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Abstract

DNA methylation plays a crucial role in higher organisms. Coupling bisulfite treatment with next generation
sequencing enables the interrogation of 5-methylcytosine sites in the genome. However, bisulfite conversion
introduces mismatches between the reads and the reference genome, which makes mapping of Illumina and
SOLiD reads slow and inaccurate. BatMeth is an algorithm that integrates novel Mismatch Counting, List Filtering,
Mismatch Stage Filtering and Fast Mapping onto Two Indexes components to improve unique mapping rate, speed
and precision. Experimental results show that BatMeth is faster and more accurate than existing tools. BatMeth is
freely available at http://code.google.com/p/batmeth/.

Background
DNA methylation modifies the nucleotide cytosine by the
addition of methyl groups to its C5 carbon residue by
DNA methyltransferases [1]. This modification can be
inherited through cell division and it plays an important
role in many biological processes, such as heterochromatin
and transcriptional silencing [2,3], imprinting genes [4],
inactivating the × chromosome [5] and silencing of repeti-
tive DNA components in healthy and diseased (including
cancerous) cells [6,7]. Methylation analysis can also be
used to diagnose pre-natal Down’s syndrome [8]. Thus,
the genome-wide methylation profiles of different tissues
are important to understand the complex nature and
effects of DNA methylation.
In the past decade, quantum leaps have been made in

the development of sequencing technologies by vendors
such as Illumina-Solexa and Applied BioSystems (AB)-
SOLiD. These can generate millions of short reads at a
lower cost compared to traditional Sanger methods
[9-13]. Bisulfite (BS) treatment converts unmethylated
cytosines (Cs) to uracils (which are then amplified by
PCR as thymine (T)) without affecting the other nucleo-
tide bases and methylated cytosines [14]. Next-generation
sequencing coupled with bisulfite treatment enables us to

produce a methylome of a genome at single base resolu-
tion and low cost.
One important step in calling methylation of a genome

is to map bisulfite reads. Mapping of bisulfite reads is dif-
ferent from that of ChIP-Seq and RNA-Seq data since
the non-methylated Cs are converted to Ts by bisulfite
treatment and subsequent PCR. The bisulfite reads are
difficult to map to the reference genome due to the high
number of mismatches between the converted Ts and
the original Cs. For mapping Illumina bisulfite reads, the
pioneering published methods are BSMAP [15] and
RMAP [16]. BSMAP aligns a bisulfite read to the refer-
ence genome by first enumerating all C-to-T combina-
tions within a user-defined length k seed of the reads;
then, through hashing, BSMAP aligns the seeds onto the
genome and putative alignments are extended and vali-
dated with the original reads. After this step, BSMAP can
output an unambiguous hit for each read, if available.
BRAT [17] uses a similar strategy as BSMAP. It converts
the reference genome into a TA reference and a CG
reference (each converted reference uses one bit per
base). Using a 36-mer hash table, BRAT aligns the first
36 bases of every read and its 1-neighbors on the two
converted references to identify possible alignments.
RMAP uses layered seeds as a bit-mask to select a subset
of the bases in the reads and constructs a hash table to
index all the reads. However, these seed-hash-based
approaches are slow.
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Subsequently, several methods were proposed to map
bisulfite reads onto the converted genomes. MethylCoder
[18] surfaced as a bisulfite read mapper that uses GSNAP
[19] to do a primary mapping of in silico converted reads
(that is, all Cs in the reads are converted to Ts) onto a
converted reference genome (that is, all Cs in the genome
are converted to Ts). Those reads that fail to map onto the
converted genome will be remapped again in their original
forms onto the original reference. BS-Seeker [20] and
Bismark [21] use a similar conversion strategy as BSMAP
except that they align the reads with Bowtie [22] and
unique hits are found by a seed-then-extend methodology.
(Note that every tool has its own uniqueness criterion. A
tool will denote a read to have a unique hit if it finds
exactly one occurrence of the read in the reference gen-
ome.) Both methods trade accuracy for efficiency.
AB-SOLiD color reads are different from Illumina reads

since they encode every pair of bases with four different
colors. (For more details on this sequencing technology
and how it differs from sequencing by synthesis, see
[23-26].) Unlike bisulfite mapping of Illumina reads onto
converted genomes, mapping bisulfite color reads onto
converted genomes produces many mismatches when the
regions are highly methylated [27]. This also causes a dra-
matic decrease in the unique mapping rate and unbiased
measurements of hypomethylation sites. In addition, a sin-
gle color error in a read will lead to incorrect conversions
throughout the rest of the read (Figure 1a,b). Although in
silico conversion of Cs to Ts guarantees unbiased align-
ments in base space, this is not preferred for color reads.
SOCS-B [28] and B-SOLANA [29] were developed to

map bisulfite color reads. SOCS-B splits a color read into
four parts and tries to get hits for any combination of
two parts via an iterative Rabin-Karp approach [30].
SOCS-B uses a dynamic programming approach to con-
vert an aligned read to the aligned portion of the refer-
ence genome. The conversion starts with all possible four
nucleotides as the pseudo-terminal base (rather than just
the terminal base from the read). Subsequently, the sub-
strings of the four translations are used to generate par-
tial hashing seeds that are then mapped onto the hashed
reference genome. However, the running time of SOCS-
B is long and the unique mapping rate is too low to be
practical. B-SOLANA improves speed and unique map-
ping rate by aligning against both fully converted and
non-CpG converted references simultaneously with
Bowtie. The final hits are determined by checking their
number of mismatches.
A recent review article [27] reported that Bismark and

BS-Seeker are the most recent published methods for
mapping bisulfite base reads whereas B-SOLANA is the
most recent published method for mapping bisulfite color
reads. This review also highlighted the main challenges to

develop methods that can map reads unbiasedly and to
improve unique mapping rates for mapping color reads.
BatMeth (Basic Alignment Tool for Methylation) was

developed by us to address the issues of efficiency and
accuracy on mapping bisulfite reads from Illumina and
bisulfite color reads from SOLiD. Unlike existing algo-
rithms, BatMeth does not map the bisulfite reads in the
initial stage. Instead, BatMeth counts the number of hits
of the bisulfite reads to remove spurious orientations of a
read. This idea has significantly sped up the mapping pro-
cess and has also reduced the number of false positives.
When dealing with color reads, BatMeth reduced bias on
hypomethylation measurements with high initial mismatch
scanning. BatMeth also employed a dynamic programming
conversion step for the color reads to account for bisulfite
mismatch accurately and an incremental processing step
to produce higher unique mapping rates and speed (refer
to the Materials and methods section for details).
We have compared the performance of BatMeth with

recent stable versions of BSMAP (2.4.2), BS-Seeker,
Bismark (0.5.4), SOCS-B (2.1.1) and B-SOLANA (1.0)
using both simulated and real data sets (BS-Seeker, Bis-
mark and B-SOLANA used Bowtie 0.12.7 in our experi-
ments). With simulated Illumina and SOLiD reads,
BatMeth (default mode) recovered the highest number of
hits, has the lowest noise rate and is the fastest among the
compared programs. BatMeth is also able to produce bet-
ter unbiased results than the other programs by compar-
ing the detected methylation levels in different genomic
contexts over simulated data sets (Illumina and SOLiD
reads) of different methylation levels. With a paired-end
library, we show the specificity of our Illumina results by
counting the pairs of concordant paired reads that fall
within the expected insert size of the library. With a direc-
tional library, we indicate the specificity of our results with
direction-specific information. In summary, BatMeth is an
improved bisulfite mapper in terms of speed, recovery rate
and accuracy, and, in particular, has addressed the main
challenges of mapping color reads identified in [27].

Results
Evaluated programs and performance measures
In order to evaluate the performance of our pipeline, we
have tested the following programs: BSMAP, BS-Seeker,
and Bismark for base-space mapping; and SOCS-B and
B-SOLANA for color-space mapping. BS-Seeker and Bis-
mark only output unique hits for each read. BSMAP,
SOCS-B and B-SOLANA will output at most one hit per
read, with a flag to indicate if a hit is unique. Some reads
can map to multiple genomic locations and since a read
can only come from one origin, retaining such non-unique
mappings will affect the accuracy of downstream analysis
such as unbiased methylation site calls. To avoid the
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Figure 1 Interpreting mismatches between reads in base- and color-space. (a,b) Base call error simulation in Illumina and SOLiD reads
reflecting one mismatch with respect to the reference from which they are simulated in their respective base- and color-space. (b) A naïve
conversion of color read to base space, for the purpose of mapping against the base space reference, is not recommended as a single color
base error will introduce cascading mismatches in base space. (c) A bisulfite conversion in base space will introduce two adjacent mismatches in
its equivalent representation in color space.
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problem of wrong methylation calls, all six programs were
thus compared with their unique mapping rates.
All our experiments were run on a server equipped with

an Intel Xeon E7450 @ 2.40GHz and 128 GB of RAM.
We allowed the same mismatch number and CPU threads
on all the compared programs in our experiments. Other
parameters were kept at default (see Section 1 of Addi-
tional file 1 for the choice of parameters used).
We have not included RMAP in our comparisons as it

only performs biased mapping in a non-CpG context.
MethylCoder was also not included because a newer
variant of it, namely B-SOLANA, has been released
(MethylCoder’s release notes mention that it is now
deprecated due to the release of B-SOLANA). BRAT
was considered impractical as it only considers one base
error in the first 36 bp of a read and therefore was not
included in our experiments.
Below, we define ‘recovery’ to be the portion of the

unique hits recovered by the programs. We also define
‘accuracy’ to be the portion of the recovered hits that are
correct. All recorded timings are wall clock times. A ‘hit’ is
a genomic location to which a read is aligned. Lastly, due
to sequencing errors and bisulfite mismatches, we allow k
(>0) mismatches when mapping a bisulfite read onto a
reference. A genomic location is deemed to be unique for
a read if it is the only location with the lowest number of
mismatches with respect to the read.

Evaluation on the simulated Illumina data
We generated 1 million reads, each 75 bp long, which
were randomly simulated from the human genome hg19
using the simulator found in RMAP-bs [31]. The data set
was built by allowing a maximum of three mismatches per
read. Each C in the simulated read, regardless of its con-
text, was bisulfite converted at a uniform rate of 97%. We
benchmarked BatMeth and the other methods, BSMAP,
BS-Seeker and Bismark, on this data set (see Section 1.1 of
Additional file 1 for parameters used). Since the original
coordinates in the simulated reads are known, we can
evaluate the accuracy of all the programs by comparing
their outputs with the original coordinates. We mapped
the reads onto the reference allowing at most three mis-
matches. BatMeth recovered the most number of true
positives and the lowest number of false positives and is
the fastest program, as shown in Figure 2a.
We further illustrate that BatMeth can achieve better

unbiased methylation calls than the best published
method, Bismark, by replicating the experimental
settings of Figure 2b in [27]. We used the same simula-
tor, Sherman [32], the same number of reads (1 million),
the same length of read (75 bases) and the same refer-
ence genome (NCBI37) for this comparison. We used
Sherman to simulate 11 sets of data, from 0% to 100%
of bisulfite conversion in increments of 10%. Sherman

emulates bisulfite conversion by converting all Cs
regardless of their genomic context with a uniform dis-
tribution. No non-bisulfite mismatches were allowed in
the reads, during the scanning phase, for both BatMeth
and Bismark. The results produced by Bismark show
exactly the same trends as the graph that was presented
in [27]. Table 1 presents the performance of BatMeth
and Bismark in terms of mapping efficiency, detected
methylation levels in different genomic contexts from
various in silico methylation rates in different contexts
(CG, CHG and CHH genomic contexts, where H stands
for base A/C/T only). BatMeth has an average of
approximately 1.1% better mapping efficiency and about
twice the accuracy as Bismark in estimating methylation
levels of Cs from different genomic contexts with differ-
ent initial methylation levels.

Evaluation on the real illumina data
We downloaded about 850 million reads sequenced by
Illumina Genome Analyzer II (Gene Expression Omni-
bus (GEO) accession number [GSE19418]) [33] on H9
embryonic stem cells. Since BSMAP is not efficient
enough to handle the full data set, 2 million paired-end
reads were randomly extracted from one of the runs in
[GSE19418] for comparative analysis with BSMAP.
Reads were observed to have a lot of Ns near the 3’ end
and were trimmed down to 51 bp before being mapped
onto hg19 with at most two mismatches per read (see
Section 1.2 of Additional file 1 for parameters used).
For this sample data set, BatMeth mapped 1,518,591

(75.93%) reads uniquely compared to 1,511,385 (75.57%)
by BSMAP, 1,474,880 (73.74%) by BS-Seeker and
1,498,451 (74.92%) by Bismark. Out of all the hits
reported by BatMeth, 1,505,190, 1,464,417 and 1,481,251
mapped loci were also reported by BSMAP, BS-Seeker
and Bismark, respectively. BatMeth found 13,401, 54,174
and 37,340 extra hits when compared to BSMAP, BS-
Seeker and Bismark, respectively. BSMAP, BS-Seeker and
Bismark also found 6,195, 10,463 and 17,220 extra hits,
respectively, when compared to our result set.
Next, we mapped the two reads of every paired-end read

independently to investigate the mapping accuracy of the
compared programs. Since the insert size of this set of
paired-end reads is approximately 300 bp, a pair of partner
reads can be expected to be mapped correctly with a high
probability if they are mapped concordantly within a nom-
inal distance of 1,000 bp. The high number of such pair-
able reads (Figure 2b) indicates that BatMeth is accurate.
Figure 2b also shows that BatMeth is fast.
We have also downloaded approximately 28.5 million

reads sequenced by Illumina Genome Analyzer II on the
human H1 embryonic cell line (GEO accession numbers
[SRR019048], [SRR019501] and [SRR019597]) [20]. We
only compared BatMeth with BS-Seeker since BSMAP
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Figure 2 Benchmarking of programs on various simulated and real data sets. (a) Benchmark results of BatMeth and other methods on the
simulated reads: A, BatMeth; B, BSMAP; C, BS-Seeker; D, Bismark. The timings do not include index/table building time for BatMeth, BS-Seeker,
and Bismark. These three programs only involve a one-time index-building procedure but BSMAP rebuilds its seed-table upon every start of a
mapping procedure. (b) Insert lengths of uniquely mapped paired reads and the running times for the compared programs. (c) Benchmark
results on simulated SOLiD reads. Values above the bars are the percentage of false positives in the result sets. The numbers inside the bars are
the number of hits returned by the respective mappers. The graph on the right shows the running time. SOCS-B took approximately 16,500
seconds and is not included in this figure. (d) bisulfite and non-bisulfite induced (SNP) adjacent color mismatches.
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and Bismark are too slow (see Section 1.3 of Additional
file 1 on parameters used). Furthermore, Krueger and
Andrews [21] mention that Bismark is both slower and
less likely to report unique hits than BS-Seeker. Table 2
shows the unique mapping rates and running times of Bat-
Meth and BS-Seeker. In summary, BatMeth achieved the
best mappability rate, lowest estimated false positive rate
and was the fastest on real Illumina data.

Evaluation on the simulated SOLiD data
We generated 10,000 simulated reads, each having 51
color bases, that were randomly extracted from chromo-
some 1 of UCSC hg19 using the simulator from RMAP-bs
[31]. RMAP-bs was used to convert the Cs in the reads,
regardless of its context, to Ts at a uniform rate of 97% to
simulate bisulfite conversions. In addition, for each read,
zero to two non-bisulfite base mismatches were intro-
duced with equal chance before the read was converted to
color space. Lastly, sequencing errors were added at a uni-
form rate of 5% to the reads.
The simulated color reads were mapped using BatMeth,

SOCS-B and B-SOLANA allowing resultant unique hits to
have at most three mismatches. Precisely, BatMeth and
SOCS-B allowed at most three non-bisulfite mismatches
while B-SOLANA did not discount bisulfite mismatches
(see Section 1.4 of Additional file 1 for parameters used).
Figure 2c summarizes the results of the three programs
together with the verification against the oracle set.

BatMeth gave many more correct hits and fewer wrong
hits than both SOCS-B and B-SOLANA. BatMeth can be
made to offer a flexible tradeoff between unique mapping
rates and speed. In the ‘default’ mode, BatMeth was found
to be more sensitive (approximately 15%) and faster
(approximately 10%) than the most recent published
B-SOLANA. In the ‘sensitive’ mode, BatMeth was found
to be more sensitive (approximately 29%) and slower
(approximately two times) than B-SOLANA. In addition
to producing approximately 15% to 29% more correct
hits, BatMeth had a precision of 94.5% while that of
B-SOLANA and SOCS-B was 92.1% and 91.5%, respec-
tively. These statistics show that BatMeth is an accurate
mapper for color reads.
To illustrate that BatMeth can achieve better unbiased

methylation calls for color reads than the best published
method, B-SOLANA, we replicated the experimental set-
tings of Figure 2c in [27] to compare the two programs; we
used the same simulator (Sherman), the same number of
reads (1 million), the same length of read (75 bp) and the
same reference genome (NCBI37) for this comparison. We
used Sherman to simulate 11 sets of data, from 0% to 100%
of bisulfite conversion at increments of 10%. Sherman emu-
lates bisulfite conversion by converting all Cs regardless of
their genomic context with a uniform distribution. Default
parameters were used for BatMeth and B-SOLANA. The
graph produced by us for B-SOLANA shows the same
trends as that presented in [27]. We further broke down

Table 1 Comparison of mapping efficiencies and estimation of methylation levels in various genomic contexts

BatMeth (%) Bismark (%)

Mapping efficiency CG CHG CHH Mapping efficiency CG CHG CHH Oracle BS rate (%)

94.2 0.0 0.0 0.0 91.1 0.0 0.0 0.0 0.0

94.0 10.0 10.0 10.0 92.1 10.0 10.0 10.0 10.0

93.9 20.0 20.0 20.0 92.4 20.0 20.1 20.0 20.0

93.8 30.0 30.0 30.0 92.5 29.9 30.0 30.0 30.0

93.6 39.9 40.0 40.0 92.5 40.0 40.0 40.0 40.0

93.5 50.0 50.0 50.0 92.6 50.0 50.0 50.0 50.0

93.4 60.0 60.0 60.0 92.6 60.0 60.1 60.0 60.0

93.2 70.0 70.0 70.0 92.7 70.0 70.0 70.0 70.0

93.0 79.9 80.0 80.0 92.6 79.9 80.0 80.0 80.0

92.8 90.0 90.0 90.0 92.6 90.1 90.0 90.0 90.0

92.6 100 100.0 100.0 92.6 100.0 100.0 100.0 100.0

Methylation levels in various genomic contexts, such as CG, CHG and CHH (H is A/C/T only), are called by BatMeth and Bismark and validated against the oracle
bisulfite rate used in Sherman.

Table 2 Comparison of speed and unique mapping rates on three lanes of human bisulfite data

Number of reads Unique mapping (%) a Running time (minutes) a

Read file BatMeth BS-Seeker BatMeth BS-Seeker

SRR019048 15,331,851 37.4 37.2 30 87

SRR019501 7,217,883 44.7 44.5 16 41

SRR019597 5,943,586 58.2 58.1 13 37
aThreshold of two mismatches used.
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the graphs as well as those in Figures 3a (BatMeth) and 3b
(B-SOLANA), which show rates of methylation calling for
various in silico methylation rates (0% to 100% at divisions
of 10% of bisulfite conversion) in different contexts (CG,
CHG and CHH genomic contexts, where H stands for base
A/C/T only) of the genomes, into separate series of data.
Subsequently, we did a direct comparison between Bat-
Meth and B-SOLANA to show that BatMeth is better than
B-SOLANA in all contexts of methylation calling, namely,
CG (Figure 3c), CHG (Figure 3d), CHH (Figure 3e) and
non-unique mapping rates (Figure 3f). To be exact,
BatMeth was approximately 0.7%, 0.7% and 2.2% more
accurate than B-SOLANA in the methylation callings of
the CG, CHG and CHH sites, respectively, and had an aver-
age of approximately 9.2% more non-unique mappings
than B-SOLANA on the tested data sets.

Evaluation on the real SOLiD data
We downloaded about 495 million reads sequenced by
AB SOLiD system 3.0 (Sequence Read Archive (SRA)
accession number [SRX062398]) [13] on colorectal can-
cer. Since SOCS-B is not efficient enough to handle the
full data set, 100,000 reads were randomly extracted from
[SRR204026] to evaluate BatMeth against SOCS-B and
B-SOLANA. The mismatch threshold used was 3 (see
Section 1.5 of Additional file 1 for parameters used).
Table 3 compares the unique mapping rates and running

times between BatMeth, SOCS-B and B-SOLANA. Note
that BatMeth always has a higher unique mapping rate
(from 39.6% to 52.1%; from fast to sensitive mode) than the
next best method, B-SOLANA with 37.4%. At the same
time, BatMeth maintained low rates of noise (from 0.47%
to 1.75%; from fast to sensitive mode). Hence, it is still
more specific than the other programs. In terms of running
time, BatMeth fast mode is approximately 1.7 times faster
and BatMeth sensitive mode is approximately 4 times
slower than B-SOLANA. It was also observed that 3.26% of
the resultant hits from B-SOLANA are duplicated; some of
the reads were given two hit locations as B-SOLANA
traded speed for checking the uniqueness of hits.
Based on the experiments performed, BatMeth’s memory

usage peaked at 9.3 GB (approximately 17 seconds of load
time) for Illumina reads and 18.8 GB (approximately 35
seconds of load time) for color reads while BSMAP and BS-
Seeker peaked at 9+ GB and Bismark peaked at 12 GB.
SOCS-B peaked at 7+ GB and B-SOLANA peaked at
12 GB. Parameters used for all experiments are recorded in
Additional file 1. In summary, the experiments in this
section show that BatMeth is the fastest among all
the compared programs. Furthermore, BatMeth also has
the highest recovery rate of unique hits (exclusive of false
positives) and the best accuracy among all the compared
programs.

Discussion
DNA methylation is an important biological process.
Mapping the bisulfite reads from next-generation
sequencing has enabled us to study DNA methylation at
single-base resolution. This paper aims to develop effi-
cient and accurate methods to map bisulfite reads.
This study employed three methods to evaluate the per-

formance of bisulfite read mapping methods. The first
method measured the ratio of correct and wrong unique
unambiguous mappings. This method only applies to
simulated data when the actual locations of the reads are
known. For real data, the number of unambiguous map-
pings alone may not be a good criterion to evaluate accu-
racy (we can map more reads at a higher mismatch
number, which results in lower specificity). The second
method evaluated the accuracy using the number of reads
that were mapped in consistent pairs, and can only be
employed when paired-end read information is available.
The third method used the directionality of the mapped
reads from SOLiD sequencing. For the SOLiD reads, we
mapped reads unbiasedly onto both forward and reverse
directions of our reference genome. From the unambigu-
ous mappings, we estimated the error rate of our unique
mappings from the proportion of reverse direction unique
mappings in the result sets. All these measures were used
on different sets of simulated and real data and they sug-
gest that BatMeth produces high quality mapping results.
For future work, our team will be working on more

time-efficient data structures to better streamline our
algorithm.

Conclusions
We report a novel, efficient and accurate general-purpose
bisulfite sequence mapping program. BatMeth can be
deployed for the analysis of genome-wide bisulfite
sequencing using either base reads or color reads. It
allows asymmetric bisulfite conversion to be detected by
labeling the corresponding reference genome with the
hit. The components discussed in the Materials and
methods section, such as List Filtering, Mismatch Stage
Filtering, Fast Mapping onto Two Indexes, Handling
Hypo- and Hyper-Methylation Sites and other heuristics
have offered increased speed and mappability of reads. In
addition, BatMeth reduces biased detection of multiple
CpG heterogeneous and CpH methylation across the
whole reference by mapping onto both fully converted
and non-CpG references and then labeling the reference
to which the hits are from to aid biologists to discrimi-
nate each hit easily. Users can also choose to bias against
either reference with varying mismatch scans. In asses-
sing the uniqueness of a hit for bisulfite color reads,
BatMeth considers both strands of the DNA simulta-
neously while B-SOLANA considers both DNA strands
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Figure 3 A total of 106, 75 bp long reads were simulated from human (NCBI37) genomes. Eleven data sets with different rates of bisulfite
conversion, 0% to 100% at increments of 10% (context is indicated), were created and aligned to the NCBI37 genome. (a-e) The x-axis
represents the detected methylation conversion percentage. The y-axis represents the simulated methylation conversion percentage. (f) The x-
axis represents the mapping efficiency of the programs. The y-axis represents the simulated methylation conversion percentage of the data set
that the program is mapping. (a,b) The mapping statistics for various genomic contexts and mapping efficiency with data sets at different rates
of bisulfite conversion for BatMeth and B-SOLANA, respectively. (c-e) Comparison of the methylated levels detected by BatMeth and B-SOLANA
in the context of genomic CG, CHG and CHH, respectively. (f) Comparison of mapping efficiencies of BatMeth and B-SOLANA across data sets
with the described various methylation levels.
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separately. Hence, BatMeth has a stronger uniqueness
criterion for hits as B-SOLANA may produce two hits
for a read, one hit for each separate DNA strand. Lastly,
BatMeth uses an optimal dynamic programming algo-
rithm to convert the color read to base space to check for
non-bisulfite mismatches.

Materials and methods
Methods for base reads
Problem definition and overview of the method
The problem of mapping bisulfite reads is defined as fol-
lows. A bisulfite treatment mismatch is defined as a mis-
match where the aligned position is a T in the read and
the corresponding position in the reference genome is a
C. Given a set of bisulfite reads, our task is to map each
bisulfite read onto the reference genome location, which
minimizes the number of non-bisulfite mismatches.
The algorithm of BatMeth is as follows. BatMeth starts

off by preparing the Converted Genome and does a one-
time indexing on it. Next, Low Complexity BS reads will
be discarded; otherwise, we will do a Counting Hits of BS
Read on them and discard the hits according to List
Filtering. After this, each of the retained hits will be
checked for bisulfite mismatches by ignoring C to T con-
versions caused by the bisulfite treatment. BatMeth
reports the unique hit with the lowest non-bisulfite mis-
matches for each read. Figure 4a outlines the algorithm
and we discuss the novel components that aid BatMeth
to gain speed and accuracy below.
Converted Genome
Similar to BS-Seeker and Bismark, we prepare a con-
verted reference genome with all Cs converted to Ts.
Since the plus and minus strands are not complementary
after Cs are converted to Ts, we have to create two con-
verted references where one is for the plus strand and
the other is for the minus strand. Burrows-Wheeler

transform (BWT) indexing of the two new converted
references is done before the mapping.
Low Complexity BS reads
BatMeth does not map bisulfite reads with low complexity.
The complexity of the raw read is computed as Shannon’s
entropy, and raw bisulfite reads with a differential entropy
H < 0.25 are discarded. In BatMeth, differential entropy is
estimated from the discrete entropy of the histogram of
A/C/G/T in a read. Depending on the design of the wet-
lab experiment, the amount of reads being discarded by
this entropy cutoff varies. In our experiments on Illumina
reads, approximately 0.5% of the reads were discarded.
Counting Hits of BS read and List Filtering
For those reads that pass the complexity filter, we first
convert all Cs to Ts and map them against the converted
genomes. In contrast to existing methods, BatMeth does
not obtain the best or second best hits (for example, BS-
Seeker and Bismark) from each possible orientation of a
converted read and reports the lowest-mismatch locus to
be the resultant hit for a read. In the case of hyper-methy-
lation, the correct hit may not be the best or second best
hit as it might contain more mismatches. Thus, this
approach will miss some correct solutions. BatMeth also
does not enumerate all hits like BSMAP, which is slow.
Instead of mapping the reads directly, BatMeth counts the
number of hits where the read or its reverse complement
can occur on the two converted genomes using an in-
house short read mapper, BatMis Aligner [34]. Table 4
shows the four ways of aligning the converted reads onto
the converted genomes, which yield four counts of hits.
Out of the four counts on the four lists, only one list

contains the true hit. List filtering aims to filter away those
spurious lists of hits (represented by the counts) that are
unlikely to contain the true hit. Note that a read can
appear to be repetitive on one strand but unique on the
opposite strand of the DNA. Hence, if a list has many hits
(by default the cutoff is set to be 40 hits) with the same
number of mismatches, we discard such a list since it is
likely to be spuriously reported for one strand of the refer-
ence genome. Another reason for rejecting such lists is
that they may contain hits that may be of the same mis-
match number as the hit that is unique on the opposite
strand, rendering all hits as ambiguous.
Apart from improving the uniqueness of the putative

resultant hit among all reported hits of a bisulfite read,
filtering also reduces the number of candidate hits that
need to be checked. This improves the efficiency of the
algorithm. For example, consider the simulated bisulfite-
converted read ‘ATATATATGTGTATATATATATA-
TATATATATGTGTATATATATGTGTGTATATATA-
TATA TATATATGTATATAT’ being mapped onto the
converted hg19 genomes as discussed earlier. We
obtained four counts of 1, 0, 40 and 40 hits by mapping

Table 3 Unique mapping rates and speed on 100,000
real color reads

SRR204026 Unique mapping
(%)a

Estimated noise
(%)b

Timing

BatMeth (fast) 39.6 0.47 77 s

BatMeth (default) 45.8 0.94 247 s

BatMeth
(sensitive)

52.1 1.75 521 s

B-SOLANAc 37.4 2.06 130 s

SOCS-Bd 28.3 4.55 ~71 h
aWe tabulated the unique mapping rates of the 100,000 reads. bThe error
rates are estimated from the number of reverse-strand mappings as stated by
Equation 2 in Materials and methods. cNote that 3.26% of B-SOLANA’s
resultant reads are double-counted as B-SOLANA reported two hits for them.
One of the two hits is assumed to be correct for the estimation of the noise
rate of B-SOLANA. dReverse-strand mapping is allowed by enabling G-A
transitions in SOCS-B. BatMeth fast, default, and sensitive modes were run
with -n0-N3, -n0-N4, -n0-N5 as parameters, respectively.
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the converted reads onto the converted genomes. The
last two lists are filtered away since they have too many
hits, leaving us to check only one hit instead of 81 for
bisulfite mismatches. Since the data are simulated, the
unfiltered hit is found to be the correct unique hit for
this read, which the other mappers cannot find.

Figure 4 Outline of the mapping procedure. (a) Mapping procedure on Illumina bisulfite base reads. (b) Mapping procedure on SOLiD color-
space bisulfite reads.

Table 4 Possible ways to map a bisulfite read onto the
converted genome

Reference (C®T) RC reference (C®T)

Read (C®T) Count 1 Count 2

RC Read (C®T) Count 3 Count 4

RC, reverse-complement.
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Table 5 shows the effect of using List Filtering on the
same set of simulated data from Evaluation on the Simu-
lated Illumina Reads. We ran BatMeth with different cut-
offs for List Filtering and we can see that the time taken
increased linearly with increasing cutoffs for List Filtering
while sensitivity and accuracy dropped. With large cutoffs
such as ≥500 (marked by asterisks in Table 5), the number
of wrong hits increased while sensitivity still continued to
drop. Thus, we have chosen a cutoff of 40 for a balance of
speed, sensitivity and accuracy. (Disabling List Filtering
will cause BatMeth to check through all the reported can-
didate locations for a read and will slow BatMeth down by
approximately 20-fol fold, as shown in Table 5.)

Methods for color reads
Overview of the method
Due to the di-nucleotide encoding and sequencing errors
in SOLiD color reads, a naïve conversion from color space
to base space is hardly possible without errors. As a color
error in a read will introduce cascading base-space errors,
we cannot use the method described in Methods for Base
Reads to map bisulfite color reads. This section describes
how we aim to map each bisulfite color read uniquely to
the reference genome while minimizing the number of
non-bisulfite treatment mismatches.
The algorithm of BatMeth is as follows. BatMeth starts

by preparing Converted Genome and Non-CpG Converted
Genome, and does a one-time BWT indexing on them.
For every color read, we do a Counting Hits of BS Color
Read of the read on the references and discard them
according to List Filtering. After applying Mismatch stage
Filtering, the unfiltered hits are converted to base space as
described in Conversion of Bisulfite Color Reads to Base
Reads to allow for the checking of bisulfite-mismatches.
The Color Mismatch Count for the retained hits is then
determined and the unique locus with the lowest mis-
match count reported; otherwise, no hits are reported for
this read. We have also utilized additional heuristics, such
as Fast Mapping onto Two Indexes and Handling Hypo-
and/or Hyper Methylation Sites to speed up and improve

the accuracy of BatMeth, which we discuss below. All the
components, namely, List Filtering, Mismatch Stage Filter-
ing, Conversion of Bisulfite Color Reads to Base Reads,
Color Mismatch Count, Fast Mapping onto Two Indexes
and Handling Hypo- and/or Hyper Methylation Sites differ
from existing methods. Figure 4b outlines the algorithm
and shows how the components are assembled for SOLiD
color-space bisulfite read mapping.
Non-CpG Converted Genome
The reference genome and its reverse-complement were
first prepared by converting all its Cs to Ts as described in
the base reads mapping procedures; then, the two con-
verted genomes are encoded into color space. These two
genomes are called fully converted color genomes. In addi-
tion, the reference genome and its reverse-complement
are similarly converted except that the Cs in CpG are left
unchanged. We call these the non-CpG converted color
genomes. Finally, the BWT indexes for these four color
genomes are generated.
In the algorithm, the bisulfite color reads will be mapped

to the fully converted color genomes to identify unique
hits first; if this fails, we will try to map the reads onto the
non-CpG converted color genomes and BatMeth will label
which reference a hit is from.
The reason for using the non-CpG converted genome is

that the conversion step for bisulfite color reads is differ-
ent from that for Illumina. In Illumina reads, the C-to-T
mismatches between the raw bisulfite reads and the refer-
ence genome are eliminated by converting all Cs to Ts in
both the reads and the reference genomes. However, we
cannot make such a conversion in bisulfite color reads as
we do not know the actual nucleotides in the reads. Based
on biological knowledge, we know that CpG sites are
expected to be more methylated [35]. Hence, such conver-
sion reduces the number of mismatches when the color
reads are mapped onto the reference genome in color
space. This aids in gaining coverage in regions with high
CpG content. Thus, BatMeth maps bisulfite reads to both
hyper- and hypo-methylation sites.
Counting Hits of BS-Color Read and List Filtering
Unlike sequencing by Illumina, SOLiD only sequences
reads from the original bisulfite-treated DNA strands.
During PCR amplification, both strands of the DNA are
amplified but only the original forward strands are
sequenced. Subsequently, during the sequencing phase,
reverse-complement reads are non-existent as a specific
5’ ligated P1 adaptor is used. As such, matches to the
reverse-complement of the bisulfite-converted reference
genome are invalid.
In other words, although a bisulfite color read has four

possible orientations to map on the non-CpG converted
color genomes (or the fully converted color genomes),
only two orientations are valid as opposed to the four
orientations in the pipeline on Illumina reads (Table 6).

Table 5 Cutoffs for list filtering on simulated reads from
the Results section

List
size

Mismatch counting in
secondsa

Correct
hit

Wrong
hit

Total
hit

20 136 901,164 1,516 902,680

40 165 901,160 1,462 902,622

60 191 901,165 1,454 902,619

100 279 901,166 1,448 902,614

200 475 901,166 1,447 902,613

500 1,197 901,167 1,450* 902,617

1,000 2,942 901,167 1,450* 902,617

Asterisks indicate increased false-positives produced with large list filtering
cutoffs.

Lim et al. Genome Biology 2012, 13:R82
http://genomebiology.com/2012/13/10/R82

Page 11 of 14



As opposed to the mapping of Illumina reads, it is not
preferred to do a naïve conversion of color reads to base
space prior to mapping. Figure 1a shows that a single
base call error in an Illumina read will introduce one
mismatch with respect to the reference. However, Figure
1b shows that a single base color call error in a color
read will introduce cascading base mismatches instead of
just one color mismatch if we are to map the color read
as it is onto the reference in color space.
Thus, we will need to do a primary map onto a con-

verted genome with a higher mismatch parameter (by
default, 4) than what we usually use for Illumina bisulfite
reads as a bisulfite mismatch will introduce two adjacent
color mismatches (see Figure 1c for an example of bisul-
fite-induced adjacent color mismatches). Similar to map-
ping Illumina reads, we count the number of possible hits
from the two valid orientations. Then, the List Filtering
step is applied to filter the lists with too many hits (by
default, more than 10). (Note that this property also helps
us to estimate the noise rate; we discuss this further in
Noise Estimation in Color-reads.
Conversion of Bisulfite Color Reads to Base Reads
After the color bisulfite reads are aligned to the reference
genome, we can convert the color bisulfite reads to their
most-likely nucleotide equivalent representation. In the
context of bisulfite mapping, we discount all the mis-
matches caused by bisulfite conversions.
We use a dynamic programming formulation as pre-

sented in [36] to convert color reads to base reads except
that the costs for bisulfite-induced mismatches have to be
zeroed when the reference is C and the read is T. This
conversion is optimal and we use the converted base read
to check against the putative genomic locations from List
Filtering to interrogate all mismatches in the read to deter-
mine if they are caused by bisulfite conversion, base call
error or SNP.
Color Mismatch Count
After converting each color read to its base-space equiva-
lent representation, we can calculate the number of base
mismatches that are actually caused by bisulfite treatment
in the color read. Figure 2d shows two different types of
adjacent color mismatches that are caused by bisulfite
conversion (left) and non-bisulfite conversion (right). For
bisulfite-induced adjacent mismatches, we assign a mis-
match cost of 0 to the hit. For non-bisulfite-induced adja-
cent mismatches, we assign a mismatch cost of 1 to the
hit.

To be precise, we consider a color read as C[1..L], where
L is the read length, and let B[1..L-1] be the converted
base read computed from the dynamic programming
described previously and mm[i] as a mismatch at position
i of C, which is computed using Equation 1. The mismatch
count of C is computed as mm[1]+...+mm[L-1], where:

mm[i] =
{

1, if C[i] and C[i + 1] are color mismatches, B[i] is non-BS mismatch
0, otherwise (1)

Mismatch Stage Filtering
We have developed a set of heuristics to improve the
rate of finding a unique hit among the set of candidate
hits. First, we sort and group the initial hits by their
number of color mismatches; then, we try to find a
unique hit with the minimum non-bisulfite-mismatch
count within each group of hits.
As the bound of color mismatches is known, we can

apply a linear time bucket sort to order all the candidate
hits according to their mismatch counts. The group of
initial mapping loci with the lowest mismatch number is
recounted for their number of base mismatches using the
converted read in base space obtained from the previously
discussed dynamic programming formulation. If a unique
lowest base mismatch hit exists among them, we report
this location as unique for this read. Otherwise, we pro-
ceed to recount the base mismatches for the group of
mapping loci with the next highest color mismatch count.
We continue this procedure until a unique hit is found or
until there are no more color-space mismatch groups to
be examined. A unique hit must be unique and also mini-
mizes the base mismatch counts among all previously
checked hits in the previous groups.
Mismatch stage filtering enables us to check less candi-

date hits, which speeds up the algorithm. It also improves
the unique mapping rate as there are less ambiguous hits
within a smaller group of candidate hits.
When the above components are applied, the mapping

rates on SOLiD data improve progressively as seen
below. By using Equation 1 to count color mismatches,
BatMeth was able to increase the number of unique map-
pings by approximately 9% and by employing Mismatch
Stage Filtering, unique mapping rate is approximately
increased by another 3%. With this increase in unique
mappings of approximately 12%, BatMeth had an esti-
mated noise level of approximately 1% as based on Equa-
tion 2 while B-SOLANA and SOCS-B had an estimated
noise levels of approximately 2.06% and 4.55%, respec-
tively, on the same set of 100,000 reads. These statistics
agree with the results on the simulated data and indicate
that BatMeth is capable of producing low-noise results.
Fast Mapping onto Two Indexes
As mentioned in Non-CpG Converted Genome, we map
bisulfite color reads onto four converted references, two
of which have their Cs converted to Ts at non-CpG

Table 6 Possible ways to map a bisulfite color read onto
the converted color genome

Reference (C®T) RC reference (C®T)

Read Count 1 Invalid

RC read Invalid Count 4

RC, reverse-complement.
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sites and the other two have all their Cs converted to
Ts. It was observed that mappings on both non-CpG
converted and fully converted references highly coincide
with each other with an approximately 95.2% overlap.
Due to this observation, we try to map onto the fully
converted reference first to give us a mapping to regions
of hypo-methylation status. If there are no mappings
found on the fully converted references, then BatMeth
maps the same read again onto the non-CpG converted
references, which biases hyper-methylation sites. This
allows the simultaneous interrogation of canonical CpG
hyper-methylation sites with reduced biased mapping on
the fully converted genome. BatMeth also labels each hit
with the type of converted references it was mapped to.
Overall, this approach can save time by skipping some
scanning of the non-CpG-converted references.
Handling Hypo- and/or Hyper-Methylation Sites
With prior knowledge of the methylation characteristics of
the organism to be analyzed, different in silico conversions
to the reference can be done and the best alignments can
be determined from the combined set of results of differ-
ent mapping runs. BatMeth uses two types of converted
genomes to reduce mapping biases to both hyper- and
hypo-methylation sets. Since the two sets of hits from the
two genomes coincide to a large extent, we can save time
by scanning a read on one genome with a much lower
mismatch number than on the other genome.
BatMeth allows users to choose the mismatch number

they want to scan on each of the two types of genomes.
We now introduce M1 and M2 (capped at 5) as the mis-
match numbers used in the scans against the fully con-
verted and non-CpG-converted genomes, respectively. For
the best sensitivity, BatMeth scans at M1 = M2 = 5 for
both hyper- and hypo-methylation sites. For the highest
speed, BatMeth scans at [M1 = 0, M2 = 3] and [M1 = 3,
M2 = 0], which will perform biased mapping to hyper-
and hypo-methylation at CpG sites, respectively. Figure 2c
shows the results of running the various modes of Bat-
Meth (Fast, Default and Sensitive) on a set of 10,000 simu-
lated color reads.
Noise Estimation in Color-reads
To estimate noise rates, we map the real reads in their
two possible orientations onto the genome. If a hit is
found for a read from the original strands of the genome,
we try to map the same read onto the complement strand
of the genome too. If a lower mismatch hit can be found
from the complement strand of the genome, then we
mark the result for this read as noise. We use the propor-
tion of marked reverse-complement unique mappings to
estimate the noise level, given by Equation 2:

err =
# of reverse-complement mappings

# of mappings
(2)

Handling Ambiguous Bases
For base reads, non-A/C/G/T bases are replaced by A so
they will not affect the callings of methylation sites.
Similarly, color reads with non-A/C/G/T bases are
replaced with 0. Non-A/C/G/T bases on the reference
genome are converted to A to avoid affecting down-
stream methylation callers. We have avoided converting
them to random nucleotides as it may produce false hits
in regions containing ambiguous bases. We mapped 1
million 75 bp reads and have seen reads being mapped
to poly-N regions. This can be mostly attributed to the
reduced alphabet size, from four to three, due to bisul-
fite conversions.

Additional material

Additional file 1: Chosen parameters. This file details the parameters
used by the various programs in the Results section.
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