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Abstract

Understanding biological response to stimuli requires identifying mechanisms that coordi-

nate changes across pathways. One of the promises of multi-omics studies is achieving this

level of insight by simultaneously identifying different levels of regulation. However, compu-

tational approaches to integrate multiple types of data are lacking. An effective systems biol-

ogy approach would be one that uses statistical methods to detect signatures of relevant

network motifs and then builds metabolic circuits from these components to model shifting

regulatory dynamics. For example, transcriptome and metabolome data complement one

another in terms of their ability to describe shifts in physiology. Here, we extend a previously

described linear-modeling based method used to identify single nucleotide polymorphisms

(SNPs) associated with metabolic changes. We apply this strategy to link changes in sulfur,

amino acid and lipid production under heat stress by relating ratios of compounds to poten-

tial precursors and regulators. This approach provides integration of multi-omics data to link

previously described, discrete units of regulation into functional pathways and identifies

novel biology relevant to the heat stress response, in addition to generating hypotheses.

Introduction

The highly conserved heat stress response has been extensively studied in organisms across

taxa. Understanding how to mitigate effects of hyperthermia has important applications in a

variety of disciplines. For example, heat stroke is a common, severe complication of acute

hyperthermia and a stronger biological understanding of its underpinnings could lead to more

effective therapies [1]. In the agricultural setting, prolonged heat stress—such as that encoun-

tered by livestock during heat waves—can decrease feed efficiency and animal growth and

cause significant commercial losses in meat production [2]. Additionally, heat stress has been
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known to exert systemic physiological consequences such as changes in egg production and

immune cell counts [3]. While many of physiological consequences of hyperthermia are

understood, a strong mechanistic description, particularly in the commercially important

broiler chicken, the subject of this study, is lacking.

Metabolic shifts during heat stress involve a number of signaling cascades [4]. These

include the unfolded protein response and both pro and anti-apoptotic pathways [5]. Increas-

ing evidence suggests that biologically active lipids play an important function during heat

stress, as signaling agents and maintaining cell membrane integrity [6]. Establishing the rela-

tionship between lipid metabolism and other well-characterized heat responsive pathways

would improve understanding of the flow of resources to different types of metabolites. This

could provide a model describing how small carbon precursors are selectively routed to vari-

ous fates necessary to sustain signaling, energy production, and other processes that must

undergo dynamic shifts under heat stress.

Viewing carbon flow as a circuit with dynamics that are affected by gene expression changes

produces an effective description and identifies testable biological hypotheses. This perspective

describes the mechanisms that manage and create resource pools in the form of biochemically

valuable carbon backbones. This includes cysteine and other catabolized amino acids, that are

selectively incorporated into various biologically active of molecules. The model that we con-

struct describes the interconnection between production of antioxidants, increased sugar

metabolism, and production of signaling and structural lipids.

Redirection of carbon backbones occurs at specific points of regulation where molecules

are processed into one of two or more available metabolic fates. This regulation can be

described by linear models. We have previously introduced this type of regulation in the form

of metabolic forks, but have now extended them to build pathway level models [7]. Impor-

tantly, this arrangement detects how gene expression patterns implement regulatory logic by

selectively directing resources.

Materials and methods

We first subsetted metabolite measurements for compounds representing sulfur, lipid, and

sugar metabolism because these are major processes influenced by heat stress [8]. This initial

step of feature selection reduced metabolite data from 600 compounds to approximately 60 to

serve as candidates in linear models. Our analysis deliberately focused on regulatory circuits

controlling metabolism involving only the selected components of tissue enriched genes and

metabolites linking sulfur and lipid metabolism. Details regarding bird experimental treat-

ments and library preparation from liver tissue can be found in the Supplementary Informa-

tion. The samples described in the study are from broiler liver tissue, as this is an important

location in the bird for regulation of processes affected by heat stress [8].

Iterative linear models and metabolic forks

We evaluated levels of compounds representing sulfur, lipid, and sugar metabolism as these

are major processes influenced by heat stress, in order to determine metabolic forks among

these systems and clarify how these types of metabolism relate to one another. Values for a cor-

relation function of the form cor A; B
C

� �� �
were calculated under control and heat stress condi-

tions, with A, B and C representing the levels of metabolites or gene transcripts (Fig 1). This

method demonstrates that the correlation between compound A and the ratio B
C can differ

between control and experimental conditions when there is heat responsive regulation of

members of the triplet, as the members of many of the selected triplets were significantly

impacted by heat stress. The most biologically informative triplets of the form A, B, and C
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often represent sets of precursors and their resulting metabolic products. Precursor-product

pairs were frequently found in triplets. These include, for example, glutathione and its known

precursor cysteine [9] as well as other triplets involving taurine which shares also depends on

cysteine as a precursor [10]. Because many compounds in separate triplets share precursors, it

is possible to use resulting linear models to detect differential routing of resources.

Ratios of compounds were used in these functions and subsequent models because they are

more sensitive to detecting points of potential regulation for diverging metabolic routes [11].

A biochemical interpretation of these functions is provided in Fig 2. Triplets whose difference

in value for the correlation function was 1.2 or greater between control and experimental con-

ditions, i.e. cor A; B
C

� �� �
heat � cor A; B

C

� �� �
control

�
�

�
� > 1:2, were selected as representing pos-

sible metabolic forks. A threshold was chosen because of the trade-off between identifying a

diverse set of triplets and the need to achieve stringency such that resulting linear models of

the triplet were likely to have significant interaction terms. Linear models were then used to

detect differential behavior under heat stress and to identify triplets with significant interaction

terms–indicating different slopes between control and heat stress conditions.

Fig 1. An example of two potential metabolic forks detected from the data through linear models. Each one

represents a triplet whose models A � B
C

� �
and B

C

� �
� A have significant interaction terms between control and heat

stress conditions.

https://doi.org/10.1371/journal.pone.0205824.g001

Fig 2. Metabolic forks, representing different favorabilities for the metabolic fates at regulatory branch points. A

shift in regulation changes the energetic favorability in favor of one route of the metabolic fork.

https://doi.org/10.1371/journal.pone.0205824.g002
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The threshold of 1.2 for identifying potentially interesting triplets was ad-hoc, with the lin-

ear models being used to determine a p-value for the differential regulation between control

and experimental conditions. Thus, ad-hoc correlation functions were used merely as screen-

ing to propose candidates for more rigorous evaluation by linear models. To be considered as

a pathway element and incorporated into a circuit, the interaction term must be significant for

both models of the form A � B
C

� �
and B

C

� �
� A. This stringent heuristic is chosen because of

ambiguity regarding directionality of the relationship between B
C

� �
and A. For example, while

ratios are more sensitive to detecting relationships between possible sets of precursors and a

product, it is not always clear which relationships among the triplet are causal and which are

correlative. While the reliance on linear models does enforce an assumption of linearity, such

an assumption is consistent with the use of correlation, which also measures linear relation-

ships, to identify differential regulation of triplets (Fig 3). After the formulation of linear mod-

els, triplets were merged (Fig 4) with one another to generate pathways. We focus on three

involving sulfur and lipid regulation, because regulation associated with these triplets repre-

sents the functioning pathway of lipid and antioxidant regulation also described by comple-

mentary transcriptome data. Regarding components of a metabolic fork, in terms of their

relationship to one another as precursors and products, these hypotheses are necessarily

Fig 3. Workflow to identify triplets of compounds that regulate sulfur and lipid metabolism.

https://doi.org/10.1371/journal.pone.0205824.g003
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associative and not always causal. However, confidence in the proposed directionality of rela-

tionships can be strengthened by gene expression changes. Per existing methods, all data was

log transformed before modeling [12]. Once libraries were sequenced, data were processed

using an in-house pipeline and fragments per kilobase per million mapped reads (FPKM) val-

ues were determined. Differential expression was determined by using the standard t.test func-

tion in R.

From merged triplets to pathways

By merging together forks it is possible to identify small, functional units that may be critical

elements of pathways. We demonstrate that integrating these isolated units to form controlled

regulatory systems can identify circuits of carbon and sulfur regulation. Importantly, linear

models relying on the ratios of metabolites identify differential behavior not detectable using

raw expression measurements alone. This may be due to reductions in variance [1] as well as

an ability to capture underlying biology by being more sensitive to fluxes down each metabolic

pathway. Importantly, these models can then be joined to create a larger circuit of regulation.

In these types of models, elements involved in each metabolic fork also play a role in the func-

tioning of other metabolic forks. The biochemical interpretation of each metabolic fork, and

the joining of multiple examples to form circuits captures the intuition and biochemistry of

pathways.

Results

A full mechanism relating sulfur, lipid, and antioxidant activities to one another can be con-

structed by linking several triplets (Fig 5).

Fig 4. Metabolic forks being merged. Metabolic forks are joined into potential pathways by identifying forks that

share overlapping members of triplets.

https://doi.org/10.1371/journal.pone.0205824.g004
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This is done by joining triplets (Fig 5) that share at least one overlapping element and

whose linear models exhibit differential behavior under heat stress (p-value for interaction

term must be< .05). This organizes sets of linear models (Figs 6 and 7) into a more compre-

hensive pathway representation. The resulting circuit describes, de-novo from the data, rela-

tionships between lipid and anti-oxidant compounds. These predictions are consistent with

previous research relating hypercysteinemia and hyperlipidemia to one another [13]. How-

ever, these relationships have not been previously established as components of the heat stress

response, and are thus novel contributions to the best of our knowledge.

Specifically, we detect relationships between stearoyl ethanolamide and the known precur-

sor-product pairs cysteinylglycine and glutathione [10]. This coupling between the lipid stear-

oyl ethanolamide and the sulfur metabolites cysteinylglcine and gluthatione changes under

heat stress conditions (p-value = .00523 for the interaction term in the model stearoyl ethano-

lamide as a function of the ratio
cysteinylglycine

glutatione and p-value = .0251 for the interaction term in the

model
cysteinylglycine

glutatione as a function of stearoyl ethanolamide). This relationship, which describes

selective utilization of cysteine for gluthathione related antioxidant processes, is consistent

with linear models for other metabolic forks involving sulfur containing metabolites such as

hypotaurine (p-value = .0176 for the interaction term in the model stearoyl ethanolamide as

a function of the ratio
cysteinylglycine
hypotaurine and p-value = .0349 for the interaction term in the model

cysteinylglycine
hypotaurine as a function of stearoyl ethanolamide).

In these models (described in detail in Figs 6 and 7), cysteine levels which are increased

under heat stress (p-value = .0227) encourage sulfur metabolism which is also coupled to spe-

cific lipid and antioxidant production via changes in expression of key regulatory genes. For

example, changes related to cysteine metabolism occur concurrently with decreased levels of

choline-derived signaling and structural lipids, as well as changes in gene expression for

enzymes related to these processes. Choline oxidase (ChO), which directs choline to sulfur

metabolism [14] is upregulated under heat stress (p-value = .0167). Choline kinase (ChoK),

which directs choline to production of lipids such as phosphatidylcholine and signaling lipids

Fig 5. Extended circuit based off of merging of triplets.

https://doi.org/10.1371/journal.pone.0205824.g005
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such as sphingomyelins [15] is downregulated under heat stress (p-value = .0184). Concur-

rently, classes of sphingomyelin derived lipids are also found at lower levels under heat stress.

These include sphingomyelin species such as sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/

23:0) (p-value = 0.000410491), sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1) (p-value =

.001389259), sphingomyelin (d18:1/24:1, d18:2/24:0) (p-value = 9.63E-05) and many other

choline derived species (S1 Table). Choline levels themselves are lower under heat stress (p-

value = 0.00108).

Differential behavior at each of the forks associated with changes in downstream lipids such

as sphingomyelins can be seen clearly in the series of linear models, each of which demonstrate

significant interaction terms changing patterns of pairwise correlations under heat stress (Figs

6A–6F and 7). These branch points can be placed in context of known biology to generate a

regulatory model that incorporates both transcriptome and metabolome measurements.

Genes that regulate the metabolism of each metabolite in the network skeleton can be located

on the skeleton in order to flesh out a full pathway model.

Discussion

Linear models involving metabolites and pairs of precursor-products that demonstrate signifi-

cant interaction terms can be related to each other through overlapping components. The

resulting collection of linear models describes shifts in lipid, cysteine and glutathione produc-

tion. When combined with transcriptome data, a metabolic circuit emerges that effectively

Fig 6. A-F. Metabolic forks and related models. Linear models detect differential behavior of the metabolic forks that

comprise the circuit. Figs (6–9) discuss each branch-point in detail. All p-values for relevant interaction terms are less

than .05. Data points that are green represent measurements from control conditions, whereas red data points represent

measurements from heat stressed birds.

https://doi.org/10.1371/journal.pone.0205824.g006
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exploits both transcriptome and metabolome data. While metabolite data is mostly used to

construct linear models, transcriptome data identifies gene expression changes consistent with

the behavior of these models.

Fig 8 is a metabolic circuit relating lipid, cysteine and glutathione production that results by

considering the behavior of each linear model (depicted individually in Fig 6A–6F), as well as

differential expression of important genes regulating components of the linear models. Many

of these models describe the incorporation of sulfur into biologically important molecules in a

way that is coupled with lipid metabolism. For example, cysteine demonstrates a strong corre-

lation with the lipid molecule stearoyl ethanolamide (.87) under heat stress (Fig 7). Cysteine,

which fuels many sulfur processing pathways such as glutathione production, is the only

amino acid increased under chronic heat stress (p-value is .0227). Stearoyl ethanolamide levels,

however, are lower under heat stress (.000499). The circuit in Fig 8, incorporatin joined triplets

as well as gene expression changes, is complex enough to describe several mechanisms by

which pools of cysteine can be coupled to the remaining production of lipids attenuated by

heat stress. These are reflected in the behavior of the linear models for relevant triplets.

For example, evidence for the fine-tuning of sulfur homeostasis with lipid levels is indicated

by the significant interaction terms in the linear model relating the antioxidant cysteinylgly-

cine and the ratio of expression of the ethanolamine processing gene PEMT and sulfur derived

metabolite SAM (p-value = .000502 for the interaction term of the model cysteinylglycine as a

Fig 7. Elements of all metabolic forks that have been joined together describe a pathway that regulated by changes

in gene expression. Pairwise correlations between all members of each triplet under heat stress (red) and control

conditions (blue) are shown.

https://doi.org/10.1371/journal.pone.0205824.g007
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function of the ratio
PEMT Expression

SAM and p-value = .0139 for the interaction term of the model
PEMT Expression

SAM as a function of cysteinylglycine). SAM is a metabolite leveraged for transmethyla-

tion associated with the methionine cycle (Fig 8), transsulfination and amino propylation [16].

Metabolism of SAM into SAH has been previously linked to inhibition of PEMT [13]. Thus,

increase in the antioxidant cysteinylglycine correlated with the ratio of PEMT/SAM is consis-

tent with coupling of sulfur metabolism and lipid molecules such as stearoyl ethanolamide.

This interaction could prevent sulfur metabolism from depleting already reduced levels of

stearoyl ethanolomide and other lipids. A similar relationship between methionine metabo-

lism and PEMT features in a putative relationship between hyperlipidemia and hyperhomo-

cysteinemia [13] but has not previously been described in heat stress.

Changes to sulfur metabolism under heat stress can influence lipids in a number of ways

beyond the SAH interaction with PEMT and are depicted in Fig 8. In the model created by the

combined transcriptome and metabolome data, choline, the precursor to many fatty acids, is

directed away from the production of signaling and structural lipids. This form of regulation is

supported both by the behavior of the linear models and significant changes in gene

expression.

For example, several shifts in gene expression can route this resource towards sulfur metab-

olism. Choline oxidase, the gene encoding the enzyme that oxidizes choline to produce beta-

ine, is up-regulated (p-value = .018). Betaine plays an important role in the methionine cycle

by providing an alternative pathway for methylation of homocysteine [17]. Concurrently, tran-

scription of the first enzyme involved in converting choline to phosphatidylcholine, choline

kinase, is down-regulated. Betaine levels, however, are unchanged (p-value = .815), suggesting

redirected choline rescues betaine levels. Further supporting a relationship between sulfur and

lipid metabolism via choline and betaine, Betaine—Homocysteine S-Methyltransferase

(BHMT) transcription is downregulated under heat stress (p-value = .0163). BHMT converts

betaine and homocysteine to dimethylglycine and methionine, and mouse knockouts of this

gene show highly elevated levels of homocysteine [18].

Fig 8. The circuit components as modules summarized by the three categories of antioxidant, lipid and

methionine metabolism. SAM: S-Adenosyl-L-methionine, SAH: S-Adenosyl-L-homocysteine,Glutathione GSSG:

Glutathione Disulfide, PEMT: Phosphatidylethanolamine N-methyltransferase, BHMT: Betaine—Homocysteine

S-Methyltransferase, PLD1: Phospholipase D-1, PEMT: Phosphatidylethanolamine N-methyltransferase.

https://doi.org/10.1371/journal.pone.0205824.g008

Identifying mechanisms of regulation to model carbon flux during heat stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0205824 October 26, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0205824.g008
https://doi.org/10.1371/journal.pone.0205824


Additionally, ethanolamine kinase (ETNK1) is up-regulated (p-value = .0182). This is con-

sistent with gene expression changes preventing depletion of phosphatidylethanolamine-

derived lipids such as phosphatidylcholine and stearoyl ethanolamide. Importantly, these

models provide clarification and improvement over previous studies that have investigated the

influence of amino acid and nutrient supplementation on heat stress performance. Such work

has lacked mechanistic descriptions of how specific compounds relate to metabolism. For

example, betaine and choline supplementation has been found to have variable effects on bird

performance with recent studies suggesting it has limited influence on improving broiler per-

formance and cannot overcome the negative influences of heat stress [19]. According to our

extended model, the bird is able to effectively maintain betaine levels under heat stress through

redirection of choline facilitated by gene expression changes. This creates a situation in which

supplementation may be ineffective at further shifting network dynamics. We hypothesize

gene regulation changes, as described through the transcriptome data, shunt choline to beta-

ine, prevent the accumulation of resource deficits and provide a multi-omics explanation for

the findings of [19]. These changes, previously described, include downregulation of BHMT,

upregulation of choline oxidase and downregulation of choline kinase. The impact of these

changes could be dramatic, given the proportion of lipid production that derives from these

pathways. For example, modification of choline accounts for 70 percent of phospohatidylcho-

line synthesis, with the remaining 30 percent derived from PEMT driven methylation of phos-

photidylethanolamine [20]. This latter pathway involves genes that demonstrate significant

changes under heat stress, such as the upregulated choline kinase. These changes are consistent

with adaptations to compensate for altered choline dynamics during long-term heat stress.

Thus, the ability of choline, previously investigated, to rescue performance during stress may

be stress and organism specific. For example, choline supplementation has been shown in clin-

ical studies to improve antioxidant efficiency in cystic fibrosis patients [21] despite its efficacy

in influencing livestock performance being equivocal [19].

Advantages of multi-omics

Besides relating choline dynamics to sulfur metabolism, an important consequence of the reg-

ulatory circuit descrbed by multiple metabolic forks is selective processing of sulfur to increase

the reservoir of anti-oxidants. This is most clearly evidenced by upregulation of glutathione

(p-value = .00081). The coupling of this process to lipid metabolism is accomplished through

changes in genes that sit at the intersection of the methionine cycle and choline metabolism.

For example, as previously described, under heat stress, BHMT transcription is downregulated

(p-value = .0176), potentially preserving cysteine pools while simultaneously managing the

activity of the methionine to S-Adenosyl-L-methionine (SAM)/S-Adenosyl-L-homocysteine

(SAH) cycle which could otherwise inhibit lipid producing Phosphatidylethanolamine N-

methyltransferase (PEMT). The relationship between sulfur and lipid metabolism would not

be evident without the combination of metabolite and transcriptome data. Importantly, the

insights generated by this multi-omics work also propose mechanisms consistent with associa-

tions from GWAS (genome wide association studies). This is complementary to previous work

on quantifying broiler performance under heat stress that has relied on QTL (quantitative trait

loci) mapping to identify potentially important SNPs controlling relevant physiological met-

rics. One of these resides in the PEMT gene, which influences sulfur and lipid metabolism, as

being associated with body temperature at Day 20 posthatch [22]. Our proposed circuit

includes PEMT as a critical element in a broader network and provides a possible functional

role of the previously identified SNP. Building circuits from individual network units provides

biological context for statistical observations in a way that relate components from different,
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but connected, pathways. These network units can be further explored at the individual level

to better understand the biological consequences of each model and their metabolic impact.

Coordination of each fork as individual mechanisms

Under heat stress conditions, stearoyl ethanolamide levels correlate well with ratios of the

reduced glutathione derivative, cysteinylglcyine, and hypotaurine (Figs 9 and 6B). This latter

quantity represents a metabolic fork underlying sulfur metabolism, which favors glutathione

under heat stress. Under control conditions, activation of the sulfur metabolism would be pre-

dicted to inhibit an important component of stearoyl ethanolamide production via SAH-

related inhibition of PEMT. This mechanism is countered under heat stress conditions with an

increase in the ratio of PEMT/SAM correlating with rising levels of gamma glutamylcysteine

(Fig 6F).

Stearoyl ethanolamide levels and the ratio of the reduced glutathione derivative, cysteinyl-

glycine, and hypotaruine show strong patterns of differential correlation between control and

heat stress (Figs 6C and 10). This is consistent with concerted regulation of several metabolic

forks in the underlying circuit of carbon metabolism described below.

Stearoyl ethanolamide levels and the ratio of the reduced glutathione derivative, cysteinyl-

glycine, and Glutathione GSSG (Glutathione Disulfide) show strong patterns of differential

correlation between control and heat stress (Figs 8 and 11). This is consistent with concerted

regulation of several metabolic forks in the underlying circuit of carbon metabolism.

Stearoyl ethanolamide levels and the ratio of cysteine to choline shows strong patterns of

differential correlation between control and heat stress (Figs 6D and 12). Under the proposed

mechanism, as cysteine metabolism is increased during heat stress, choline availability

decreases with its remaining levels leveraged to maintain betaine.

The coupling of stearoyl ethanolamide to sulfur metabolism is also consistent with the utili-

zation of carbon backbones for gluconeogenesis and triacylglycerol production, as indicated

by the upregulated phosphoethanolamine kinase (p-value = .0182). Under such a metabolic

Fig 9. Triplet of cysteinylglycine and (stearoyl ethanolamide / hypotaurine). The compartmentalization of the

pathway by regions containing the compounds in the ratio (stearoyl ethanolamide and hypotaurine) is illustrated by

the dotted line. For the linear model representing differential behavior of this branch point, see Fig 4A. SAM:

S-Adenosyl-L-methionine, SAH: S-Adenosyl-L-homocysteine,Glutathione GSSG: Glutathione Disulfide, PEMT:

Phosphatidylethanolamine N-methyltransferase, BHMT: Betaine—Homocysteine S-Methyltransferase, PLD1:

Phospholipase D-1, PEMT: Phosphatidylethanolamine N-methyltransferase.

https://doi.org/10.1371/journal.pone.0205824.g009
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scheme, the bird allocates carbon resources to signaling molecules as well as to antioxidant

and energy production pathways. Increased gluconeogenesis and lipogenesis patterns have

been previously described in heat stressed broilers [9]. These findings are consistent with other

studies that have implicated increased importance in sulfurous amino acid processing follow-

ing down-regulation of fatty acid metabolism [23]. However, unlike previous studies we

Fig 10. Triplet of stearoyl ethanolamide and (cysteinylglycine / hypotaurine). The compartmentalization of the

pathway by regions containing the compounds in the ratio (cysteinylglycine and hypotaurine) is illustrated by the

dotted line. For the linear model representing differential behavior of this branch point, see Fig 4B. SAM: S-Adenosyl-

L-methionine, SAH: S-Adenosyl-L-homocysteine,Glutathione GSSG: Glutathione Disulfide, PEMT:

Phosphatidylethanolamine N-methyltransferase, BHMT: Betaine—Homocysteine S-Methyltransferase, PLD1:

Phospholipase D-1, PEMT: Phosphatidylethanolamine N-methyltransferase.

https://doi.org/10.1371/journal.pone.0205824.g010

Fig 11. Triplet of stearoyl ethanolamide and (cysteinylglycine / gluathatione). The compartmentalization of the

pathway by regions containing the compounds in the ratio (cysteinylglycine and glutathione) is illustrated by the

dotted line. For the linear model representing differential behavior of this branch point, see Fig 4C. SAM: S-Adenosyl-

L-methionine, SAH: S-Adenosyl-L-homocysteine,Glutathione GSSG: Glutathione Disulfide, PEMT:

Phosphatidylethanolamine N-methyltransferase, BHMT: Betaine—Homocysteine S-Methyltransferase, PLD1:

Phospholipase D-1, PEMT: Phosphatidylethanolamine N-methyltransferase.

https://doi.org/10.1371/journal.pone.0205824.g011
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provide detailed descriptions of these mechanisms in the context of coordinated sulfur and

lipid metabolism during chronic heat stress.

The circuit-oriented model of the heat stress response, derived by joining metabolic forks

as network elements, provides a mechanistic context for correlations that would otherwise be

enigmatic–such as the strong correlation between stearoyl ethanolamide and cysteine (Figs 6E

and 7). Stearoyl ethanolamide and cysteine demonstrate differential relationships between

control and heat stress conditions (p-value for the interaction term of the model steaoyl etha-

nolamide as a function of cysteine is .000917 and p-value for the interaction term in the model

cysteine ~ stearoyl ethanolamide is .00203). Importantly, these relationships are now provided

with mechanistic and physiological context that extends previous work to establish links

between the complex features of stress management systems. For example, a central feature of

the metabolite data of this study is that sulfur metabolism shifts towards glutathione and anti-

oxidant production, but also has wide reaching consequences on other types compounds.

Gluathathione has an established role in antioxidant activity of that plays a role in broiler phys-

iology [24] and this study demonstrates how its regulation is related to lipid and general sulfur

metabolism.

The central importance of antioxidants, at a molecular level, can be traced to production of

reactive species, which are increasingly linked to the accelerated oxidation during heat stress

[25]. These reactive species can result from changes in lipid metabolism, whereby oxidation of

lipids becomes an important mitochondrial event during heat stress [26]. The coupling of sul-

fur and lipid metabolism in this dataset is consistent with this earlier work, but provides a

more thorough description of their regulation.

The physiological roles of stearoyl ethanolamide are not fully established, although it has

been shown to have anti-inflammatory properties [27]. By describing its association with heat

stress responsive pathways, we provide pathway specific context for its production, and other

lipids in general (such as choline and sphingomyelins). Our computational analysis provides

insight into changes that may influence physiology under heat stress. This analysis provides

Fig 12. Triplet of stearoyl ethanolamide and (cysteine / choline). The compartmentalization of the pathway by

regions containing the compounds in the ratio (choline and cysteine) is illustrated by the dotted line. For the linear

model representing differential behavior of this branch point, see Fig 4D. SAM: S-Adenosyl-L-methionine, SAH:

S-Adenosyl-L-homocysteine,Glutathione GSSG: Glutathione Disulfide, PEMT: Phosphatidylethanolamine N-

methyltransferase, BHMT: Betaine—Homocysteine S-Methyltransferase, PLD1: Phospholipase D-1, PEMT:

Phosphatidylethanolamine N-methyltransferase.

https://doi.org/10.1371/journal.pone.0205824.g012
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network context for previous studies that have identified differential gene expression and

metabolite levels [9]. Future work will be directed towards modeling the influence of these

metabolite and gene expression changes on bird physiology through blood serum

measurements.

Conclusions

Systems biology studies can use multi-omics data to identify elements of regulation, integrat-

ing them into concrete networks that generate hypotheses about large-scale regulation. Collec-

tively, these changes in gene expression and metabolic forks identified by this work provide

mechanistic context for the differential relationship between stearoyl ethanolamide and cyste-

ine during heat stress. The insights from this study expand the role of carbon of and sulfur flux

during the long-term heat stress response.

Leveraging computational methods to understand the nuances of carbon and sulfur flow

under heat stress provides a significant improvement in understanding the regulation of the

response, and generates a number of testable hypotheses. These are being incorporated to plan

studies in which feed composition is altered with resources thought to be involved in the

major circuits. Additionally, we have successfully captured the logic of the carbon flow under

heat stress. The transition from simply determining up or down regulation of certain com-

pounds developing a collection of well-characterized mechanisms to be integrated into circuits

is a powerful improvement in using systems biology to integrate large- scale multi-omics data.

Additional materials and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was

approved by the Committee on the Ethics of Animal Experiments of the University of Dela-

ware (Permit Number: 2703-12-10).

Bird and tissue handling

Male broiler chickens (Gallus gallus) were obtained from Mountaire hatchery (Millsboro, DE)

on day of hatch and divided into thermoneutral and experimental houses on the University of

Delaware farm. They were raised under a light cycle of 23 hours of light and 1 hour of dark.

Standard management and husbandry procedures were followed, as approved by the Animal

Care and Use Committee (AACUC #(27) 03-12-14R). Birds were given ad libitum access to

water and fed the same diet (corn-soy) which met all NRC requirements [28]. Both groups

were raised at 35˚C until one-week post hatch. Temperature was decreased 5˚C each week

thereafter until temperature reached 25˚C at day 21 post hatch. The thermoneutral house was

then maintained at 25˚C and the heat stress house was subject to 35–37˚C for 8 hours per day,

to mimic an environmental heat wave. Temperature in both houses was maintained by a com-

puterized system controlling heaters and ventilation fans (Chore-time Equipment, Milford,

Indiana). Temperature ranged between 35–37˚C during the eight hours of heat stress. This

yields an internal body temperature (cloacal) of 43.5˚C within two hours of the onset of heat

stress. This body temperature can induce a heat stress response in chicken cells [29]. In the

control (thermoneutral) house the temperature ranged between 23–25˚C during this same

period. Both houses were maintained at 23–25˚C during the thermoneutral period (16 hours)

of the day. Birds were euthanized via cervical dislocation and necropsied at day 28 post hatch,
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following one week of cyclic heat stress. Livers were flash frozen in liquid nitrogen, and stored

at -80˚C for further processing.

RNA and library preparation

Forty-five mg of the left lobe of 8 thermoneutral and 8 heat stress liver samples were homoge-

nized and RNA was extracted using the mirVana miRNA Isolation Kit (Ambion, Austin, TX)

as per manufacturer instructions. They were quantified using the Qubit 2.0 Fluorometer

(Qubit, New York, NY). Samples were checked for quality using the Fragment Analyzer

(Advanced Analytical, Ankeny, IA) at the Delaware Biotechnology Institute (DBI, Newark,

DE). Libraries were made using the Illumina TruSeq Stranded mRNA Sample Preparation Kit

(Illumina, San Diego, CA) per manufacturer instructions and sent to DBI for sequencing.

Metabolome sample preparation

Fifty mg of 12 thermoneutral and 11 heat stress liver samples were sent to Metabolon (Dur-

ham, NC), for analysis of the metabolome. All of the samples used for the transcriptome analy-

sis were included in the metabolomic sample set. Samples were analyzed as previously

described [30]. Samples were prepared using the MicroLab STAR system from Hamilton

Company (Reno, NV) using in house recovery standards prior to extraction for QC purposes.

Extract was divided into fractions for two reverse phase (RP)/UPLC-MS/MS methods (positive

and negative ion mode electrospray ionization), and one for HILIC/UPLC-MS/MS with nega-

tive ion mode ESI. Several controls were used, including the use of technical replicates,

extracted water samples as blanks, and in house QC samples to monitor chromatographic

alignment. All UPLC-MS/MS methods used a waters ACQUITY UPLC and Thermo Scientific

Q-Exactive high-resolution mass spectrometer. Each sample extract was dried and reconsti-

tuted with solvents compatible to each method and solvents included a series of standards at

fixed concentrations. Metabolon used hardware and software extract created by the company

to extract, peak-identify, and QC process the raw data. Compounds were identified using a

Metabolon maintained library of purified standards or recurrent unknown entries. Data is

provided as a supplementary .txt file. Over 3300 compounds have been identified and regis-

tered in Metabolon’s library. The data was statistically analyzed using a Welch’s two-sample t-

test following a log transformation and imputation of missing values with the minimum

observed value for each compound. The company provided an analysis that included pathway

visualizations. These pathway analyses were then incorporated with the transcriptome data to

create a more complete view of changing pathways.

Transcriptome analysis

Once libraries were sequenced, data were processed using an in-house pipeline and fragments

per kilobase per million mapped reads (FPKM) values were determined. Differential expres-

sion was determined by using the standard t.test() function in R. Correlation values for triplets

of the form cor A; B
C

� �� �
, where A,B and C represents the levels of metabolites or gene tran-

scripts were also assessed in R.

Supporting information

S1 Fig. Model 1A. Model information for model of the form A � B
C

� �
, where A = stearoyl

ETOH, B = cysteinylglycine, C = hypotaurine.

(PDF)
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S2 Fig. Model 1B. Model information for model of the form B
C

� �
� A, where A = stearoyl

ETOH, B = cysteinylglycine, C = hypotaurine.

(PDF)

S3 Fig. Model 2A. Model information for model of the form A � B
C

� �
, where stearoyl EtOH,

B = glutathione GSSG, C = cysteinylglycine.

(PDF)

S4 Fig. Model 2B. Model information for model of the form B
C

� �
� A, where stearoyl EtOH,

B = glutathione GSSG, C = cysteinylglycine.

(PDF)

S5 Fig. Model 3A. Model information for model of the form A � B
C

� �
, where A = stearoyl etha-

nolamide, B = cysteine, C = choline.

(PDF)

S6 Fig. Model 3B. Model information for model of the form B
C

� �
� A, where A = stearoyl etha-

nolamide, B = cysteine, C = choline.

(PDF)

S7 Fig. Model 4A. Model information for model of the form A � B
C

� �
, where A = stearoyl

ethoh, B = cysteinylglycine and C = taurine.

(PDF)

S8 Fig. Model 4B. Model information for model of the form B
C

� �
� A, where A = stearoyl

ethoh, B = cysteinylglycine and C = taurine.

(PDF)

S9 Fig. Model 5A. Model information for model of the form A ~ B, where A = stearoyl ethoh,

B = cysteine.

(PDF)

S10 Fig. Model 5B. Model information for model of the form B ~ A, where A = stearoyl

ethoh, B = cysteine.

(PDF)

S11 Fig. Model 6A. Model information for model of the form A � B
C

� �
, where

A = cysteinylglycine B = PEMT and C = SAM.

(PDF)

S12 Fig. Model 6B. Model information for model of the form B
C

� �
� A, where

A = cysteinylglycine B = PEMT and C = SAM.

(PDF)

S1 Table. Metabolite data.

(CSV)

S2 Table. Gene expression data.

(TXT)
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