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Abstract

Graphene has shown great potential for improving growth of many plants, but its effect on

woody plants remains essentially unstudied. In this work, Pinus tabuliformis Carr. bare-

rooted seedlings grown outdoors in pots were irrigated with a graphene solution over a con-

centration range of 0–50 mg/L for six months. Graphene was found to stimulate root growth,

with a maximal effect at 25 mg/L. We then investigated root microstructure and carried out

transcript profiling of root materials treated with 0 and 25 mg/L graphene. Graphene treat-

ment resulted in plasma-wall separation and destruction of membrane integrity in root cells.

More than 50 thousand of differentially expressed genes (DEGs) were obtained by RNA

sequencing, among which 6477 could be annotated using other plant databases. The GO

enrichment analysis and KEGG pathway analysis of the annotated DEGs indicated that abi-

otic stress responses, which resemble salt stress, were induced by graphene treatment in

roots, while responses to biotic stimuli were inhibited. Numerous metabolic processes and

hormone signal transduction pathways were altered by the treatment. The growth promotion

effects of graphene may be mediated by encouraging proline synthesis, and suppression of

the expression of the auxin response gene SMALL AUXIN UP-REGULATED RNA 41

(SAUR41), PYL genes which encode ABA receptors, and GSK3 homologs.

Introduction

Graphene is an important carbon nanomaterial with unique physical and chemical properties,

such as a colossal surface area, robust thermal and electrical conductivity, and good mechani-

cal strength, which make it a chosen material for nanoelectronics [1], biomedicine [2],

mechanical engineering [3], and environmental governance [4]. It is estimated that at least 1.3

billion dollars will be injected to develop new applications for graphene from 2014 to 2024 [5].
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With the growing use of graphene materials in more and more fields, there is an increasing

public concern about the safety of their releases to the environment [6]. Hence, research on

the biological effect of graphene has become an emerging topic in recent years.

It is generally believed that the effect of graphene on plant growth is associated with its phy-

siochemical properties, the application method used, the level and duration of exposure, and

the plant species being examined [7]. Numerous studies have reported positive effects of gra-

phene on the growth of wheat [8], coriander [9], garlic plants [9], maize [10], spinach [11],

chive [11], Gossypium hirsutum [12], Catharanthus roseus [12], Arabidopsis [13], watermelon

[13] and Aloe vera [14] at concentrations ranging from 10–200 mg/L. Graphene could pro-

mote plant growth through several different mechanisms. As a water transporter, graphene

could accelerate water absorption in roots and seeds [11]. Graphene treatment may enhance

ROS scavenging capacity to alleviate oxidative stress, enhance soluble protein content, and

decrease cell death [10]. Moreover, the application of graphene may improve fertilizer utiliza-

tion efficiency and affect the activity of soil microorganisms and soil organisms, thus indirectly

affecting plant growth [6, 15–17].

Notwithstanding these positive effects, it is reported that graphene may be detrimental to

plants under certain conditions. The sharp edges of graphene may physically cut cell mem-

branes and compromise their integrity [18]. In addition to increasing the uptake of water and

fertilizer by roots, graphene also increased the uptake of heavy metals such as cadmium and

arsenic, which increased their toxic effects [19, 20]. Furthermore, graphene treatment may

lead to the alteration of pH, metabolic processes, induce different degrees of oxidative damage,

and cause cell death [21]. These reported negative effects underscore the necessity for further

research before graphene can be applied in agroforestry.

Exogenous stimuli can change plant gene expression profiles, and so provide important

indicators for their effects. Graphene oxide treatment changes the transcription level of auxin

and abscisic acid synthesis genes in Brassica napus L. [22]. The transcript levels of auxin signal-

ing pathway genes IAAs and ARFs were affected by graphene oxide treatment in tobacco [23].

RNA-seq has been used as an efficient and fast means to discover the effects of graphene treat-

ment. Chen et al. reported that graphene treatment of maize leads to the upregulation of genes

related to transcriptional factor regulation, plant hormone signal transduction, nitrogen and

potassium metabolism, as well as secondary metabolism, thus providing numerous candidate

genes for the graphene response [24].

To our knowledge, previous studies on the biological effects of graphene have focused on

herbaceous plants, and woody plants, which have distinct physiological structures and growth

processes, have not been well investigated. Because of the advantages of strong adaptability,

drought resistance, cold resistance, and ability to grow on barren land, Pinus tabulaeformis,
one of the most widely distributed and important afforestation tree species in northern China,

has played an important role in conserving soil and water and improving the environment

[25]. Here, Pinus tabulaeformis was used to study the events occurring in woody plants in

response to graphene treatment using physiological experiments, cytological observations and

RNA sequencing. Our study enriches the understanding of the biological effects of graphene

and provides a theoretical basis for the application of graphene in agroforestry.

Materials and methods

Materials and characterization

All the chemicals and reagents used in this study were analytically pure. Graphene suspension

was produced by our laboratory as previously described [24]. In order to verify the quality, the

graphene used in this paper was further characterized by scanning electron microscopy and
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Raman spectroscopy. To obtain the morphology, graphene suspension was vacuum freeze-

dried and observed with scanning electron micro-scope (SEM, TESCAN, MAIA 3 LMH). A

drop of graphene solution was wind-dried on concave slide for detection of Raman spectra

using Renishaw inVia™ Qontor with a 532 nm excitation laser.

Treatments and plant growth status analysis

A graphene suspension with a concentration of 5 g/L was diluted in ultrapure water to differ-

ent concentrations (0, 12.5, 25 and 50 mg/L). Two years old pot-grown P. tabulaeformis bare-

rooted seedlings of similar size were selected for experiments. There were 20 ± 3 plants in each

group, among which 10 plants were selected for morphological and cytological analysis, and

the remaining were used for RNA sample. Every plant was irrigated with 150 mL graphene

solution once a month for 6 months.

The fresh weight (FW) of the root tissue was determined and then root morphology analy-

sis was conducted using a root scanner (EPSON Expression; China). The root tissue was then

dried at 65˚C for 48h and dry weight (DW) was determined [26]. The water content (WC) was

calculated as WC = (FW-DW) / FW%. The root scanning images were analyzed by WinR-

HIZO software (Regent Instrument Inc., Montreal, Canada). Root length (RL), root projected

area (RP), root superficial area (RS), root volume (RV), root tip number (RT), and root fork

number (RF) were measured to evaluate the root growth status.

Transmission electron microscopy

Roots were washed in water and placed into 10 mL centrifuge tubes containing 2.5% (v/v) glu-

taraldehyde dissolved with 50 mM phosphate buffer (pH = 7.2) for primary fixation. The fol-

lowing sample processing and preparation experiments were entrusted to the Electron

Microscope and Mass Spectrometry Analysis Platform of the Institute of Food Science and

Technology, Chinese Academy of Agricultural Sciences. Images were obtained using a trans-

mission electron microscope (TEM, HITACH, H-7500; Japan). The average root cell area was

determined using Image J software to measure the two outermost cell areas in the transmission

electron microscope images.

RNA extraction, library construction, sequencing and bioinformatics

analysis

Three biological replicates were performed for both the control (CK) and graphene treatment

groups. Cleaned root tissue was wrapped in aluminum foil and immediately immersed in liq-

uid nitrogen. The following experiments, including RNA extraction, cDNA purification,

library construction, sequencing and bioinformatics analysis were commissioned to OE Bio-

tech Co., Ltd. (Shanghai, China). The sequencing was conducted using an Illumina HiSeq X

Ten sequencer. Raw data were processed with Trimmomatic software to obtain clean reads

[27], which were assembled into transcripts by the paired-end method using Trinity software

[28]. The raw data of RNA-seq could be obtained from the Genome Sequence Archive in the

BIG Data Center of Sciences (https://bigd.big.ac.cn/) under accession number CRA004280.

The longest transcripts were chosen as unigenes for subsequent analysis. A final unigene set

was obtained by clustering with CD-HIT software [29] to remove redundancy. The methods

for functional annotation and classification were described in (S1 File). SwissProt annotation

and Gene ontology (GO) classification were performed for the unigene set. The unigenes were

mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to assign them

to potential metabolic pathways. The expression abundance of each unigene in each sample

was determined by sequence alignments. The Bowtie2 software [30] was used to obtain the
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number of reads for each unigene in each sample, and the software eXpress was used to calcu-

late the expression of the unigenes according to the FPKM (Fragments Per KB Per Million

Reads) method [31]. Genes with a p value< 0.01 and FC (Fold of change)� 2 were considered

differentially expressed genes (DEGs), which were identified using DESeq software [32]. DEGs

were further annotated using NR and SwissProt annotations from other plant databases. GO

enrichment analysis of DEGs was conducted according to the Fisher algorithm, and the KEGG

database was used for pathway analysis.

Quantitative real-time PCR analysis

Total RNA was extracted from CK and 25 mg/L graphene treated groups with the RNAprep

pure plant kit (TIANGEN, Shanghai, China), digested with DNase Ⅰ and reversed transcribed

into cDNA using PrimeScript1 RT reagent Kit (Takara, Dalian, China). The expression of

TUBB (TRINITY_DN15602_c0_g1_i1_1), which is predicted to encode the tubulin beta-5

chain, was used as an internal control. Primers were designed using the NCBI (National Center

for Biotechnology Information) Primer-BLAST program (https://www.ncbi.nlm.nih.gov/tools/

primer-blast/) and are listed in S1 Table in S1 File. Quantitative real-time PCR was conducted

as described in [33], and the relative level of each gene was calculated using the ΔΔCT (cycle

threshold) method. Three independent biological replicates were performed for qRT–PCR.

Statistical analysis

Each experiment had three biological replicates, and the results are presented as

mean ± standard deviation (SD). Significant differences between means were analyzed mainly

by one-way analysis of variance using the SPSS 21 software. Significance differences were

determined by a least significant difference (LSD) test at a 0.05 probability level.

Results and discussion

Characterization of graphene

Scanning electron microscopy was used to determine the morphological characteristics of the gra-

phene used in this study. At low power, the graphene presented a uniformly distributed lamellar

structure, with a scale less than 1.70 × 2.77 μm (Fig 1A). At high power, the graphene displayed a

smooth, folded and undulating shape as a whole (Fig 1B). The Raman spectrum of graphene is pre-

sented in Fig 1C. D band (~ 1,343 cm−1) and G band (~ 1,559 cm−1), the two main representative

Raman peaks of graphene were clearly evident, and the ratio of D band to G band intensity (ID/

IG) was about 0.76. These results indicate that the graphene used for this study is of high quality.

Fig 1. Characterization of graphene. (A, B) Scanning electron microscope images of graphene; (C) Raman spectra of graphene.

https://doi.org/10.1371/journal.pone.0253812.g001
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Graphene treatment promote root growth

To explore potential applications of graphene in forestry and to study the effects of graphene

on woody plants in soil, we studied P. tabulaeformis. Graphene solutions ranging from 0–50

mg/L were used to irrigate P. tabulaeformis bare-rooted seedlings once a month. No visible dif-

ferences were seen in the aerial parts between treatment and CK groups after 6 months (S1

Fig). In contrast to the aerial part, the root of P. tabulaeformis was more sensitive to graphene

treatment (Figs 2 and S1). Compared with the control group, with graphene concentrations

ranging from 12.5 to 50 mg/L, the root fresh weight increased by 67.2% to 109.8% (S2 Table in

S1 File). Correspondingly, root dry weight of these three groups increased by 65.3% to 103.7%

(S2 Table in S1 File). As expected, since the fresh weight and dry weight of the plant roots

changed almost in equal proportions among treatment groups, no differences in water content

were observed among groups (S2 Table in S1 File).

To further quantify the effect of graphene treatment on P. tabulaeformis root growth, the

roots of different groups were scanned and analyzed. A summary of root morphological

parameters, including root length, root projected area, root surface area, root volume, root tip

number, and root fork number are shown in S3 Table in S1 File. In accordance with its effects

on root biomass, graphene significantly increased almost all root morphology parameters at

the tested concentrations. Graphene at a concentration of 25 mg/L increased the root length,

root projected area, root surface area, root volume, root tip number and root fork number by

45.6%, 229.8%, 68.0%, 93.8%, 238. 7%, 39.7% and 24.9%, respectively. Based on the results of

root biomass and root morphological parameters, the optimal concentration for promoting P.

tabulaeformis root growth in the range of 0–50 mg/L was 25 mg/L, which was used for subse-

quent analysis.

Cytological and morphological changes were induced by graphene

treatment

To determine whether graphene could be absorbed into the roots of woody plants and to

investigate the effect of graphene on root cell structure, the cell morphology of P. tabulaeformis
grown with and without 25 mg/L graphene was observed by transmission electron microscopy.

Although graphene particles have previously been observed inside cells by TEM [20], no evi-

dence of this was found in the current study (Fig 3B, 3D, 3F and 3H). We believe that graphene

Fig 2. Root morphology of graphene treated roots.

https://doi.org/10.1371/journal.pone.0253812.g002
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in the soil either cannot enter the roots of woody plants, or that the amount of graphene enter-

ing the roots is below the observable threshold.

Studies on herbaceous plants have shown that graphene treatment can cause damage to the

cell membrane [34, 35]. The transmission electron microscopy images showed clear evidence

of damage to the cell structure in the graphene treatment group relative to the CK (Fig 3).

Images of root cross-sections of the control group showed a regular arrangement of cells, with

occasional small gaps between cells (Fig 3A). In the graphene treated roots, the gap between

cells was significantly enlarged (Fig 3B). High magnification images showed that the cells in

the control group were structurally intact (Fig 3C and 3E), while some cells in the graphene-

treated group had broken cell membranes (Fig 3D). On the other hand, the graphene treat-

ment did not affect nuclear morphology (Fig 3G and 3H). These results indicate that graphene

treatment may cause damage to the plasma membrane, and thus act as a stress.

The size of plant organs is determined by the number and size of cells they contain, which

is controlled by cell division and cell expansion, respectively [33, 36]. From the TEM image,

we found that the average cell area of the outermost two layers of the plant root decreased by

32.1%, from 525.15 μm2 to 356.72 μm2 (Fig 3A and 3B). This suggests that the increase of root

biomass of P. tabulaeformis resulting from graphene treatment may be due to an increase in

cell number rather than cell volume; graphene treatment may promote cell division in the root

system.

Sequencing and transcriptome assembling

To explore the global transcriptome changes of P. tabulaeformis in response to graphene treat-

ment, root tissue from 0 and 25 mg/L graphene treated plants were collected and RNA

sequencing was carried out with three replicates, with each replicate consisting of 3 randomly

selected plants. A total of 320 million raw reads and 317 million clean reads were generated for

6 root cDNA libraries with 94.9% to 96.5% valid bases. The GC content of the reads was

between 46.4% and 46.5% (S4 Table in S1 File). A final set of 123462 unigenes were obtained

by de novo assembly and was used as reference genome sequence for subsequent analysis. The

clean reads of each group were mapped to these unigenes. The number of total mapped clean

Fig 3. Transmission electron microscopy images of the P. tabulaeformis root system grown in the absence of graphene (A, C, E and G), and with

graphene treatment (B, D, F and H).

https://doi.org/10.1371/journal.pone.0253812.g003
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reads was 43.40–50.18 million (86.2% - 89.2%) and the number of uniquely mapped clean

reads was 33.72–40.06 million (69.0% - 71.2%) (S4 Table in S1 File). And the results of func-

tional annotation and classification were present in (S1 File and S2 Fig).

Differentially expressed gene analysis

The expression levels of unigenes were calculated by fragments per kilobase of transcript per

million fragments mapped (FPKM) method and normalized using DESeq software. The signif-

icance threshold for differential expression was set as |log2(FoldChange)| > 1 and p-

value < 0.05. In total, 50104 DEGs were observed after graphene treatment in root tissue,

among which 21179 were upregulated and 28925 were downregulated. Since most of the anno-

tated genes were homologous to fungal genomes, we removed these and obtained 6477 plant

DEGs (S1 Table), of which 2427 were up-regulated and 4050 were down-regulated. The genes

matched sequences mainly from the genome of Arabidopsis thaliana (55.44%), Picea sitchensis
(28.39%), Oryza sativa (8.74%), A. trichopoda (2.01%), Nicotiana tabacum (1.59%) and N. glu-
tinosa (1.51%).

Gene enrichment analysis for DEGs after graphene treatments

To understand the effects of graphene on the P. tabulaeformis root system, GO enrichment

analysis were conducted with DEGs annotated from plant databases. A total of 4871 DEGs,

including 1919 up-regulated and 2952 down-regulated, were aligned and classified using the

GO database. Fig 4 shows the 10 terms with the highest enrichment degree for 3 categories.

After exposed to graphene, GO terms associated with important biological processes were

enriched in ‘response to exogenous abiotic and biotic stimulis’. The up-regulated DEGs were

Fig 4. TOP10 GO terms for enrichment analysis of DEGs annotated to plant databases in each of the three GO

categories. A: up-regulated DEGs; B: down-regulated DEGs.

https://doi.org/10.1371/journal.pone.0253812.g004
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mainly enriched for terms related to stress responses, specifically salt, cold, cadmium ion and

osmotic stress. Among these abiotic stimuli, response to salt stress exhibited the highest degree

of enrichment, indicating that graphene induced a kind of abiotic stress similar to salt stress.

In contrast to up-regulated DEGs, the down-regulated DEGs were mainly enriched in ‘plant-

type hypersensitive response’, ‘defense response’, ‘defense response to bacterium’, ‘defense

response to biotic stimulus’, and ‘defense response to fungus (incompatible interaction)’, indi-

cating that graphene treatment alleviated the plant biotic stress response. In addition, the

response to external stimulus was accompanied by the alteration of biological processes related

to the ‘response to hormone (abscisic acid)’, ‘signal transduction’, ‘gene expession’, ‘amino

acid valine metabolism’, and ‘secondary metabolite synthesis (GDP-L-fucose and flavonoid)’.

In addition, molecular function enrichment consisted of ‘copper ion binding’, ‘ADP binding’,

‘RNA-directed DNA polymerase activity’, ‘peroxidase activity’, ‘calcium ion binding’, ‘NAD

(P)H oxidase activity’, and so on. Almost all the enriched molecular function terms were

related to metabolism, suggesting that changes in metabolic activities play an important role in

the plant’s response to graphene.

To investigate the plant-related pathways affected by graphene, 1706 DEGs (694 up-regu-

lated and 1012 down-regulated) annotated to plant database were also subjected to KEGG

pathway analysis. Consistent with GO enrichment analysis, the DEGs up-regulated were

enriched in categories related to plant hormone related signal transduction, while the DEGs

down-regulated were enriched for the category ‘plant–pathogen interaction’ (Fig 5). The

enriched KEGG pathways could be mainly divided into two classes: (1) environmental infor-

mation processing, including plant–pathogen interaction and plant hormone signal transduc-

tion; (2) metabolism, involving the citrate cycle (TCA cycle), and the biosynthesis and

degradation of many biomolecules, including amino acids, fatty acids, phenylpropanoids, fla-

vonoids, propanoate, carotenoids, ascorbate and aldarate. In summary, KEGG analysis further

indicates that graphene treatment results in alterations in hormone signal transduction and

metabolism processes.

Upregulated DEGs are enriched in plant response to abiotic stresses

Our observations using transmission electron microscopy to examine roots of graphene

treated roots suggested the plants may be experiencing mechanical stress. This was further sug-

gested by GO term enrichment analysis, which showed that up-regulated DEGs were enriched

Fig 5. TOP10 KEGG enriched pathway based on DEGs annotated from plant databases. A: up-regulated DEGs; B:

down-regulated DEGs.

https://doi.org/10.1371/journal.pone.0253812.g005
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for terms related to responses to abiotic stress, especially salt stress. We further analyzed the

DEGs related to responses to different abiotic stresses, including salt stress, water deprivation,

cold, osmotic stress, cadmium ion and heat. Of the total of 6477 DEGs annotated to plant data-

bases, there were 176 genes related to the salt stress response, including 99 up-regulated and 77

down-regulated, which made up the largest proportion of the different abiotic stresses (S3

Fig). In addition, the total number of DEGs related to responses to water deprivation, cold,

osmotic stress, cadmium ion, and heat were 83, 89, 49, 94 and 74, respectively (S3 Fig).

Many transcription factors are thought to be closely related to plant stress response, such as

MYB family, NAC family, bZIP family, bHLH family, Zinc finger family, AP2/ERF family, and so

on [37]. In addition, SAP18 [38], GOLS [39] andNFX1 [40] were reported to be induced by salt

treatment. In order to clarify the effect of graphene treatment on plant salt stress response, we fur-

ther analyzed the salt stress-related genes. As shown in Fig 6, the expression ofMYB3,MYB2,
MYB4,NAC22, bHLH148, SAP18 (Sin3A Associated Protein 18),GOLS (Galactinol synthase) and

NFX1 (NF-X-LIKE 1) are up-regulated after six months of graphene treatment.MYB3was func-

tion in regulating anthocyanin biosynthesis and flower development in apple [41].MYB2was

involved in the patterning of proanthocyandin and anthocyanin pigmentation inMedicago trun-
catula [42]. ArabidopsisMYB4 plays dual roles in flavonoid biosynthesis [43]. RiceNAC22,
which down-regulated by virus infection, might be related to the health stage maintenance [44].

Overexpression ofOsbHLH148, which induced by dehydration, high salinity, low temperature

and wounding, leads to elevated tolerance to drought stress in rice [45]. SAP18, encoding a his-

tone deacetylase complex subunit, was function in transcription regulation [38]. Overexpression

of TsGOLS2, a galactinol synthase, conferred enhanced tolerance to high salinity and osmotic

stresses in arabidopsis [39]. And theAtNFXL1 gene, encoding a NF-X1 type zinc finger protein

was required for growth under salt stress [40]. These candidate salt-stress response DEGs after

graphene treatment suggested that graphene might activate salt-stress response pathways in vivo.
Many studies revealed that plant hormone signaling pathways, including abscisic acid

(ABA), ethylene (ET), auxin, gibberellins (GAs), cytokinins (CKs), brassinosteroids (BRs), jas-

monic acid (JA), and salicylic acid (SA), play key roles in responding to various external

stresses and regulating plant growth and development [46]. KEGG pathway analysis of the

DEGs revealed enrichment of genes involved in plant hormone signal transduction, and GO

enrichment analysis highlighted the response to ABA. Therefore, we identified DEGs related

to hormone signal transduction pathways and shown in S4 Fig. Among all the hormones, ABA

and ET are most closely related to plant abiotic stress [47]. After graphene treatment, DEGs

related to ABA and ET-related signaling pathways are enriched. We found 62 and 72 DEGs

related to ABA and ET activated signaling pathways, respectively. The enrichment of DEGs in

ABA and ET activated signaling pathways provide further evidence that graphene treatment

induced stress responses in roots.

Fig 6. Selected candidate DEGs response to stress.

https://doi.org/10.1371/journal.pone.0253812.g006
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Plants subjected to exogenous stress can have altered metabolic activities [48]. Many metab-

olism-related genes have been identified as markers of plant response to salt stress [49]. Under

stress, the activity of enzymes that produce and scavenge ROS is affected, which can lead to

changes in cellular ROS levels. ROS producers include lipoxygenase and polyamine oxidase,

which were encoded by LOX, and PAO, respectively. And ROS scavengers include peroxidase,

catalase and superoxide dismutase encoded by PERs, CATs, and SODs, respectively [50]. And

glutathione producer glutathione reductase, encoded by GR, was critical to resisting oxidative

stress [50]. There were 5 PERs, 8 CATs, 20 SODs, 3 GRs, 3 LOXs, and 3 PAOs genes up-regu-

lated after graphene treated (Fig 7). These ROS-related genes can be used as representatives of

stress-related metabolic pathways, and their up-regulated expression suggests that graphene

treatment induced an in vivo stress response.

DEGs downregulated were enriched in plant response to biotic stress

According to GO enrichment analysis and KEGG analysis, the down-regulated DEGs were

enriched for the term ‘response to pathogen’. After graphene treatment, a total of 2120 pre-

dicted resistance genes (R-genes), based on PRGdb (http://www.prgdb.org), were differentially

expressed [51], among which 795 were upregulated and 1325 were downregulated (S5 Fig).

Strikingly, 4 PR1 (Pathogenesis- Related protein 1) homologous genes were down-regulated.

The down-regulated expression of a large number of R genes suggests that graphene treatment

might lead to a decrease in plant immune activity. The hormones SA and JA are recognized as

being important for plant immunity. After graphene treatment, the number of upregulated

and downregulated DEGs related to SA and JA activated signaling pathway were almost equal

(S3 Fig), which indicates that the observed down-regulation of R genes upon graphene treat-

ment may be independent of SA and JA.

DEGs regulated by graphene are involved in moderate stress promoting

plant root growth

Proline, the accumulation of which correlates with tolerance to drought and salt stress in

plants, has been shown to affect root growth by controlling cell division [52, 53]. The

Fig 7. Selected metabolism related DEGs in response to stress.

https://doi.org/10.1371/journal.pone.0253812.g007
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PYRROLINE-5-CARBOXYLATE REDUCTASE (P5CR) gene, encoding pyrroline-5- carboxyl-

ate (P5C) reductase, was up-regulated after graphene treatment (Fig 8), which may trigger the

increase of proline content and activate cell division. Interestingly, 62% (44) of the total 71

DEGs assigned to ‘cell cycle control’ and ‘cell division’ categories based on KOG classification,

were upregulated, which further supports the promotion of cell division in graphene treated

plants. In Arabidopsis, the GLYCOGEN SYNTHASE KINASE 3 (GSK3) genes ARABIDOPSIS
THALIANA SHAGGY-RELATED KINASE 11 (AtSK11) and AtSK12 are involved in the root

growth response that occurs upon mild osmotic stress [54]. As shown in Fig 8, there are three

GSK3 homologous genes downregulated, which could trigger root growth under mild osmotic

stress. The SMALL AUXIN UP-REGULATED RNAs (SAURs) auxin-responsive genes are

involved in the regulation of adaptive growth under abiotic stress [55]. There are 16 SAURs
differently expressed after graphene treatment. SAUR41, which is considered as a positive reg-

ulator for cell and hypocotyl elongation, was upregulated by graphene [56]. Under abiotic

stresses, such as salt stress, the PYLs (PYR/PYL/RCAR) ABA receptors are involved in root

growth adaptation [57]. Mutations in PYLs promote plant growth and productivity [58]. Gra-

phene treatment induced downregulation of all 3 PYLs (PYL2, PYL3 and PYL4). The changed

expression of these stress-responsive genes may therefore underlie the observed promotion of

root growth in response to graphene treatments.

Data validation

The expression of 10 DEGs, including two PR1 genes, P5CR, SAUR41, three GSK3 homolo-

gous genes and three PYLs were examined by real time PCR, to validate the RNA-seq results.

The observed variation in expression of these genes in response to graphene treatment was

consistent with that of transcriptome sequencing (Fig 9), indicating that the transcriptome

sequencing results are reliable.

Our current understanding of the influence of graphene on woody plant growth is very lim-

ited. As a perennial woody plant, the sensitivity of P. tabulaeformis to exogenous substances

may be different from that of herbs. Our study of P. tabulaeformis established that at a concen-

tration of 25 mg/L, graphene addition to soil can stimulate plant growth, which not only pro-

vides evidence for the biological effect of graphene, but also provides a potential means to

enhance forest productivity.

Physiological experiments showed that the effect of graphene on roots was stronger than on

the aboveground tissues, which is consistent with research on Aloe vera [14]. This leads us to

Fig 8. Selected DEGs promote root growth in response to stress.

https://doi.org/10.1371/journal.pone.0253812.g008
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believe that the root system, which interacts with graphene directly, may be the most impor-

tant organ in the plant’s response to graphene for both herbs and woody plants. Considering

the correlation between root and aboveground growth, further studies are necessary to explore

the effects of graphene on aboveground biomass by increasing the treatment time or changing

the treatment conditions.

A large number of studies have shown that graphene treatment causes stress responses in

plants that include the induction of oxidative stress [21, 59]. Our transmission electron micro-

scope observations confirm that graphene treatment causes cell membrane damage in root

cells. According to the results of GO enrichment analysis and KEGG pathway analysis, upregu-

lated DEGs were enriched in genes related to salt stress. Graphene was reported to accelerate

the absorption of heavy metals such as cadmium and arsenic in plants and to enhance the tox-

icity of heavy metals [20, 34, 60]. Mild salt stress may be induced in saline-alkali land, due to

the increased salt uptake capacity of graphene treated roots.

For plants growing under natural conditions, moderate stress promotes the accumulation

of proline [61], which greatly improves their ability to survive in the face of severe stress [52,

62]. The observed graphene induced expression of P5CR could affect proline content. In addi-

tion, many hormones play important roles in mediation of stress responses and regulation of

plant growth adaptation [63]. Among these, ABA is the most important for abiotic stress

responses. GO analysis showed that DEGs related to the ABA response were enriched in gra-

phene treated roots. In addition, negative root growth regulators PYL ABA receptors [58] and

GSK3 homologous genes [54] were down-regulated by graphene treatment, while positive root

growth regulators SAUR auxin response genes [55, 56] were up-regulated by graphene treat-

ment. These genes may be involved in graphene-induced plant growth and are attractive can-

didate genes for further research.

Graphene has an antibacterial effect on both bacterial and fungal pathogens, and can signif-

icantly change the structure of the soil microbial community [16, 17]. The observed effects of

graphene on the plant biotic response may be caused by suppression of microbial populations.

Graphene induced the down-regulation of a large number of resistance genes, but did not sig-

nificantly disturb the JA and SA signaling pathways. Defense responses are always costly and

can lead to the inhibition of growth [64], therefore the observed decrease in defense responses

may also be an important factor in graphene-induced plant growth promotion.

Fig 9. qRT-PCR validation of the RNA-seq results. Control group was set as 1, and the black column represented the

relative expression of DEGs in the graphene-treated group.

https://doi.org/10.1371/journal.pone.0253812.g009
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Due to their sessile nature, plants are always exposed to an ever-changing environment

throughout their growth cycle and need to constantly adjust to the trade-off between growth

and defense [65]. The mild stress response induced by graphene may prime plants, making

them more resistant to stress, while graphene’s strong antimicrobial ability may help plants

conserve energy that would otherwise be needed for dealing with pathogens. Our study brings

a new perspective on the biological effects of graphene and provides a theoretical basis for the

application of graphene in agriculture and forestry.

Conclusions

The treatment of bare-rooted seedlings of P. tabulaeformis with graphene promoted root

growth with the highest efficiency at 25 mg/L, but damaged the cell membranes of root cells.

Graphene triggered abiotic stress responses but depressed the biotic stress response. In addi-

tion, metabolic processes and hormone signal transduction pathways were altered in gra-

phene-treated plants. The growth promoting effects of graphene may be mediated by

increased proline synthesis, and the reduced expression of the SAUR41 auxin response gene,

ABA receptor encoding PYLs genes, and GSK3 homologous genes, which are attractive candi-

date genes for future research.
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