented, it triggers audi-526

tory and visual signals that are registered in the relevant region of cortex where audiovisual527

temporal-order comparisons are made. This leads to two internal measurements of the arrival528

time for each signal in an observer’s brain. These arrival times are subject to noise and thus529

vary across presentations of the same physical stimulus pair. As in previous work (Garćıa-530

Pérez & Alcalá-Quintana, 2012), we model the probability distribution of the arrival time as531

shifted exponential distributions (Figure 3A). The arrival time of the auditory signal relative532

to onset tA is the sum of the fixed delay of internal signal, βA, and an additional random533

delay that is exponentially distributed with time constant τA; analogous for the visual latency534

(with delay βV and time constant τV ).535

The measured SOA of the audiovisual stimulus pair is modeled as the difference of the536

arrival times of the two stimuli. Thus, the sensory measurement of SOA, m, reflects the sum537

of three components: the physical SOA, s; a fixed latency that is the difference between the538

auditory and visual fixed delay, βpre = βA−βV ; and the difference between two exponentially539

distributed random delays. A negative value of βpre indicates faster auditory processing. We540

assume that the audiovisual fixed latency corresponds to the observer’s default audiovisual541

temporal bias (Badde, Ley, et al., 2020; Grabot & van Wassenhove, 2017). Thus, we assume542

that after leaving the experimental room, the default bias is restored and thus consistent543

across pre-tests.544

We model the recalibration process as a shift of the audiovisual temporal bias at the end545

of every exposure trial i, βi = βpre+∆β,i, where βi is the current audiovisual bias, and ∆β,i is546

the cumulative shift of audiovisual temporal bias. After the 250 exposure trials the updated547

biases can be expresses as βpost = βpre+∆β,250. We also assume that the amounts of auditory548

and visual latency noise, τA and τV , remain constant across phases and sessions.549

Given that both latency distributions are shifted exponential distributions, the probability550

density function of the sensory measurements of SOA, m, given physical SOA, s, is a double-551

exponential function (see derivation in Supplement Section 3; Figure 6A):552

f(mi|si, βi) =


1

τA + τV
exp

[
τ−1
V (mi − (si + βi))

]
, if mi ≤ si + βi,

1

τA + τV
exp

[
−τ−1

A (mi − (si + βi))
]
, if mi > si + βi.

(1)

The probability density function of measured SOA peaks at the physical SOA of the stim-553

uli plus the participant’s audiovisual temporal bias, si + βi. The left and right spread of554

this measurement distribution depends on the amount of the latency noise for the visual,555

τV , and auditory, τA, signals. In models with modality-independent arrival-time precision,556

τA = τV and the measurement distribution is symmetrical. This symmetrical measurement557

distribution is often approximated by a Gaussian distribution to fit TOJ responses in previous558

temporal-recalibration studies (Di Luca et al., 2009; Fujisaki et al., 2004; Harrar & Harris,559

2005; Keetels & Vroomen, 2007; Navarra et al., 2005; Tanaka et al., 2011; Vatakis et al.,560

2007, 2008; Vroomen et al., 2004). Note that we assume the observer has perfect knowledge561

of the visual and auditory latency noise. Thus, the density of the measurement distribution562

corresponds to the likelihood function during the inference process when the observer only563

has the noisy measurement, m, and needs to infer the physical SOA, s.564
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5.4.2 The causal-inference model565

Formalization of recalibration in the exposure phase The causal-inference model566

assumes that, at the end of every exposure trial i, a discrepancy between the measured SOA,567

mi, and the final estimate of the stimulus SOA, ŝi, signals the need for recalibration. The568

cumulative shift of audiovisual temporal bias ∆β,i after exposure trial i is,569

∆β,i+1 = ∆β,i + α(ŝi −mi), (2)

where α is the learning rate.570

The ideal observer infers intermediate location estimates for two causal scenarios: the571

auditory and visual stimuli can arise from a single cause (C = 1) or two independent causes572

(C = 2). The posterior distribution of the SOA, s, conditioned on each causal scenario is573

computed by multiplying the likelihood function (Eq. 1) with the corresponding prior over574

SOA. In the case of a common cause (C = 1), the prior distribution of the SOA between575

sound and light is a Gaussian distribution (Magnotti et al., 2013; McGovern et al., 2016),576

P (s|C = 1) = N (0, σ2
C=1). To maintain consistency with previous studies, we used an577

unbiased prior which assigns the highest probability to a physically synchronous stimulus578

pair s = 0. Similarly, the prior distribution conditioned on separate causes (C = 2) is also579

a Gaussian distribution, P (s|C = 2) = N (0, σ2
C=2), with a much larger spread compared to580

the common-cause scenario. The intermediate estimates ŝC=1 conditioned on the common-581

cause scenario and ŝC=2 conditioned on separate-cause scenario are the maximum-a-posteriori582

estimates of conditional posteriors, which are approximated numerically as there is no closed-583

form solution.584

The final estimate of the stimulus SOA, ŝ, depends on the posterior probability of each585

causal scenario. According to Bayes Rule, the posterior probability that an audiovisual stim-586

ulus pair with the measured SOA, m, shares a common cause is587

P (C = 1|m) =
P (m|C = 1)P (C = 1)

P (m|C = 1)P (C = 1) + P (m|C = 2)(1− P (C = 1))
. (3)

The likelihood of a common source/separate sources for a fixed SOA measurement was588

approximated by numerically integrating the scenario-specific protoposterior (i.e., the un-589

normalized posterior),590

P (m|C = 1) =

∫
P (m|s)P (s|C = 1)ds,

P (m|C = 2) =

∫
P (m|s)P (s|C = 2)ds.

(4)

The posterior probability of a common cause additionally depends on the observer’s prior591

belief of a common cause for auditory and visual stimuli, P (C = 1) = pcommon.592

The final estimate of SOA was derived by model averaging, i.e., the average of the scenario-593

specific SOA estimates, ŝC=1 and ŝC=2 each weighted by the posterior probability of the594

corresponding causal scenario,595

ŝ = ŝC=1P (C = 1|m) + ŝC=2(1− P (C = 1|m)). (5)

Formalization of the ternary TOJ task with a causal-inference perceptual596

process In the ternary TOJ task administered in the pre- and post-test phases, the observer597

is presented with an audiovisual stimulus pair and has to decide whether the auditory stimulus598

was presented first, the visual stimulus was presented first, or both of them were presented at599

the same time. The observer makes this perceptual judgment by comparing the final estimate600

of the SOA, ŝ, to two internal criteria (Cary et al., 2024; Garćıa-Pérez & Alcalá-Quintana,601

2012). We assume that the observer has a symmetric pair of criteria, ±c, centered on the602

stimulus SOA corresponding to perceptual simultaneity (ŝ = 0). In addition, the observer603

may lapse or make an error when responding by a lapse rate, λ. The probabilities of reporting604

visual lead, ΨV , auditory lead, ΨA, or that the two stimuli were simultaneous, ΨS , are thus605

ΨV (s) =
λ

3
+ (1− λ)P̃ (ŝ > c|s),

ΨA(s) =
λ

3
+ (1− λ)P̃ (ŝ < −c|s) and

ΨS(s) = 1−ΨV (s)−ΨA(s).

(6)
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The probability distribution of causal-inference-based SOA estimates P (ŝ|s) has no closed606

form distribution function and thus was approximated using simulations, resulting in P̃ (ŝ|s).607

Figure 6 illustrates the process of simulating the psychometric functions, using a zero test SOA608

as an example. First, we sampled 10,000 SOA measurements from the double-exponential609

probability distribution corresponding to the test SOA of zero (Figure 6A). Second, for each610

sampled measurement, we simulated the process by which the observer carries out causal611

inference and by doing so produced an estimate of the stimulus SOA, while keeping the causal-612

inference model parameters fixed. This process resulted in a Monte-Carlo approximation of613

the probability density distribution of the causal-inference-based SOA estimates (Figure 6B).614

Third, we calculated the probability of the three types of responses (Eq. 6) for this specific test615

SOA. This process was repeated for each test SOA to generate three psychometric functions616

(Figure 6C).617
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Figure 6: Simulating responses of the TOJ task with a causal-inference perceptual process. (A) An
example probability density for the measurement of a zero SOA. (B) The probability density
of estimates resulting from a zero-SOA stimulus based on simulation using the causal-inference
process. The symmetrical criteria around zero partition the distribution of estimated SOA into
three regions, coded by different colors. The area under each segment of the estimate distribution
corresponds to the probabilities of the three possible intended responses for a zero SOA. (C) The
simulated psychometric function computed by repeatedly calculating the probabilities of the three
response types across all test SOAs.

5.4.3 The asynchrony-contingent model618

In the asynchrony-contingent model, the observer measures the audiovisual SOA, s, by com-619

paring the arrival latency of the auditory and visual signals. The observer uses the likelihood620

that the audiovisual stimuli occurred simultaneously P (m|SOA = 0) to update the temporal621

bias during recalibration, instead of performing causal inference. We again assume that the622

observer has perfect knowledge about the variability and fixed delays of the arrival times623

and thus assume the likelihood corresponds to the measurement distribution (Eq. 1). The624

observer uses this probability of simultaneity to scale the update rate of the audiovisual bias,625

∆β,i+1 = ∆β,i − P (mi|SOA = 0)αmi. (7)

We assume the observer’s estimate of the stimulus SOA, ŝ, is identical to the measured626

SOA, m. Thus, from the experimenter’s perspective, the probability of the three different627

responses in the TOJ task can be obtained by replacing the SOA estimate, ŝ, with the SOA628

measurement, m, in Eq. 6). As we know the probability distribution of m, the psychometric629

functions have a closed form (Garćıa-Pérez & Alcalá-Quintana, 2012).630

5.4.4 The asynchrony-correction model631

In the asynchrony-correction model, the observer begins by evaluating if the sensory mea-632

surement of SOA, m, falls outside the criterion range for reporting that the two stimuli were633
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Notation Specification Temporal-order-
judgement task

Recalibration
in the exposure
phase

βpre The fixed relative delay between visual
and auditory processing, i.e., the audio-
visual bias prior to the exposure phase

✓ ✓

τA Amount of auditory latency noise, the
exponential time constant of the audi-
tory detection-latency distribution

✓ ✓

τV Amount of visual latency noise, the ex-
ponential time constant of the visual
detection-latency distribution

✓ ✓

σC=1 The spread of the Gaussian prior for the
common-cause scenario

✓ ✓

σC=2 The spread of the Gaussian prior for the
separate-causes scenario

✓ ✓

pcommon The prior probability of a common
cause

✓ ✓

c Simultaneity criterion ✓

λ Lapse rate ✓

α Learning rate for shifting audiovisual
bias

✓

Table 1: Model parameters. Check marks signify that the parameter is used for determining the
likelihood of the data from the temporal-order judgment task in the pre- and post-test phase
and/or for the Monte Carlo simulation of recalibration in the exposure phase.

presented simultaneously ±c. If the measurement does exceed this criterion, the observer634

adjusts the audiovisual bias by shifting it against the measurement, i.e., shifting it so that635

the measured SOA of a pair would be closer to zero and is more likely to perceived as simul-636

taneous. This adjustment is proportional to the sensory measurement of the SOA, m, at a637

fixed rate determined by the learning rate α. The update rule of the audiovisual bias in trial638

i is thus639

∆β,i+1 =

{
∆β,i − αmi, if |mi| > c

∆β,i, otherwise
(8)

The derivation of the psychometric functions is identical to the asynchrony-contingent model.640

5.4.5 Model fitting641

Model log-likelihood. The model was fitted by optimizing the lower bound on the642

marginal log-likelihood. We fit the model to the ternary TOJ data collected during the pre-643

and post-test phases of all sessions together. We did not collect temporal-order judgments in644

the exposure phase. But, to model the post-test data, we need to estimate the distribution645

of shifts of audiovisual bias resulting from the exposure phase (∆β,250). We do this using646

Monte Carlo simulation of the 250 exposure trials to estimate the probability distribution of647

the cumulative shifts.648

The set of model parameters Θ is listed in Table 1. There are J sessions, each includ-649

ing K trials in the pre-test phase and K trials in the post-test phase. We denote the full650

dataset of pre-test data as Xpre and for the post-test data as Xpost. We fit the pre- and651

post-test data jointly by summing their log-likelihood, log p(X|M,Θ) = log p(Xpre|M,Θ) +652

log p(Xpost|M,Θ).653
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In a given trial, the observer responded either auditory-first (A), visual-first (V), or si-654

multaneous (S). We denote a single response using indicator variables that are equal to 1 if655

that was the response in that trial and 0 otherwise. These variables for trial k in session j656

are rApre,jk, r
V
pre,jk and rSpre,jk for the pre-test trials, and rApost,jk, etc., for the post-test trials.657

The log-likelihood of all pre-test responses Xpre given the model parameters is658

log p(Xpre|M,Θ) =

J∑
j=1

K∑
k=1

(
rApre,jk logΨA,pre(sjk)+

rVpre,jk logΨV,pre(sjk) + rSpre,jk logΨS,pre(sjk)
)
.

(9)

The psychometric functions for the pre-test (e.g., ΨA,pre) are defined in Eq. 6, and are the659

same across all sessions as we assumed that the audiovisual bias βpre was the same before660

recalibration in every session.661

The log-likelihood of responses in the post-test depends on the audiovisual bias after662

recalibration βpost,j = βpre + ∆β,250,j for session j. To determine the log-likelihood of the663

post-test data requires us to integrate out the unknown value of the cumulative shift ∆β,250,j .664

We approximated this integral in two steps based on our previous work (Hong et al., 2021).665

First, we simulated the 250 exposure trials 1000 times for a given set of parameters Θ and666

session j. This resulted in 1,000 values of ∆β,250,j . The distribution of these values was well667

fit by a Gaussian whose parameters were determined by the empirical mean and standard668

deviation of the sample distribution, resulting in the distribution P̃ (∆β,250,j |M,Θ). Second,669

we approximated the integral of the log-likelihood of the data over possible values of ∆β,250,j670

by numerical integration. We discretized the approximated distribution P̃ (∆β,250,j |M,Θ)671

into 100 equally spaced bins centered on values ∆β,250,j(n) (n = 1, · · · , 100). The range of672

the bins was triple the range of the values from the Monte Carlo sample, so that the lower673

bound was lb∆β,250,j = ∆β,250,j,min − (∆β,250,j,max − ∆β,250,j,min) and the upper bound was674

ub∆β,250,j = ∆β,250,j,max + (∆β,250,j,max −∆β,250,j,min).675

The log-likelihood of the post-test data was approximated as676

log p(Xpost|M,Θ) =

J∑
j=1

log

(∫
P (Xpost|∆β,250,j ,M,Θ)P (∆β,250,j |M,Θ)d∆β,250,j

)

≈
J∑

j=1

log

(∫ ub∆β,250,j

lb∆β,250,j

P (Xpost|∆β,250,j ,M,Θ)×

P̃ (∆β,250,j |M,Θ)d∆β,250,j

)
≈

J∑
j=1

log

(
ub∆β,250,j − lb∆β,250,j

100

100∑
n=1

P (Xpost|∆β,250,j(n),M,Θ)×

P̃ (∆β,250,j(n)|M,Θ)
)
,

(10)

where677

P (Xpost|∆β,250,j(n),M,Θ) =

K∏
k=1

(
ΨA,post,jn(sjk)

rApost,jk×

ΨV,post,jn(sjk)
rVpost,jkΨS,post,jn(sjk)

rSpost,jk

)
.

(11)

The psychometric functions in the post-test (e.g., ΨA,post,jn) differed across sessions and bins678

because the simulated audiovisual bias after the exposure phase βpost,j depends on the adapter679

SOA fixed in session j and the simulation bin n.680

Parameter estimation and model comparison. We approximated the lower bounds681

to the model evidence (i.e., the marginal likelihood) of each model for each participant’s data682

using Variational Bayesian Monte Carlo (Acerbi, 2018, 2020). We set the prior distribution of683

parameters based on the results of maximum likelihood estimation using Bayesian Adaptive684

Direct Search to ensure that the parameter ranges were plausible (Acerbi & Ma, 2017). We685

repeated each search 20 times with a different and random starting point to address the686

possibility of reporting a local minimum. For each model, the fit with the maximum lower687
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bounds of the model evidence across the repeated searches was chosen for the maximum model688

evidence and best parameter estimates.689

We then conducted a Bayesian model comparison based on model evidence. The model690

with the strongest evidence was considered the best-fitting model (MacKay, 2003). To quan-691

tify the support of model selection, we computed the Bayes factor, the ratio of the model692

evidence between each model and the asynchrony-correction, modality-independent-precision693

model, which had the weakest model evidence. To compare any two models, one can simply694

calculate the difference in their log Bayes factors as both are relative to the same weakest695

model.696

Model recovery and parameter recovery. We conducted a model-recovery analysis697

for the six models and confirmed that they are identifiable (Supplement Section 11). In698

addition, we considered an alternative causal-inference model in which the bias update is699

proportional to the posterior probability of a common cause, instead of driven by the percept.700

A separate model recovery analysis on variations of the causal-inference model was unable701

to distinguish between them (Supplement Section 12). For the causal-inference, modality-702

specific-precision model, we also carried out a parameter recovery analysis and confirmed703

that all the parameters are recoverable (Supplement Section 13).704
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