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Electrical Synapses
Mitchell J. Vaughn and Julie S. Haas*

Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States

Electrical synapses are the neurophysiological product of gap junctional pores between
neurons that allow bidirectional flow of current between neurons. They are expressed
throughout the mammalian nervous system, including cortex, hippocampus, thalamus,
retina, cerebellum, and inferior olive. Classically, the function of electrical synapses
has been associated with synchrony, logically following that continuous conductance
provided by gap junctions facilitates the reduction of voltage differences between
coupled neurons. Indeed, electrical synapses promote synchrony at many anatomical
and frequency ranges across the brain. However, a growing body of literature shows
there is greater complexity to the computational function of electrical synapses. The
paired membranes that embed electrical synapses act as low-pass filters, and as such,
electrical synapses can preferentially transfer spike after hyperpolarizations, effectively
providing spike-dependent inhibition. Other functions include driving asynchronous
firing, improving signal to noise ratio, aiding in discrimination of dissimilar inputs, or
dampening signals by shunting current. The diverse ways by which electrical synapses
contribute to neuronal integration merits furthers study. Here we review how functions
of electrical synapses vary across circuits and brain regions and depend critically on the
context of the neurons and brain circuits involved. Computational modeling of electrical
synapses embedded in multi-cellular models and experiments utilizing optical control
and measurement of cellular activity will be essential in determining the specific roles
performed by electrical synapses in varying contexts.
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INTRODUCTION

Across the nervous system, neurons couple to other neurons at gap junctions formed by plaques
of paired and docked hemichannel pores composed of connexin or innexin proteins (Phelan et al.,
1996, 1998; Starich et al., 1996; Condorelli et al., 1998; Landesman et al., 1999; Rash et al., 2000,
2001a,b; Stebbings et al., 2000; Söhl and Willecke, 2003) that allow ions to pass between neurons.
Gap junctions are the biophysical substrate for the neurophysiological component of electrical
synapses (Furshpan and Potter, 1957, 1959; Watanabe, 1958; Bennett, 1966), which couple neurons
in the mature mammalian brain. These unique structures enable current to flow directly between
neurons without relying on energetically costly neurotransmitters or a presynaptic spike in order
to initiate inter-neuronal communication. Similar to their more abundant counterpart, chemical
synapses, the function of electrical synapses is of great interest in determining how neurons
integrate inputs and information.
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Much early work focused on the potential for electrical
coupling to synchronize firing between neurons. Electrical
synapses pass ions proportionally to the difference in membrane
voltage between coupled neurons, and their most basic effect is
to reduce that difference, resulting in minimization of differences
in voltage or activity. This is thought to be the simplest, though
not sole, mechanism that underlies synchrony between coupled
neurons. Synchrony, generally considered, can be appreciated at
the level of ongoing repetitive activity, or for individual spikes.
Synchrony of spiking activity in broader heterogenous networks,
while more complex in mechanisms, often relies on contributions
from the inhibitory neurons that gap junctions frequently couple.
Thus, electrical synapses contribute to synchrony both directly
and indirectly. Because neuronal electrical synapses take diverse
values of strength amongst brain areas, their effects only rarely
approach the perfect synchronization that would occur between
coupled neurons with infinitely strong electrical synapses. This
opens the door to a variety of diverse effects mediated by
electrical synapses within neural circuitry. Previous reviews have
covered aspects of electrical synapses (Bennett and Zukin, 2004;
Connors and Long, 2004; Haas et al., 2016; Connors, 2017;
Nagy et al., 2018; Alcami and Pereda, 2019; Trenholm and
Awatramani, 2019; Curti et al., 2022). Here, we detail the progress
in understanding the functions of electrical synapses within,
and as a result of, coupled circuits and networks. We organize
our review by the different functions of electrical synapses,
followed by comments on future directions for studying electrical
synapses. Because so much work involves interrogating the
role of electrical synapses in synchrony of rhythmic activity,
that section is divided into subsections based on the source
of the evidence.

Synchrony of Rhythmic Activity
Reports of synchrony are a hallmark of electrical synapse work
across neural tissue (Figure 1A). Watanabe (1958) made the
earliest inference, noting that the synchronous subthreshold
fluctuations of lobster heart ganglion cells were a function of
common presynaptic inputs and electrical coupling. This was
followed by pioneering demonstrations of electrical coupling
by Bennett (1966), who inferred that electrical synapses were
likely to be associated with synchronization of activity, based on
observations of electrical coupling in fish electromotor neurons
and toad swim bladder motor neurons. Later, an early report
of synchrony in feline inferior olive was associated with the
presence of electrical synapses (Llinas et al., 1974). This was
eventually followed by paired-patch recordings that identified
electrical coupling between inhibitory interneurons in murine
cortex and also found that coupled neurons were inclined to
spike together when depolarized (Galarreta and Hestrin, 1999;
Gibson et al., 1999; Beierlein et al., 2000). Electrical synapses have
long been known to contribute to synchrony in crustacean neural
networks (Eisen and Marder, 1982; Hooper and Marder, 1987;
Gutierrez et al., 2013).

Neocortex
Cortical rhythms are diverse and include gamma-range
oscillations, which are linked to higher-order function

(Benchenane et al., 2011); beta oscillations, which are involved
in sensorimotor processes (Kilavik et al., 2013); theta oscillations
associated with learning, memory, spatial navigation, and
speech (Benchenane et al., 2011; Giraud and Poeppel, 2012);
delta oscillations that are related to speech processing and
decision making (Giraud and Poeppel, 2012; Nácher et al.,
2013); and alpha oscillations that are tied to attention (Buzsáki
and Draguhn, 2004; Hanslmayr et al., 2011). In electrically
coupled cortical interneurons, simultaneous depolarization
drives coordinated spiking (Gibson et al., 1999, 2005; Beierlein
et al., 2000; Blatow et al., 2003; Mancilla et al., 2007; Hu and
Agmon, 2015). Carbachol-induced spiking is synchronous
in coupled inhibitory neurons as well, and that synchrony is
correlated with electrical synapse conductance, while uncoupled
neurons displayed no correlation in spiking (Caputi et al., 2009).
Similarly, correlated spiking induced by ACPD or carbachol is
desynchronized by connexin36 knockout or pharmacological
blockade of gap junctions (Deans et al., 2001; Blatow et al., 2003).
For layers 2 and 3 basket cells, gamma frequency stimulation in
one cell entrains gamma frequency spiking in coupled basket
cells, albeit with a phase lag of about 10 ms; electrical coupling
in addition to GABAergic connections shortened gap junction
mediated postsynaptic potentials and promoted synchronous
gamma activity (Tamás et al., 2000). Synchronization of cortical
interneurons can entrain synchrony of rhythmic spiking in
cortical pyramidal neurons (Whittington et al., 1995, 2000;
Traub et al., 1996; Whittington and Traub, 2003; Cardin, 2016);
synchronized network rhythms may be important for sensory
processing, working memory, and attention (Buzsáki and
Draguhn, 2004; Wang, 2010; Benchenane et al., 2011; Hanslmayr
et al., 2011).

Thalamus
The thalamic reticular nucleus (TRN) receives excitatory input
from ascending thalamic relay nuclei (Jones, 1975; Ohara and
Lieberman, 1985; Fosse et al., 1986; Fitzpatrick et al., 1994;
Liu and Jones, 1999), feedback excitation from layers 5 and
6 of cortex (Jones, 1975; Bromberg et al., 1981; Fonnum
et al., 1981; Feig and Harting, 1998; Zhang and Jones, 2004),
and a myriad of modulatory input (Wilson, 1985; Cornwall
et al., 1990; Gandia et al., 1993; Reardon and Mitrofanis,
2000; Freeman et al., 2001; Prensa and Parent, 2001; Anaya-
Martinez et al., 2006; Zikopoulos and Barbas, 2012; Leon-
Dominguez et al., 2013); the exclusively GABAergic neurons
of the TRN provide the main source of inhibitory drive onto
thalamic nuclei (Scheibel and Scheibel, 1966; Jones, 1975; Houser
et al., 1980), and thus control thalamocortical relay of sensory
information. The TRN is integral in thalamocortical spindle
oscillations during sleep and memory formation during sleep
(Pinault, 2004; Steriade, 2005; Halassa et al., 2011; Latchoumane
et al., 2017). Paired depolarization of coupled TRN neurons
drives correlated spiking (Landisman et al., 2002; Haas and
Landisman, 2011), and depolarization resulting from ACPD
application also causes correlated spiking (Long et al., 2004).
The cross-correlation of mGluR-induced subthreshold rhythms
is positively correlated with the conductance of the electrical
synapse within the pair.
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FIGURE 1 | Electrical synapses have diverse functions in neural processing. (A) Example of synchronous activity in coupled neurons (adapted from Long et al.,
2004). (B) Example of anti-synchronous firing in coupled neurons (adapted from Vervaeke et al., 2010). (C) An electrical synapse (right) shunts an excitatory signal to
one cell to subthreshold levels, compared to the uncoupled case (left) (adapted from Hjorth et al., 2009). (D) Slow spike afterhyperpolarizations appear as inhibition
in a coupled neuron (adapted from Galarreta and Hestrin, 2001). (E) Spikes result in excitation in a coupled neuron (adapted from Apostolides and Trussell, 2014).
(F) Example of a signal amidst noise in retinal neurons, impacted by the presence of electrical synapses (adapted from Dunn et al., 2006).

Hippocampus
The nested gamma and theta rhythms of the hippocampal
formation are essential to its spatial and memory functions
(Colgin and Moser, 2010), and hippocampal GABAergic neurons
are connected via dendrodendritic gap junctions (Fukuda
and Kosaka, 2000). Hippocampus basket cells initiate gamma
oscillations when depolarized with potassium, glutamate, kainite,
or carbachol; the measured power of those gamma oscillations
through field potentials are reduced with gap junction blockers
or connexin knockout (Hormuzdi et al., 2001; Traub et al., 2001).
Furthermore, IPSCs onto pyramidal cells become more variable
in connexin knock outs (Hormuzdi et al., 2001). The effect of
gap junctions synchronizing gamma oscillations was reinforced
by a following study recording field potentials of CA1 pyramidal
neurons in vivo, where connexin36 knockout reduced the power
of gamma oscillations (Buhl et al., 2003).

Synchronous high frequency (<150 hz) bursts of activity
occur in hippocampal pyramidal neurons, and gap junctions are

necessary for the high frequency bursts to occur in vitro (Draguhn
et al., 1998), although this was not confirmed in vivo (Buhl
et al., 2003). Seizing activity in hippocampal slices induced by
Ca2+ free ACSF is reduced and desynchronized by weakening
electrical coupling through acidification (Perez-Velazquez et al.,
1994). Similarly, another hippocampal seizure model with no
Mg2+ and 4-aminopyridine in the ACSF had its population
bursts greatly reduced by gap junction blockers, suggesting that
electrical synapses were partially responsible for simultaneous
activity seen in the seizure model (Ross et al., 2000).

Cerebellum
The cerebellum is responsible for timing of motor control,
and precise temporal precision of spiking is key to that
function. Both low frequency (7–30 hz) oscillations and high
frequency (>40 hz) oscillations have been observed in the
cerebellum and may contribute to motor execution and learning
(D’Angelo et al., 2009). In vitro, spontaneous spiking in coupled
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Golgi inhibitory interneurons of the cerebellum is correlated.
Further, coupled Golgi neurons oscillate synchronously or spike
synchronously when depolarized with kainate (Dugué et al.,
2009). Computational modeling of Golgi neurons suggests that
transfer of the after hyperpolarization through the gap junction
is critical for synchronized spiking. The afterhyperpolarization
(AHP) is inhibitory to the coupled cell and determines the delay
period after which a coupled neuron can next spike (Dugué
et al., 2009). In vivo cell-attached recordings demonstrated that
coupled Golgi interneuron spiking is correlated within a few
ms (van Welie et al., 2016); knock-out of connexin36 results
in uncorrelated spiking. Paired recordings showed that spiking
in one neuron resulted in a depolarizing spikelet in the other,
and in some instances, the spikelet was sufficient to drive a
correlated spike within milliseconds. Altogether, these heroic
in vivo experiments suggest that coupled Golgi interneurons
spike together due to electrical synapses correlating subthreshold
potentials and by driving a coupled neighbor past threshold
through an excitatory spikelet.

Inferior Olive
The coupled neurons of the inferior olive provide error-signal
input to cerebellar Purkinje cell dendrites and exhibit strong
subthreshold and spiking oscillations in the 1–10 Hz range
of frequency (Armstrong et al., 1968; De Zeeuw et al., 1998).
Paired recordings of inferior olive (IO) neurons show that
spontaneous spiking and subthreshold oscillations are highly
correlated amongst coupled neurons. Knockout of connexin36
causes an increase in uncorrelated spiking and desynchronization
of subthreshold oscillations, which still persist (Long et al.,
2002; Leznik and Llinas, 2005). Long et al. (2002) suggest
that coupled IO neurons spike synchronously in part due to
coupled neurons faithfully spiking at the peak of membrane
fluctuations, where decoupled neurons sometimes spike in the
trough of their oscillation. Electrical synapses reduce excitability
by shunting current, and therefore, they make IO neurons
less likely to spike during the trough of a subthreshold
membrane oscillation.

Synchronization of IO neurons via gap junctions affects the
downstream synchrony of cerebellar neurons. In vivo injections
of gap junction blockers into the IO or knockout of connexin36
reduces synchrony of complex spikes in postsynaptic Purkinje
cells (Blenkinsop and Lang, 2006; Marshall et al., 2007) and
interferes with motor learning (Van Der Giessen et al., 2008).
This effect is presumably the result of desynchronized activity in
the uncoupled IO.

Suprachiasmatic Nucleus
The suprachiasmatic nucleus (SCN) is a central regulator of
circadian rhythms. Dye-coupling, which images the spread
of gap junction-permeable dyes through coupled networks, is
greatest during the sleep cycle, when there is more synchronous
activity, than during the active cycle (Colwell, 2000). Coupling
is positively correlated with synchronous spiking, while spiking
was uncorrelated in uncoupled neurons (Long et al., 2005). The
circadian rhythms of connexin36 knockout mice are irregular,
so the synchronous firing during the wake cycle may be a
component of circadian rhythm maintenance (Long et al., 2005).

Long et al. (2005) also showed evidence that coupling between
cells changes in strength over 24 h and that knockout rats lose
rhythmicity of circadian activity in 24 h dark conditions.

Brainstem
Evidence for the synchronizing effects of gap junctions in
brainstem is mixed. One study using adult rats found that
gap junction blockers decreased synchrony of phrenic bursts
(Solomon et al., 2003). In contrast, an earlier study found
that gap junction blockers in neonatal brain stem slices
showed that gap junctions reduce synchronized activity of
the phrenic nerve in the short term (Bou-Flores and Berger,
2001). In the mesencephalic trigeminal nucleus, strong electrical
synapses can drive a quiescent neighbor to spike within
2 ms of the spikes of coupled neurons. Further, subthreshold
depolarizations of coupled neurons resulted in membrane
potential oscillations that were correlated between coupled
pairs (Curti et al., 2012). Synchronization of the mesencephalic
trigeminal nucleus could be important for coordinated inputs
to relax the jaw.

Spinal Cord
Electrical coupling is present between juvenile motor neurons
in rats, but it does not persist with maturation (Walton and
Navarrete, 1991; Chang et al., 1999). Juvenile motor neuron
spiking is correlated, even the presence of TTX, but spiking
becomes uncorrelated with pharmacological blockade of gap
junctions (Tresch and Kiehn, 2000; Personius et al., 2001).
Electrical synapses may have an important role in guiding
development of motor neurons by promoting synchronous
activity. Inhibition of acetylcholine release by motor neurons
during development causes electrical synapses to persist into
adolescence, suggesting that activity at the neuromuscular
junction communicates the need to remove electrical synapses
(Pastor et al., 2003).

Olfactory Bulb
Mitral cells in the olfactory bulb synchronously oscillate at 30–
80 hz when stimulated with one or more odorants (Kashiwadani
et al., 1999). Oscillations in the olfactory bulb have a role in
odorant discrimination, and it is speculated that synchronous
activity facilities the summation of EPSPs in piriform cortex
(Schoppa and Urban, 2003; Rojas-Líbano and Kay, 2008).
Electrical synapses contribute to synchrony in the olfactory bulb;
depolarizing coupled mitral cells in the olfactory bulb drives
correlated spiking that is absent when connexin36 is knocked out
(Christie et al., 2005).

Retina
Retina is a major hub where electrical synapses exert influence
on processing light signals. All layers of the retina express gap
junctions, and their electrical synapse strength is regulated by
brightness via dopamine, nitric oxide, and adenosine (Hampson
et al., 1992; McMahon and Brown, 1994; Mills and Massey,
1995; Lee et al., 2002; Mills et al., 2007; Ribelayga et al., 2008;
Bloomfield and Volgyi, 2009; Kothmann et al., 2009; Li et al.,
2013; Jacoby et al., 2018; Trenholm and Awatramani, 2019).
Electrical synapse regulation in retina is critical for adaptation to
different light intensities.
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The developing retina undergoes slow waves of activity that
spread across ganglion cells with an interval on the order of
minutes (Firth et al., 2005). Retinal waves require electrical
synapses and L-type Ca2+ channels. It has been inferred that
electrical synapses propagate the wave by transferring excitation
driven by L-type Ca2+ channels (Singer et al., 2001; Firth
et al., 2005). Further, electrical synapses contribute to the
responsiveness of developing retina to light, and those electrical
synapses are depressed by retinal waves and dopamine release
(Arroyo and Feller, 2016).

Computational modeling of electrical synapses robustly
supports the role of electrical synapses in synchronization
(Mulloney et al., 1981; Sherman and Rinzel, 1992; Traub, 1995;
Chow and Kopell, 2000; Moortgat et al., 2000; Velazquez and
Carlen, 2000; Nomura et al., 2003; Pfeuty et al., 2003; Bem and
Rinzel, 2004; Kopell and Ermentrout, 2004; Mancilla et al., 2007;
Ostojic et al., 2009). Modeling suggests that electrical synapses
can switch from promoting synchrony to anti-synchrony in
different contexts (Mulloney et al., 1981; Sherman and Rinzel,
1992; Chow and Kopell, 2000; Lewis and Rinzel, 2003; Nomura
et al., 2003; Pfeuty et al., 2003; Bem and Rinzel, 2004; Gibson
et al., 2005; Mancilla et al., 2007). Some models point to voltage
equalization as a key part of electrical synapse promotion of
synchrony (Sherman and Rinzel, 1992; Montbrió and Pazó,
2020). In addition, models have shown that synchrony is
promoted by strong electrical synapses, while asynchrony is
promoted by weak electrical synapses (Chow and Kopell, 2000;
Nomura et al., 2003; Bem and Rinzel, 2004).

Models also suggest that electrical synapses can promote
anti-synchrony by preferentially passing the slower
afterhyperpolarization that follows a spike. This causes electrical
synapses to function as reciprocal inhibitory synapses, which
optimizes firing when the neurons are 180◦ out of phase
(Sherman and Rinzel, 1992; Bem and Rinzel, 2004; Ostojic et al.,
2009; Vervaeke et al., 2010). Similarly, modeling by Ostojic
et al. (2009) suggests that electrical synapses facilitate in-phase
synchrony when they are primarily excitatory but facilitate
bistable synchrony and asynchrony when they are primarily
inhibitory; these models also suggest that electrical synapses are
best able to promote synchrony when neurons are active at their
resonant frequency. In addition, models by Pfeuty et al. (2003)
demonstrate that electrical synapses promote anti-synchrony
when there is a strong persistent sodium current and weak
potassium current, but promote synchrony when there is a
strong persistent potassium current. Other models suggest that
generation of either synchronous or anti-synchronous activity
require reciprocal GABAergic connections along with electrical
synapses (Pfeuty et al., 2003; Bem et al., 2005; Gibson et al., 2005;
Lau et al., 2010).

Although anti-synchronous firing between coupled neurons is
a robust phenomenon across a wide spectrum of parameter space,
experimental evidence for this phenomenon is notably lacking.
One example of simulated electrical synapses and reciprocal
GABAergic synapses, implemented using dynamic clamp in
snail neurons, was able to produce anti-synchrony. Further,
stimulation of sparse mossy fiber inputs to Golgi cells transiently
switches coupled neurons from spiking synchronously to spiking

asynchronously in vitro (Vervaeke et al., 2010; Figure 1B).
However, anti-synchronous firing in coupled Golgi neurons was
not observed in vivo (van Welie et al., 2016).

Contrary to the persistent thread of evidence connecting
electrical synapses to synchronization, a few studies have
suggested that electrical synapses fail to play a central role in
synchronizing spiking in certain systems. In cortical inhibitory
neurons, knockout of connexin36 did not impair synchrony
of gamma activity, and synchrony of gamma activity was not
correlated with electrical synapse strength (Salkoff et al., 2015;
Neske and Connors, 2016).

Beyond Synchrony
Excitation
As mentioned above, by passing depolarizations between coupled
neurons gap junctions can act as excitatory synapses (Figure 1E).
Several studies have identified electrical synapses as actors in
lateral excitation, resulting in enhanced sensitivity to stimuli or
neural input. Retinal ganglion cells exhibit increased responses to
low-contrast and moving stimuli due to lateral excitation from
electrical synapses between bipolar, amacrine, or ganglion cells
(Trenholm et al., 2013; Kuo et al., 2016). Moreover, excitatory
electrical relay from AII amacrine cells to rod bipolar cells is
critical for rod-mediated responses in ganglion cells (Güldenagel
et al., 2001; Deans et al., 2002). For guinea pigs, the receptive
fields of ON center medium retinal ganglion cells (RGCs)
are effectively expanded by lateral excitation from electrically
coupled ON center α-RGCs (Puller et al., 2020). Under scotopic
conditions, electrically coupled directionally sensitive ganglion
cells (DSCGs) broaden their tuning for their preferred direction,
while uncoupled DSCGs tuning remain stable. Consequently,
coupled DSCGs enhance their detection of movement at the
cost of discrimination of movement direction through lateral
excitation (Yao et al., 2018). It is suspected that coupled DSCGs
could potentiate coupling under scotopic conditions to induce
that effect, but it remains to be directly measured. In the olfactory
bulb, mitral cells enhance reactions to odorants through electrical
lateral excitation (Christie and Westbrook, 2006). In addition,
depolarizing a Golgi cell in cerebellum increases firing rate in
its neighbors. Glutamate uncaging experiments in conjunction
with gap junction blockers revealed that gap junctions helped
compensate for the decay of the many chemical synaptic inputs
at distal dendrites (Vervaeke et al., 2012).

Direct excitatory drive by electrical synapses is a physiological
certainty in several cases. Strong electrical synapses between
TRN neurons enable bursts in one cell to drive a spike in
its coupled neighbor (Parker et al., 2009; Haas et al., 2011).
Similarly, Curti et al. (2012) demonstrated the excitatory power
of strong electrical synapses in the mesencephalic trigeminal
nucleus. In a pair with a coupling coefficient of 0.51, spiking in the
presynaptic cell was sufficient to drive spiking in the postsynaptic
cell. Interneurons in the stratum lacunosum moleculare of the
hippocampus can generate large depolarizations, up to 10 mV,
in their coupled neighbors when they burst, due to slower
depolarizations passing the gap junction (Zsiros et al., 2007).
Goldfish club endings excite Mauthner cells through a mixed
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chemical and electrical synapse to trigger an escape reflex.
The electrical synapses at the club ending experience a diverse
array of plasticity mechanism, which may finely tune how the
Mauthner cell responds to different auditory inputs (Pereda et al.,
1992, 1994, 1998, 2004). M5 Intrinsically photosensitive retinal
ganglion cells (ipRGCs) directly stimulate GABAergic amacrine
cells through gap junctions (Pottackal et al., 2021). The amacrine
cells then inhibit M5 and M4 ipRGCs; in this circuit, electrical
synapses function as the excitatory component of feedback
and feedforward inhibition. Striatal medium spiny neurons
depolarize cholinergic interneurons through gap junctions, and
electrical synapses contribute to the tonic activity observed in
cholinergic interneurons (Ren et al., 2021). Electrical synapses
also function to excite cortical parvalbumin neurons and
cooperate with NMDAR inputs to drive bursts (Lee et al.,
2021). In the TRN, spiking depolarizes coupled neighbors, and
potentiation of an electrical synapse can transform a synapse
from previously subthreshold to spike-driving (Fricker et al.,
2021). Modeling of thalamocortical inhibitory feedback circuits
revealed that excitation through electrical synapses in the TRN
can affect the temporal separation of inputs relayed to cortex
by thalamus (Pham and Haas, 2018). In this scenario, one TRN
cell receiving earlier input from thalamus drives a coupled TRN
cell to spike, which then delays spiking in its other thalamic
cells. The degree of separation is directly tied to the strength
of the electrical synapse, which can increase separation between
spikes in thalamic relay cells by tens of ms. In a feed forward
model circuit, powerful electrical synapses can drive coupled
interneurons to spike and shorten the integration window for
downstream cortical neurons (Pham and Haas, 2019).

Further, electrical synapses are capable of passing
subthreshold chemical synaptic events. Subthreshold EPSPs
in dorsal cochlear nucleus fusiform cells excite coupled stellate
cells, and that excitation can be sufficient to drive spikes in
the stellate cells (Apostolides and Trussell, 2014). Interneurons
in the stratum lacunosum moleculare are excited by GABA
due to HCO3

− leaving the cell (Perkins and Wong, 1996);
excitatory GABAergic postsynaptic potential are passed through
the gap junction. Inhibitory Renshaw cells in the spinal cord
also excite each other by passing cholinergic EPSPs through gap
junctions (d’Incamps et al., 2012). Thus, subthreshold chemical
synaptic inputs in one cell are computational relevant in its
electrical coupled neighbor and may be an understudied feature
of electrical synapses.

Inhibition
By passing hyperpolarizations such as AHPs or IPSPs between
coupled neurons, gap junctions act as inhibitory synapses
(Figure 1D). Due to the low-pass filtering that results from
current flowing across two cell membranes, slower signals are
preferentially transferred through electrical synapses compared
to faster events such as action potentials. In the case of spikes,
slow AHPs are passed more effectively than the spike itself,
making the event as a whole net inhibitory to the coupled
cell. This effect was noted in fast spiking cortical interneurons
(Galarreta and Hestrin, 2001). Inhibition from electrical
synapses can be compounded with an accompanying inhibitory

chemical synapse between coupled neurons, enhancing the
inhibitory effect after spiking (Galarreta and Hestrin, 2001).
The spike waveform in the presynaptic cell is critical in
determining whether electrical synapses will excite, inhibit,
or both after a spike. Spikes with larger half widths or
broad depolarizations underlying a burst are better at exciting
the postsynaptic cells, while fast spikes and large AHPs are
net inhibitory. Gibson et al. (2005) demonstrated that fast-
spiking inhibitory neurons send effective inhibition after spiking,
while low-threshold spiking neurons primarily depolarize the
postsynaptic neurons after spiking. Membrane potential also
affects the net valence of post synaptic potentials from
electrical synapses via differences in postsynaptic membrane
conductances. Fast-spiking neurons almost exclusively depolarize
postsynaptic cells after spiking when the postsynaptic neuron
is hyperpolarized, but they primarily inhibit depolarized
postsynaptic cells (Otsuka and Kawaguchi, 2013).

Inhibition carried by gap junction-mediated AHPs was also
described in Golgi interneurons (Vervaeke et al., 2010; Yaeger
and Trussell, 2016; Hoehne et al., 2020). Interestingly, in this
case electrical synapse inhibition was shown to function similar
to feedforward inhibition. Stimulation of excitatory parallel
fiber inputs to electrically coupled basket cells results in an
EPSP followed by electrically mediated inhibitory postsynaptic
potential. The inhibition delivered by electrical synapses in this
case sharpens the EPSPs that precede them and reduces temporal
summation, hallmarks of feedforward inhibition (Hoehne et al.,
2020). In striatum, burst firing between 25 to 60 Hz of fast-
spiking interneurons inhibits spiking in coupled neighbors by
transferring AHPs (Russo et al., 2013). In the dorsal cochlear
nucleus, fusiform cells are able to transfer subthreshold synaptic
voltage fluctuations to stellate cells via electrical synapses
(Apostolides and Trussell, 2014). EPSPs in fusiform cells
drive depolarization followed by a hyperpolarization caused by
closing HCN channels (Apostolides and Trussell, 2014). Both
the depolarizing and hyperpolarizing aspects of the chemical
postsynaptic potential in the fusiform cell is transferred to stellate
cells through the gap junction. The ability for electrical synapses
to hyperpolarize neurons and inhibit spiking is an important
aspect of their function that should not be overlooked.

Shunting
Unlike chemical synapses, electrical synapses passively contribute
to the excitability of neurons without requiring activation of
the synapse for that effect. When one neuron in an electrically
coupled pair is stimulated, the gap junction to the neighboring
cell shunts current away and renders the first neurons less
likely to spike (Llinas et al., 1974; Van Der Giessen et al.,
2008; Hjorth et al., 2009; Chatzigeorgiou and Schafer, 2011;
Kawano et al., 2011; Rabinowitch et al., 2013; Figure 1C).
Consequently, each hyperpolarized neuron in a coupled network
inhibits spike generation, and depolarization of those neurons
lifts that opposition. Shunting by electrical synapses can be
especially impactful when one neuron is coupled to many other
neurons. In such a network, a central neuron is strongly inhibited
from spiking until a threshold of neighbors are also depolarized
(Chatzigeorgiou and Schafer, 2011; Rabinowitch et al., 2013),
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effectively offering a mass-coincidence detection or insurance
against erroneous responses.

Moreover, regulation of electrical synapse strength affects the
overall excitability of a network. Coupled nNOS-1 amacrine
cells in retina release nitric oxide in response to light, which
consequently decouple the amacrine cells. Decoupling the
amacrine cells increases their individual excitability by reducing
the shunting of current to its neighbors (Jacoby et al., 2018).

Coincidence Detection
The same principles that enable electrical synapses to facilitate
synchrony also allow them to act as coincident detectors.
Typically, coincidence detection is conceptualized as the
summation of near-simultaneous excitatory chemical inputs
to one cell, driving spiking only when they are sufficiently
coincident. Inputs arriving through electrical synapses can work
in the same additive fashion. In addition, as mentioned earlier
and in contrast to excitatory synapses, inactive electrically
coupled neurons shunt current away from active neurons until
they become depolarized themselves. As a result, electrical
synapses can act as detectors of coincident depolarization
between coupled neurons by effectively checking if both neurons
in a pair are simultaneously depolarized before allowing spike
generation. Furthermore, the spikelet generated by one neuron
can drive spiking in a peri threshold neighbor, ensuring that
coincident inputs are likely to result in both neurons spiking.

Galarreta and Hestrin (2001) injected current simulating
subthreshold EPSPs into coupled cortical fast spiking
interneurons, which drove spikes when they occurred within
1 ms, but failed to drive spikes when EPSPs were separated
by 5 ms. Subthreshold current injections to each neuron of
a pair that are mismatched in time fail to produce spiking in
coupled amacrine cells, but generate spikes in both coupled cells
when applied to both cells in a pair simultaneously (Veruki and
Hartveit, 2002b). Similarly, Trenholm et al. (2013) stimulated
one retinal ganglion cell with light and a coupled neighbor with
current injection. Weaker light stimuli failed to drive spikes
unless there was coincident stimulation of the coupled neighbor
(Trenholm et al., 2013). In Golgi basket cells, simultaneous
stimulation of both cells in a coupled pair has greater action
potential probability compared to stimulation of one cell alone
(Alcami, 2018). Computational modeling of striatal inhibitory
neurons showed that electrical synapses reduce the overall firing
of neurons in the circuit, but that effect was minimized when
coupled neurons received coincident inputs (Hjorth et al., 2009).
Experiments in C. elegans have found that RIH neurons act as
a hub with electrical synaptic connections to multiple neural
pathways; coincident stimulation from electrically connected
partners were necessary to sufficiently stimulate RIH neurons
and facilitate C. elegans escape response after a nose touch
(Chatzigeorgiou and Schafer, 2011). Future modeling of the
nose-touch-response circuit supports that electrical synapses
from multiple pathways shunt current and make RIH neurons
less responsive, while multiple simultaneous active neurons
promote activation of RIH neurons and consequently the
escape response (Rabinowitch et al., 2013). Taken together, the
combined ability of electrical synapses to shunt current when a

neuron is inactive, and promote activity when it is active, helps
to cause synchronous activity and acts as detector of coincident
activity across multiple neurons.

Signal to Noise Ratio
Neurons are subject to a variety of stochastic factors, including
the random opening and closing of ionic channels and
spontaneous synaptic activity. A fundamental task for the
nervous system is to distinguish between signal and noise.
Electrical synapses that shunt current and decrease excitability
implement the functional effect of noise dampening (Figure 1F).
Computational modeling supports the possibility of this
mechanism for noise reduction via electrical synapses (Lamb and
Simon, 1976; Vardi and Smith, 1996; Usher et al., 1999; DeVries
et al., 2002; Medvedev, 2009).

Improvement of signal to noise ratio by electrical synapses
has been investigated in multiple systems. Noise was measured
in retinal preparations by recording membrane fluctuations of
AII amacrine cells in complete darkness; noise was greater in
amacrine cells with genetically knocked out connexin36 (Dunn
et al., 2006). In the fish olfactory bulb, the variance of mitral
cell response to an odorant increases with pharmacological
blockade of gap junctions (Zhu et al., 2013). Electrical synapses
suppress membrane oscillations entirely in drosophila lobula
plate tangential cells, likely via shunting noisy intrinsic currents
of in the cell (Ammer et al., 2022). It has also been inferred
that electrical synapses improve signal to noise ratio in the fly
olfactory bulb (Kazama and Wilson, 2009; Yaksi and Wilson,
2010) and monkey locus coeruleus (Usher et al., 1999). However,
experiments comparing noise in the presence and absence of
electrical synapses in those systems are still needed.

Asymmetry
Bidirectional flow of current is a notable distinguishing property
of electrical synapses. Yet the magnitudes of signals relayed
in each direction quite often show some degree of direction
dependence. In the mammalian nervous system, asymmetry of
synapses has been noted in neocortex (Galarreta and Hestrin,
2002), TRN (Haas et al., 2011; Sevetson and Haas, 2015;
Zolnik and Connors, 2016), inferior olive (Devor and Yarom,
2002), cerebellum (Mann-Metzer and Yarom, 1999; Alcami
and Marty, 2013; Szoboszlay et al., 2016), dorsal cochlear
nucleus (Apostolides and Trussell, 2013), and mesencephalic
trigeminal nucleus (Curti et al., 2012). Asymmetry could result
from heterotypy of gap junction channels and plaques, where
oligomerization or docking of different connexin or innexin
proteins can asymmetrically pass current (Bukauskas et al.,
1995; Phelan et al., 2008; Rash et al., 2013), and differences
in hemichannel scaffolding (Marsh et al., 2017) could also
contribute to the rectifying ability of electrical synapses. Even for
homotypic gap junctions based on connexin36, which are largely
voltage-independent (Srinivas et al., 1999), differences between
cell properties, such as input resistance or cable properties,
create functional asymmetry for signals sent across the gap
junction (Mann-Metzer and Yarom, 1999; Veruki and Hartveit,
2002a; Nadim and Golowasch, 2006; Alcami and Marty, 2013;
Amsalem et al., 2016; Mendoza and Haas, 2022). Furthermore,
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those different sources of asymmetry can also compensate
for or exacerbate genuine junctional asymmetry between
electrical synapses (Mendoza and Haas, 2022). For example,
at the Mauthner mixed synapse, heterotypic asymmetrical
gap junctions composed of connexin34.7 and connexin35
preferentially pass current from the Mauthner cell to the club
endings. At that synapse, rectification compensates for the large
dendrite of the Mauthner cell, making the electrical synapse more
functionally bidirectional (Rash et al., 2013).

Asymmetry of electrical synapses directly impacts their
function. Full rectification can create nearly unidirectional
communication, such as in the giant motor neuron of crayfish
or pyloric circuit of the spiny lobster (Furshpan and Potter,
1957, 1959; Graubard and Hartline, 1987; Johnson et al.,
1993). Voltage-dependent gating of gap junction channels allows
crayfish presynaptic giant interneurons to unidirectionally excite
the giant motor neuron and engage an escape reflex (Jaslove
and Brink, 1986). For the pyloric circuit of the spiny lobster,
the rectified synapse allows the lateral pyloric neuron to drive
the pyloric neuron to burst, and then send a delayed chemical
inhibitory signal to terminate the burst (Graubard and Hartline,
1987; Mamiya et al., 2003). In the dorsal cochlear nucleus
(Apostolides and Trussell, 2014), near-complete asymmetry is a
result of input resistance mismatch, and results in fusiform cells
driving spikes in more-compact stellate cells. Asymmetry in this
case ensures recruitment of local inhibition within the circuit
even during subthreshold excitation of the fusiform cells.

For more moderate asymmetry, modeling results reveal an
effect of asymmetry on detailed spike timing, even to the
extent of reversing spike order in a coupled cells (Sevetson
and Haas, 2015), and controls the phase of synchronous
rhythmic activity (Mendoza and Haas, 2022). Modeling of
larger networks shows that rectifying electrical synapses can
improve the robustness of rhythmic activity (Gutierrez et al.,
2013). Because electrical synapse plasticity has been shown
to systematically alter the degree of asymmetry (Haas et al.,
2011; Fricker et al., 2021), asymmetry may be actively
regulated in order to tune spike timing and network activity.
Collectively, our understanding of the function of asymmetry
is still limited, but its potential impacts are worthy of
additional investigation.

Future of Electrical Synapse Study
The study of electrical synapse function has a dense focus on the
contribution of electrical synapses to synchronization of activity
between coupled pairs. This attention is merited, and there is
ample evidence to support this function, especially when neurons
in a coupled network receive prolonged, simultaneous excitation.
The next decade of research would greatly benefit from studies
focusing on how electrical synapses in different systems affect
transient inputs, and from studies that look at how temporal
variation in the activity of multiple electrically coupled neurons
in a network affect activity. In C. elegans, a hub and spoke
model has been proposed, where a central neuron integrates
the information from multiple electrical synapses to determine
whether to fire. Such a computational process has not yet been
explored in mammalian electrical networks.

One limitation to understanding the functions of electrical
synapses within and beyond a network is that the gold standard
for identification and measurement of coupling between neurons
is dual whole-cell recordings, which is difficult and limited to
two cells at a time. In this manner, the network is neglected.
Extracellular methods, such as multi-electrode arrays, field
recordings, and wide-scale imaging of fluorophores overcome
this limitation, but do not reveal which neurons are coupled in a
network or the strengths or spatial distributions of their coupling.
One could hope that cell-specific optogenetics could mitigate
the barrier (Dakin and Li, 2006; Qiao and Sanes, 2016), and
some all-imaging approaches have identified GJ-mediated signals
(Tian et al., 2021). In computational studies of neural networks,
electrical synapses are most often neglected entirely, which we
regard as a vast missed opportunity.

Improved imaging could bring new insight into the function
of electrical synapses. Currently, we lack a dye that can pass
through connexin36-based gap junctions and be imaged in live
tissue, which limits our ability to identify and image specific
gap junctions. A new GCaMP connexin36 hybrid gene has been
created and used in HeLa cells (Moore et al., 2020). It is possible
that replacement of the connexin36 gene with the GCaMP
connexin36 hybrid would allow researchers to look at localized
activity in the dendrites and near the gap junction. However, this
is early speculation, and the viability of such a method needs to be
vetted. Another major complication is differentiating connexin36
in the cytoplasm from connexin36 that forms gap junction pores.

A recent innovation has created novel connexin genes through
an iterative mutation approach. Mutated perch connexin34.7 and
connexin35 proteins form exclusively heterotypic gap junctions
(Ransey et al., 2021a) resulting in asymmetrical electrical
synapses (Ransey et al., 2021b), and expression of each protein
can be directed toward specific cell types. This technique could
be useful for interrogating how the addition or substitution of
asymmetric electrical synapses modifies a circuit and behavior.

Electrical synapses have profound and complicated impacts
on the processing of neural signals. The functional consequence
of electrical synapses is collectively impacted by the membrane
voltages of pre- and post-synaptic neurons, the waveform of
spikes, the frequency of spiking, and their location on dendrites.
Wherever electrical synapses are present, their function should
be thoroughly interrogated. Moreover, it is important for
connectome projects (Van Essen et al., 2013; Oh et al., 2014;
Zhang et al., 2019) to include electrical connections in addition
to chemical connections to achieve a whole picture of neural
communication pathways.
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