
Analysis of the Interaction Interfaces of the N-Terminal
Domain from Pseudomonas aeruginosa MutL
Virginia Miguel1, Elisa M. E. Correa1, Luisina De Tullio1, José L. Barra1, Carlos E. Argaraña1*,
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Abstract

Mismatch Repair System corrects mutations arising from DNA replication that escape from DNA polymerase proofreading
activity. This system consists of three main proteins, MutS-L-H, responsible for lesion recognition and repair. MutL is a
member of GHKL ATPase family and its ATPase cycle has been proposed to modulate MutL activity during the repair
process. Pseudomonas aeruginosa MutL (PaMutL) contains an N-terminal (NTD) ATPase domain connected by a linker to a C-
terminal (CTD) dimerization domain that possesses metal ion-dependent endonuclease activity. With the aim to identify
characteristics that allow the PaMutL NTD allosteric control of CTD endonuclease activity, we used an in silico and
experimental approach to determine the interaction surfaces of P. aeruginosa NTD (PaNTD), and compared it with the well
characterized Escherichia coli MutL NTD (EcNTD). Molecular dynamics simulations of PaNTD and EcNTD bound to or free of
adenosine nucleotides showed that a significant difference exists between the behavior of the EcNTD and PaNTD
dimerization interface, particularly in the ATP lid. Structure based simulations of MutL homologues with endonuclease
activity were performed that allowed an insight of the dimerization interface behavior in this family of proteins. Our
experimental results show that, unlike EcNTD, PaNTD is dimeric in presence of ADP. Simulations in mixed solvent allowed us
to identify the PaNTD putative DNA binding patch and a putative interaction patch located opposite to the dimerization
face. Structure based simulations of PaNTD dimer in presence of ADP or ATP suggest that nucleotide binding could
differentially modulate PaNTD protein-protein interactions. Far western assays performed in presence of ADP or ATP are in
agreement with our in silico analysis.
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Introduction

Mismatch Repair System (MMR) corrects mutations arising

from DNA replication that escape from DNA polymerase

proofreading activity, and prevents recombination between

partially homologue sequences (homeologue recombination) [1].

This system has been extensively characterized in E. coli where

three main proteins, MutS-L-H, are responsible for lesion

recognition and repair. MutS recognizes mispaired bases and

recruits MutL, a matchmaker protein that coordinates the action

of most of the proteins involved in repair [1]. This ternary

complex (DNA-MutS-L) activates MutH endonuclease, which

cleaves unmethylated GATC sites transiently generated during

replication, allowing strand discrimination [2]. MutL homologues

from several organisms that lack MutH, including eukaryotes and

most bacteria, have been found to possess a latent endonuclease

activity essential for DNA strand discrimination [3–9]. This

activity is dependent on the integrity of a metal binding motif

located within MutL C-terminal domain (CTD). This motif, and

therefore endonuclease activity, is absent in E. coli MutL [3,4,10].

MutL belongs to the GHKL ATPase family, which includes

gyrase GyrB, Hsp90, histidine kinases and MutL [11]. All

members of this family share a well conserved N-terminal domain

(NTD) that contains an ATPase active site [12]. In MutL, this

domain is connected by a linker to a non-conserved CTD

dimerization domain [12]. Although this family lacks a conven-

tional ATPase signature motif, it shares four conserved sequence

motifs (I-IV), responsible for ATP binding [12]. ATP-binding

induced conformational changes are involved in the signaling of

these proteins physiological activity [11,13]. The crystal structure

of LN40, the 40 kDa NTD from E. coli MutL (here on

denominated EcNTD), as well as human and yeast NTD MutL

homologues have been determined [12–14]. EcNTD is made up

of two a/b hemi-domains, sub-domain I (res. 1–209) and sub-

domain II (res. 210–331) [12]. Both sub-domains contain a portion

of the ATP catalytic site, but this is mainly made up of the sub-

domain I. The first hemi-domain contains the four ATP binding

motifs (I–IV) characteristic of the GHKL ATPase super-family

[12]. On the other hand, the sub-domain II has a positively

charged cleft capable of DNA binding, and it is suggested to have
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evolved from a RNA-binding domain [12]. EcNTD dimerizes

upon AMPPNP binding due to the ordering of the dimerization

interface which consists of four loops (L1, L2, L3 and L45) and the

ATP lid [15]. L1 encompasses the first 19 N-terminal residues that

contact the ATP binding site of the other subunit in the dimer

[15]. L3 interacts with c-phosphate while motif III corresponds to

the ATP lid, which blocks the ATP binding site.

An interesting question is how MutL ATP binding and

hydrolysis are integrated into the mismatch repair machinery.

The endonuclease activity of MutL is expected to be a regulated

activity, since it has to be strand-specific [5–7,16]. NTD

nucleotide-dependent conformational changes observed in pro-

karyotic and eukaryotic MutL homologues, and particularly ATP

binding, have been involved in this allosteric control [5,7,16].

Recently, a physical NTD-CTD interaction has been demonstrat-

ed for Aquifex aeolicus MutL homologue, which possesses endonu-

clease activity [17]. Therefore, to better understand and elucidate

the biochemical and structural regulatory mechanisms underlying

CTD endonuclease activity, a deep understanding of the

characteristics of NTD from MutL homologues that possess this

activity is needed.

Although E. coli MMRS has been extensively studied, little is

known about this system in the gram negative bacteria Pseudomonas

aeruginosa, an opportunistic pathogen that affects inmuno-compro-

mised and Cystic fibrosis patients [18]. P. aeruginosa MRS lacks

MutH, and recently, the endonuclease activity of CTD of P.

aeruginosa MutL has been described [9]. Addition of ATP inhibits

PaMutL nicking activity suggesting a regulatory role of adenine

nucleotide binding [9]. In this work, we have focused on the

characterization of P. aeruginosa NTD (PaNTD) with the aim to

characterize its structure and dynamics and to help the under-

standing of the allosteric control of NTD on the endonuclease

activity of CTD. We used an in vitro and in silico approach to

determine the effect of nucleotide binding in PaNTD structure and

dynamics and to characterize its interaction surfaces. Size

exclusion chromatography assays show that unlike EcNTD,

PaNTD is dimeric in presence of ADP. Molecular dynamics

simulations of PaNTD models and EcNTD crystal structures

showed that a significant difference exists in the behavior of the

EcNTD and PaNTD dimerization interface explaining the

behavior observed in vitro. Mixed solvent and structured based

model simulations of PaNTD allowed us to identify and

characterize the PaNTD DNA binding patch and a potential

protein-protein interaction site. These simulations suggest that

nucleotide binding could differentially modulate PaNTD protein-

protein interactions.

Our in silico results give theoretical support and are in

agreement with experimental results. The implications of these

PaNTD characteristics in the regulation of MutL activity are

discussed.

Materials and Methods

Bacterial Strains, Plasmids, and Chemicals
E. coli Bl21 (lDE3) and expression plasmid pET-15b were

obtained from Novagen. E. coli XL1-Blue was supplied by

Stratagene. The pGEM-T Easy cloning vector and DNA

modification enzymes were obtained from Promega. The expres-

sion vector pTYB12 and Chitin column were purchased from New

England Biolabs. His-binding resin was obtained from Invitrogen.

BSA used as molecular weight standards and for western blot

analysis was supplied by Sigma. Bradford reagent was obtained

from Bio-Rad.

Cloning of E. coli and P. aeruginosa MutL N-terminal and
P. aeruginosa C-terminal Domains

The P. aeruginosa mutL gene was amplified from genomic DNA

by PCR using primers MLPgS (59-ATCATATGAGTGAAG-

CACCGCGTATCC-39, NdeI site underlined) and MLPgA (59-

ATGGATCCTCTTGGACAAAGCGCATA-39, BamHI site un-

derlined). The amplified PCR fragment was cloned into pGEM-T

Easy cloning vector to generate plasmid pG-PaMutL. The NdeI–

EcoRI fragment from plasmid pG-PaMutL was then cloned in the

expression vector pET-15b to generate plasmid Pet-PaMutL. The

P. aeruginosa MutL-NTD sequence (PaNTD, amino acids 1- 339)

was amplified from pET-PaMutL by PCR with primers MLPgS

and primer Cris-cLpA (59-GGAATTCAGTCGTCGGGACG-

GACCTCGC-39, EcoRI site underlined). The E. coli MutL-NTD

sequence (EcNTD, amino acids 1- 342) was amplified from pET-

15b-coliMutL provided by Feng [19] by PCR with primers

NCcrisS (59-GCCATATGCCAATTCAGGTCTTACCGC-39,

NdeI site underlined) and the primer NCcrisA (59-CGAATT-

CAATCGTCCAGCGGTAGCGGCG-39, EcoRI site under-

lined). The PCR product was cloned into pGEM-T Easy and

then inserted into the NdeI-EcoRI restriction sites of pET-15b

vector for expression and further purification.

For expression of PaCTD, a plasmid carrying a MutL derivative

devoid of most of the N-terminal ATP binding region (pTYB12-

PaMutLD1–224) was used [9].

Protein Purification
PaCTD was purified as described [9]. As a result, purified free-

of-tag PaCTD was obtained. for PaNTD and EcNTD, E. coli

strain BL21 (lDE3) transformed with pET-PaNTD or pET-

EcNTD respectively, were grown at 37uC in Luria–Bertani (LB)

medium containing 200 mg/ml ampicillin and 0.5% glucose to an

absorbance at 600 nm of 0.6. Subsequently, IPTG was added to a

final concentration of 1 mM, and the cells were incubated at 37uC
for 1 h. Cells were harvested by centrifugation and suspended in

20 mM HEPES (pH 7.4), 0.5 M NaCl and 13.3% (v/v) glycerol.

Cell suspension was processed with EmulsiFlex-C3 homogenizer

and centrifuged at 100000 g for 30 min. Soluble fractions were

incubated ON with His-Bind resin. Protein was eluted from the

column with elution buffer [20 mM HEPES (pH7.4), 0.5 M NaCl

and 13.3% (v/v) glycerol and 0.2 M imidazole]. Proteins were

obtained with a purity .95%. Immediately after column elution,

buffer was exchange using a YM-10 centricon for Protein Buffer

[20 mM HEPES pH:7.4; 150 mM KCl; 10% glycerol (v/v) and

1 mM DTT]. Protein concentration was determined by Bradford

assay using BSA as a standard and aliquots were stored at 270uC.

Determination of NTD Oligomeric State
The oligomeric state of purified PaNTD and EcNTD in the apo

form or bound to ADP or ATP, were determined by gel filtration

chromatography in a Superose 12 10/30 columns (Amersham

Pharmacia Biotech) equilibrated with 20 mM Tris–HCl, pH 7.9;

150 mM KCl; 5 mM MgCl2; 1 mM DTT. 1 mg/ml PaNTD and

2 mg/ml EcNTD incubated in absence or in presence of ADP or

ATP were applied to the column, elution was carried out at room

temperature at a flow rate of 0.5 ml/min and the absorbance was

measured at 280 nm. Column calibration was performed using

BSA of 45 and 66 kDa as molecular weight standards.

EcNTD chemical crosslinking were performed as described

[20]. EcNTD in 20 mM HEPES (pH: 7.4), 150 mM KCl, 10%

glycerol, 5 mM MgCl2 and 1 mM DTT was incubated with

1 mM EDTA, ADP, ATP or AMPPNP at room temperature for

1 h and then 4uC ON. Protein DSS chemical cross-linking was
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performed at 4uC for 1 h and samples were analyzed on a 10%

SDS–PAGE.

For native PAGE, samples were loaded onto 10% polyacryl-

amide/bys-acryilamide (30%/0.8%) gels and ran in 25 mM Tris

pH 7.6, 200 mM Glycine buffer at 4uC.

Far Western Analysis
To perform far western assays, His6-PaNTD (20 pmol) as a

positive control, BSA (20 pmol) as negative control and purified

non-tag PaCTD (6.5 pmol) were spotted onto Protran nitrocellu-

lose membranes (0.2 mm, BioSciences). The membranes were

blocked for 1 h at room temperature in blocking buffer 20 mM

Tris–HCl, pH 8.0, 0.15 M KCl, 1 mM EDTA (Buffer B)

supplemented with 0.1% Triton X-100 and 5% milk, and then

incubated with 0.6 mM of His6-PaNTD in Buffer B supplemented

with 5 mM MgCl2 (Buffer C), Buffer C with ADP 0.1 mM or

Buffer C with ATP 0.1 mM overnight at 4uC. After washing, the

membranes were incubated with rabbit anti-His6 antibody (1/

20,000, Santa Cruz Biotechnology) for 3 h at room temperature,

washed, and then incubated for 1 h with IRDye 800CW-

conjugated goat anti-rabbit antibody (LI-COR Bioscience). The

data were visualized using an Odyssey infrared imaging (LI-COR

Bioscience) instrument. Spots were quantified using the software

ImageJ [21].

NTD Homology Modeling
A homology model of PaNTD was made using MODELLER

9v8 [22]. Crystal structures of EcNTD bound to different

nucleotides were used as a template (PDB accession numbers:

1B62; 1B63; 1NHH; 1NHI and 1NHJ). The sequences were

aligned using the ClustalW software [23]. Models were built with

automodel class, the model with the lowest value of the

MODELLER objective function [22] was picked and model

quality was assessed using QMEAN (score = 0.6) [24]. Since there

are some regions missing in the crystal structure of apo EcNTD,

the nucleotide bound structures were used to generate a unique

model of PaNTD that was used, bound or unbound to ATP, to

perform simulations of holo and apo PaNTD, respectively. Due to

the templates used, the model created would correspond to a

nucleotide bound conformation of PaNTD. For the simulations in

the holo states the nucleotide was docked, while for the simulations

in the apo state, no ligand was added.

WebMod server [25] was used to model BsNTD and TmNTD

3D structures used for structure based models simulations, since

these proteins tertiary structures have not been determined

experimentally. BsNTD model was constructed using EcNTD

template (PDB:1B63A). These two proteins have an identity of

41%. For TmNTD a model was constructed using EcNTD

template (PDB:1B63A). These two proteins have an identity of

36%.

Molecular Dynamics in Water
Molecular dynamics (MD) simulations in explicit water were

carried out for 200 ns for (i) the apo form of PaNTD, (ii) PaNTD

complexed with ATP, and (iii) E. coli MutL NTD (EcNTD) in the

apo form starting from the crystal structure of ECNTD [12] (PDB

entry: 1B63), where the AMPPNP bound to this structure was

removed (iv) holo EcNTD using the same structure, where

AMPPNP was replaced with ATP.

The amino acid side chains were charged according to the pKa

of the amino acid in the 3D structure calculated with PROPKA

[26] and assuming a pH of 7 for the buffer. The total charge on

the apo proteins were +12 and +7 for PaNTD and EcNTD,

respectively. In all cases we added the necessary amount of Cl–

ions to obtain an electrically neutral system plus excess of Na+ and

Cl– to reach a final concentration of 150 mM NaCl. The proteins

were solvated with between 1.56104 and 26104 water molecules.

The GROMOS96 53a6 [27] force field with modifications in the

torsional potential of the backbone (Villarreal MA and Leiva

EPM., unpublished results) was employed for the protein, and the

SPC/E model for the water [28]. The bonds in the peptide were

constrained using the LINCS algorithm [29], while the water

molecules were kept rigid using SETTLE [30]. The time step for

the integration of the equation of motions was 5 fs due to the use

of virtual sites and mass repartitioning [31]. The electrostatic

interactions were handled with the SPME version of the Ewald

sums [32], with a real space cutoff of 0.9 nm, a grid spacing of

0.12 nm, and a cubic interpolation. The van der Waals

interactions were cut-off at 1.4 nm. The temperature was

maintained at 300K by separately coupling the protein and the

water using the velocity rescale algorithm of Bussi et. al [33],

which ensure a proper canonical ensemble. The system pressure

was coupled isotropically to a reference pressure of 1 bar with a

relaxation constant of 2.0 ps, using the Berendsen algorithm [34].

Three minimization steeps were carried out successively

restraining the protein, the backbone and finally the Ca with

steepest descendent. Then, the protein was allowed to equilibrate

at 150K and 300K for 50 ps. In the calculation of the root mean

square deviation (RMSD) and radius of gyration, the first 12 and 9

residues of PaNTD and EcNTD, respectively, were not taken into

account because of their intrinsic flexibility. Cluster analysis was

used to identify the representative structures of apo and holo-

protein. The linkage method was used, were a structure is added to

a cluster when its distance to any element of the cluster is less than

a cut-off, which in this case was 0.2 nm. The secondary structure

content was evaluated with the DSSP algorithm [35].

Structure Based Simulations
Given the high disorder and mobility of the N- and C-terminal

residues observed in the MD simulations in explicit solvent, the

first and last five residues were excluded in these simulations. All-

atom structured-based models (SBM) for the monomeric systems

were prepared with SMOG@ctbp server (http://smog.ucsd.edu/)

[36]. The initial structures used for these constructions were the

same used for all-atom MD. The simulation protocol was the same

as described in [37]. The temperature was set to 0.90 Tf of apo

EcNTD, were Tf is the folding temperature of the model

determined in trial runs. We also performed SBM simulations of

PaNTD dimers bound to ADP or ATP. A model of PaNTD dimer

was constructed using the crystal structures of E. coli MutL NTD

bound to different nucleotides as templates and the temperature

was set to 0.95 Tf.

All the SBM simulations were extended until the root mean

square fluctuations (RMSF) calculated with the first and second

half of the trajectories were identical. This usually required 107

integration steps.

Molecular Dynamics in Mixed Solvent (H2O/iPrOH)
The central structure of the main cluster found in the MD

simulations of the apo and holo PaNTD in water was used to

perform a MD simulation in mixed solvent as described before

[38]. The simulated systems consisted in a protein plus ,136103

water and ,0.56103 isopropyl (iPrOH) molecules, which

correspond to a 20% solution. Each system was minimized,

equilibrated, and simulated as described above. Simulations were

carried out for 50 ns. Spatial distribution function (SDF) was

calculated using a bin of 2.5 Å. VMD [39] was used for rendering,

using an isosurface representation and a density isovalue of 20.

MutL N-Terminal Domain Interfaces
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All simulations and analysis were performed using the

GROMACS 4.0.7 simulation package (http://www.gromacs.org)

[37]. VMD 1.8.7 [36] (http://www.ks.uiuc.edu/Research/vmd/)

was used for visualization and figure rendering, and XMGRACE

(http://plasma-gate.weizmann.ac.il/Grace/) was used for figure

plotting.

Results

Molecular Dynamics Simulations show a Differential
Effect of ATP Binding on E. coli and P. aeruginosa MutL
ATP Lid Dynamics

We aim to determine if a differential behavior exists between N-

terminal domains (NTD) of a MutL homologue that possesses with

one that lacks of endonuclease activity. We hypothesized that

NTD could behave differentially since the former have to cope

with an additional activity. As mentioned before, ATP binding has

been involved in the allosteric control of CTD activity [5,7,17,40].

Taking this into account, we performed all-atom molecular

dynamics (MD) simulations of monomeric ATP-bound or ATP-

free PaNTD and E. coli LN40 (here on denominated EcNTD).

PaNTD amino acid sequence has an identity of 64% with

EcNTD, and a similarity of 79% (Figure 1). Due to the lack of a

crystal structure for PaNTD, a homology model was made using

MODELLER [22] with EcNTD crystal structures bound to

different nucleotides as templates (see Matherial and Methods).

The PaNTD model can be superimposed with the crystal structure

of EcNTD bound to AMPPNP (PDB: 1B63) with a RMSD value

of 0.2 nm. Residues in the ATP binding site of EcNTD that

directly bind the nucleotide are well conserved in PaNTD

(Figure 1). Also, the four sequence motifs (I–IV) involved in

nucleotide binding that are characteristic of GHKL ATPase

family can be identified in the PaNTD sequence (Figure 1).

According to sequence and structure alignment, putative PaNTD

dimerization interface consists of L1 (residues 6–24, EcNTD r. 2–

20. 79% identity), L2 (r. 154–166, EcNTD r. 150–162. 85%

identity), L3 (r. 302–316, EcNTD 299–313. 86% identity), L45 (r.

130–135, EcNTD 126–131. 86% identity) and ATP lid (r. 78–

101, EcNTD 74–97. 75% identity).

MD simulations in explicit water were carried out for (i) the

nucleotide free (apo) form of PaNTD, (ii) PaNTD complexed with

ATP (holo) (iii) EcNTD in the apo form and (iv) holo EcNTD. All

simulations were run for 200 ns. Given that the model for PaNTD

is based on the holo form of EcNTD which is dimeric, and that the

simulations of the apo state were generated by simple removal of

the ligand, the simulations of the four systems started with a very

similar global conformation. During the simulations we expected

to observe deviations from the initial structures for two reasons.

First, it has been suggested [15] that the final conformation of the

protein is only reached when the protein dimerizes and the

monomeric form may deviate from the initial structure. Second,

when EcNTD is crystallized without ligand, the regions which

comprise the dimerization interface cannot be defined in the X-ray

experiment probably due to an increased mobility of this zone

[12]. The root mean square deviation (RMSD) of the Ca was

calculated relative to the starting structures to assess the stability of

the systems. When the first 12 and 9 residues of PaNTD and

EcNTD respectively were not taken into account (given the high

mobility of these regions), both proteins showed a similar behavior,

reaching values between 0.30 and 0.35 nm after 200 ns (Figure

Figure 1. Sequence alignment of MutL PaNTD and EcNTD. ATP binding motifs conserved among GHKL ATPase superfamily (I–IV) are
indicated. Red residues correspond to conserved residues within motifs. Loops involved in NTD dimerization (L1, L2, L3 and L45), as well as ATP lid,
are indicated with horizontal bars. Amino acids that are identical (*), strongly similar (:) or weakly similar (.) are indicated.
doi:10.1371/journal.pone.0069907.g001
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S1A). These values over 0.30 nm indicate that the proteins suffer

some (minor) global conformational change during the simulations

and are in line with the idea that the crystal structure is achieved

only in the dimeric state. Taking into account that the starting

model of PaNTD has a RMSD of 0.2 nm from the EcNTD initial

structure, the similar behavior for both proteins observed in Figure

S1A supports the validity of the model created for PaNTD. A

noticeable jump in the RMSD curve of apo EcNTD is observed

between 5 and 25 ns, where it reaches values near 0.4 nm (Figure

S1A). After that time, the RMSD curve returns to values near

0.3 nm. This jump would indicate that the apo EcNTD can

explore conformations which are not readily available to either the

holo EcNTD or the PaNTD in both states (apo and holo).

The difference in total secondary structure content between the

holo and apo forms of both proteins is shown in Figure S1B. These

curves consistently decrease as a function of time, which indicates

that for both proteins the apo form has less secondary structure

than the holo form. Between both proteins there were no

noticeable differences. This decrease in secondary structure when

the ATP is removed from both proteins could be related to the

aforementioned [12].

In order to compare the four protein systems, a cluster analysis

was carried out for each protein using the 200 ns and a cut-off of

0.2 nm. The central structure from the main cluster of the ATP-

bound PaNTD and EcNTD were determined. These structures

can be superimposed using the Ca of their respective ATP binding

motifs (I–IV) with a RMSD value of 0.15 nm (Figure 2A). This

measure of the local similarity of PaNTD model indicates a rather

small divergence in the position of residues responsible for ATP

hydrolysis between these two structures. Also, the conserved

residue lysine of motif V (K307 in EcNTD and 310 in PaNTD)

maintains its relative position in both proteins (Figure 2B). This

residue inserts into the active site where it contacts the c-

phosphate and is key for the correct work of the enzyme [15]. The

central structure from the main cluster of apo EcNTD and the one

corresponding to the cluster that appears during the first 25 ns

were compared in order to determine the main changes that are

produced in this protein structure and are responsible for the jump

observed in the RMSD curve in Figure S1A. These structures can

be superimposed with an RMSD of 0.4 nm, with noticeable

differences in the dimerization interface, principally in the

conformation of the ATP lid (data not shown).

The RMSD is a global measure of the similarity between

structures, and some important but more subtle structural changes

could be masked by values of around 0.3 nm. The same masking

effect could be taking place when analyzing the total secondary

structure. A careful analysis of the trajectories showed a distinct

behavior of the ATP lid between PaNTD and EcNTD. Snapshots

of the conformation sampled by the ATP lid (residues 74–97 for

EcNTD and 78–101 for PaNTD) along the trajectories are shown

in Figure 3. Figure S2 shows the secondary structure of the full

dimerization interface as a function of time. Apo EcNTD ATP lid

undergoes a significant structural change early in the simulation.

The helix between residues 81–88 is lost and not recovered for the

rest of the simulation (Figure 3 and Figure S2). On the other hand,

in the holo form of EcNTD as well in both forms of PaNTD, the

ATP lid maintains its a-helical structure along the whole MD

trajectory (Figure 3 and Figure S1). Ban & Yang experimental

results [15] show that in EcNTD crystal structure, ATP lid

becomes more mobile in ADP-bound and nucleotide free forms in

comparison to ATP-bound, but remains partially structured.

Although EcNTD–ADP crystal structure is dimeric, probably due

to crystal packing, this complex is a monomer in solution. Also, in

the absence of the c-phosphate, ATP lid becomes more mobile as

indicated by higher B values [15].

An analysis of PaNTD and EcNTD ATP lid alignment shows

that ATP lid helix is conserved (Figure 1). Nevertheless when the

highly reliable and experimentally calibrated AGADIR prediction

algorithm [41] was used to calculate the a-helix propensity of these

two isolated regions, the alpha helix propensity was larger for the

PaNTD sequence than for the EcNTD (Figure S3). This result is in

line with MD simulations.

Structure Based Molecular Dynamics Simulations in
Presence or in Absence of Adenine Nucleotides Reflect a
Differential Behavior of PaNTD and EcNTD Dimerization
Interface

Based on the funneled nature of the energy landscape of protein

folding [42], structure based models (SBM) provide a computa-

tionally efficient and reliable model to explore the large scale

molecular motions of proteins which are no reachable with more

detailed models as used in the previous section.

MD simulations of SBM were performed to further analyze the

difference between proteins under study. These simulations were

run for a time long enough to guarantee that the root mean

squared fluctuations (RMSF) calculated with one half of the

trajectory is identical to the calculated with the second half. This

kind of converged picture is not possible to achieve with the 200 ns

of simulations that were performed with the most complete model

used in the previous section, and it is of fundamental importance

as we seek for the difference between two of such RMSF curves.

Figure 4A shows the difference in RMSF (D RMSF) between the

apo and ATP bound forms of each protein (full line: PaNTD;

dotted line: EcNTD). It is observed that the apo forms showed a

more flexible structure for both species. This result is in line with

the reduction in secondary structure observed for apo proteins

during the explicit solvent MD simulations (Figure S1B). More

importantly for this work, this analysis clearly revealed the

presence of 5 regions with different behavior between EcNTD

and PaNTD. Residues corresponding to the dimerization inter-

face, namely loops L1, L2, L3, L45 and the ATP lid were more

mobile in apo EcNTD than in apo PaNTD. Also, the difference in

RMSF between the ADP and ATP bound forms was calculated

(Figure 4B). When DRMSF for ADP and ATP-Bound EcNTD

was calculated (Figure 4A, full line), it was clear that the ADP

bound showed higher mobility of the dimerization interface. This

is reflected as high positive DRMSF values. On the other hand,

DRMSF of PaNTD with ATP or ADP bound states where quite

similar (Figure 4B, dotted line). This is reflected as near zero

DRMSF values, and indicates that these ADP and ATP-bound

PaNTD behave similarly.

Additionally, MD simulations of SBM were performed to

analyze differences between NTD from MutL homologues with/

without endonuclease activity (Figure 5). The N-terminal domains

of MutL homologues with endonuclease activity from Bacillus

subtillis (BsNTD), Termotoga maritima (TmNTD) and PMS1 from

Saccharomyces cerevisiae (yNTD) were analyzed. WebMod server [25]

was used to model BsNTD and TmNTD 3D structure, since these

proteins tertiary structures have not been determined experimen-

tally. SBM MD simulations were carried out for the four proteins

in the nucleotide free (apo) form or bound either to ADP or ATP.

Differences in RMSF (DRMSF) between (i) the apo and ATP

bound forms or (ii) ADP and ATP of each protein were

determined (Figure 5). For BsNTD a model was constructed

using EcNTD template (PDB:1B63A). BsNTD (Figure 5A) display

a very similar behavior as the one observed for PaNTD (Figure 4).

MutL N-Terminal Domain Interfaces
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This indicates that dimerization interface is less mobile for ADP

and ATP bound BsNTD than ADP and ATP bound EcNTD. As

for PaNTD, the region that possesses a similar Apo and ATP

bound DRMSF with EcNTD corresponds to the ATP lid stem

(residues ,75–80), but for the ATP lid a-helix a reduction in

DRMSF can be observed for both PaNTD and BsNTD (residues

80–90). For TmNTD a model was constructed using EcNTD

template (PDB:1B63A). It is observed that the apo form showed a

more flexible structure than the ATP-bound form (Figure 5B). No

differences were observed in rmsf values between ADP and ATP-

bound TmNTD (Figure 5B). The crystal structure of yeast PMS1

NTD bound to AMPPNP (PDB: 3H4LB) was used as an initial

model. PMS1 apo form presented high RMSF values, particularly

in the ATP lid region, where these values were 3 times larger than

apo EcNTD (data not shown). More interesting, practically no

differences in RMSF vales were shown when apo, ATP and ADP-

bound form were compared (Figure 5C).

In vitro Assays showed that PaNTD is Dimeric when
Bound to ADP

Since MD simulations results indicated that there is a

differential behavior of the dimerization interface of EcNTD

and PaNTD, we analyzed the effect of such behavior on their

oligomeric state. Ban & Yang (1998) have shown by size-exclusion

chromatography that binding of ADPnP induces a transition of

EcNTD from monomer to dimer [12]. EcNTD dimerization is

specific of ATP binding since no detectable changes are shown

with ADP [15].

We cloned and purified recombinant PaNTD (residues 1–339 of

PaMutL, monomeric MW = 37.7 kDa). When analyzed in SDS-

PAGE, PaNTD presented a MW ,40 kDa (data not shown). The

oligomerization state of the apo protein was determined by gel

filtration chromatography (Figure 6A). The elution profile of

PaNTD presented two peaks, one corresponding to a MW of

,40 kDa similar to that expected for the monomeric protein

(MW:38 kDa) and a smaller one with an estimated molecular

weight of ,70 kDa (Figure 6A, full black line). The peak

relationship dimer:monomer was aprox. 0.2:0.8. The dimeric

form of PaNTD is resistant to ON EDTA incubations as

determined by native gels (Figure S4). PaNTD binding to ADP

displaced monomer-dimer equilibrium as judged by size-exclusion

chromatography (Figure 6A, dotted line). When incubated with

ADP, the peak ratio inverted, and the dimeric form became the

major species (Figure 6A). This result shows that, unlike EcNTD,

PaNTD is capable of forming dimers in presence of ADP. No

major differences were observed among the elution pattern of

ADP or ATP bound PaNTD (Figure 6A). As a control, we cloned

and purified his-tag EcNTD (residues 1- 342 of EcMutL,

monomeric MW = 38.3 kDa) and the oligomerization state of

the apo protein was determined by gel filtration chromatography

(Figure 6B). The elution profiles of EcNTD in the apo form or

bounded to ATP or ATP presented only one peak, corresponding

to the monomeric protein (,40 kDa). Since EcNTD dimerization

in presence of ATP is not evidenced in size exclusion chromatog-

Figure 2. Cluster analysis of MutL PaNTD and EcNTD. A) The central structure of the main cluster of ATP-bound PaNTD and EcNTD were
compared. The corresponding ATP binding motives (I–IV) are colored (PaNTD in red; EcNTD in blue). B) Relative position in the superimposed
structures mentioned of the conserved residue lysine of motif V (K307 in EcNTD, blue and 310 in PaNTD, red).
doi:10.1371/journal.pone.0069907.g002

Figure 3. Time evolution of ATP lid secondary structure in all
atom MD. Secondary structure of the ATP lid from the different
systems was analyzed. The secondary structure information was
obtained using the do_dssp program (also see Figure S2) and
representative structures were taken from the MD. Purple: alpha helix;
blue: 3-helix; cyan: turn; white: coil.
doi:10.1371/journal.pone.0069907.g003
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raphy, we performed cross-linking assays (Figure S5). EcNTD was

incubated ON with EDTA, ADP, ATP and AMPPNP, and

EcNTD dimers were only observed in presence of AMPPNP

(Figure S5), as established [15].

These results show that, unlike EcNTD, PaNTD is capable of

forming dimers in presence of ADP.

Mix-solvent MD Simulations and in vitro Assays Allowed
the Detection of PaNTD Protein-protein and Protein-DNA
Interaction Sites

Next, we aimed to determine the possible protein-protein and

protein-DNA interaction sites that could mediate PaMutL activity

regulation. The central structure of the main cluster for the apo

and holo PaNTD obtained in the pure water simulations were

used to perform a MD simulation in a solution of water with 20%

isopropyl alcohol (iPrOH) [38]. The idea behind these simulations

is that regions with an increased concentration in iPrOH predict

regions of the protein that are more easily desolvated, indicating

putative hot spots for interactions with other molecules. This

method has recently been used to determine the interaction

interface of a phospholipase with lipid membranes [43]. Spatial

distribution functions (SDF) were calculated for PaNTD in both

states (Figure 7A–B). Also, the quantification of contacts along the

MD between ATP-bound PaNTD Ca and iPrOH was included

(Figure 7C). These analyses allowed the determination of PaNTD

sites that preferentially bind iPrOH. Three regions that are highly

enriched in iPrOH where spotted up and, therefore, considered as

putative interaction interfaces. The first region is analogue to the

known dimerization interface described for EcNTD (Figure 7A–I

and 7C), which is formed around a hydrophobic core assembled

between L1 of a monomer and the ATP lid [15]. The second

region is expected to be the DNA binding patch (268–280 and

317–329), since it corresponds with the homologue region

described for ECNTD [15] (Figure 7A–II and 7C). In addition,

Figure 4. Analysis of PaNTD and EcNTD monomers residues mobility using structure based models (SBM). Root Mean Squeare
Fluctuation (RMSF) difference between A) apo and ATP-bound monomer and B) ADP and ATP-bound monomer, for EcNTD (dotted line) and PaNTD
(full black line) were calculated from SBM MD simulations. Dimerization interface (L1, L2, L3, L45 and ATP lid) is indicated with black horizontal bars.
doi:10.1371/journal.pone.0069907.g004

MutL N-Terminal Domain Interfaces

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e69907



the server DNABindR [44] for prediction of protein-DNA

interaction sites was used to predict PaNTD residues involved in

DNA contact (Figure S6). This server is trained to predict whether

a given amino acid residue is a DNA-binding residue based on its

identity and the identities of its sequence neighbors [44]. EcNTD

prediction was used as a control of the accuracy of the predictor.

EcNTD residues predicted to be involved in DNA contact by

DNABindR are in agreement with the ones described by

Ban&Yang (1999) to be part of the EcMutL DNA-binding groove.

Residues predicted by DNAbindR to be involved in PaNTD DNA

binding are in agreement with the ones spotted out in mixed-

solvent MD (Figure 7C).

The last putative interface detected is located opposite to the

DNA binding patch, comprise residues 209–230 and 245–252,

and currently has no assigned function (Figure 7B-III and 7C).

Also, MutS-MutL interaction site detected in EcMutL by Winkler

et al. [45] can be identified in the homologue PaNTD residues, as

a high iPrOH density area (Figure 7C).

Finally, a comparison of iPrOH density around the apo and

ATP bound protein allowed us to identify the partial loss of two

PaNTD iPrOH binding sites in the nucleotide free form. The first

reduction is observed in the ATP lid, and the second is located

around L3 (Figure 7A). Also, there is a small reduction of iPrOH

binding in the putative DNA interaction site (Figure 7A) which

could translate into a loss of the NTD-DNA interaction surface.

A Differential Effect of ADP or ATP Binding on PaNTD
Dimer Dynamics Reveals a Possible Allosteric Mechanism

Molecular dynamics simulations allow us to explore the

mechanistic details underlying allostery that are difficult to observe

experimentally. For single domain proteins, such as Fdx [46], it

has been corroborated that structured-based models are capable of

capturing dynamical coupling between distal regions. We ran

SBM simulations of PaNTD dimer bound to ADP or ATP at 0.95

of the melting temperature. It should be taken into account that in

GHL proteins the N-terminal segment (L1) of one monomer is

used to engage the ATPase site of the partner monomer. This

region provides amino acids to directly co-ordinate bound

nucleotide [15,11]. This and other interaction between monomers

are missing in the MD simulations performed in PaNTD

monomer (see Figure 4) and included in these ones. When the

difference in the Ca fluctuation (DRMSF) between ADP and ATP

bound PaNTD dimer were calculated (Figure 8), an increase of up

to 0.15 nm was observed in the putative interaction site detected

with mix solvent MD (residues 208–225) of the ADP bound dimer.

Thus, putative interaction site detected in mixed solvent MD (r.

209–230) is more flexible in ADP bound than in ATP bound

PaNTD dimer. Differences observed in RMSF where not due to

differences in the contact maps of the dimers, since the only

differences present between both dimers were contacts of PaNTD

with c-phosphate in PaNTD-ATP complex.

These results suggest that the presence of ADP/ATP could act

as a switch to couple/uncouple the motion of nucleotide binding

site with a putative protein-protein site. It is interesting to note that

smaller differences in RMSF values have been proved to be

mechanistically relevant for Fdx [46].

Influence of Nucleotide Binding on PaNTD-PaCTD
Interaction

Since theoretical results of SBM MD and mixed-solvent MD

indicate that PaNTD protein-protein interactions could be

nucleotide modulated, we tested PaNTD-PaCTD binding capac-

ity in absence or in presence of ATP or ADP by far western

(Figure 9 and Figure S7). PaCTD spotted onto nitrocellulose

membranes was incubated in buffer with His-tag PaNTD in

absence or in presence of ATP or ADP, and PaCTD-PaNTD

complexes were revealed and quantified using a His-tag antibody.

Figure 5. Analysis of BsNTD, TmNTD and PMS1 monomers
residues mobility using structure based models (SBM). Root
Mean Squeare Fluctuation (RMSF) difference between apo and ATP-
bound (full black line) and ADP and ATP-bound monomer (dotted line)
for; A) BsNTD B) TmNTD and C) yeast PMS1 were calculated from SBM
MD simulations. Dimerization interface is indicated with black
horizontal bars. ATP lid residues are marked with grey shadow.
doi:10.1371/journal.pone.0069907.g005
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Whereas no difference where observed in PaNTD-PaCTD

binding when PaNTD was incubated with buffer or ATP, an

increased interaction was observed when incubated with ADP

(Figure 9). PaNTD-BSA binding was used as a negative control

whereas His-PaNTD was directly spotted onto membranes as a

positive control (Figure S7). Far western results were statistically

analyzed using an analysis of variance (ANOVA) followed by a

Tuckey HSD test. These tests allowed us to determine that mean

NTD-CTD interaction in presence of ADP was significantly

higher than NTD-CTD interaction in presence of ATP or in

absence of nucleotide (buffer) with a p value of 0.05 and 0.01,

respectively. Also, no differences in NTD-CTD interaction were

found for ATP vs. buffer incubation.

These results are consistent with theoretical data mentioned

before, and indicate that binding of adenosines nucleotides could

differentially affect the exposure of protein-protein interaction

sites. This is in agreement with the assignment of a main role of

nucleotide binding in PaMutL endonuclease activity modulation

[5,7,9].

Nevertheless, further experiments would reinforce this observa-

tion and help to elucidate adenine nucleotides role in NTD-CTD

interaction.

Discussion

Several MutL homologues from organisms lacking MutH have

been shown to possess an endonuclease activity that requires the

integrity of a metal-binding motif located in MutL C-terminal

domain [3–6,9,10]. In human and yeast MutLa, endonuclease

activity has been proved to be nick-directed and mismatch

Figure 6. Determination of PaNTD oligomeric state using gel filtration chromatography. A typical elution profile is shown: (A) PaNTD and
(B) EcNTD proteins (22 mM) nucleotide free (full black line), bound to ADP (dotted line) or bound to ATP (full grey line) were analyzed on a Superose
12 column as described in Matherial and Methods. Arrow heads indicate the elution positions of MW standards (= BSA 66 kDa; .BSA 45 kDa).
doi:10.1371/journal.pone.0069907.g006
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dependent [3,4]. Knowing how this endonuclease activity is

modulated becomes essential to understand the regulation of

mismatch repair process in organisms lacking of MutH. MutL

ATPase cycle has been demonstrated to regulate conformational

transitions as well as enzymatic activity of MutL in Methyl-

directed and MutH-less pathways [15,40,47]. Particularly, ATP

binding is involved in the regulation of MutL endonuclease activity

although its role is not fully understood yet [5,7,9]. E. coli MutL N-

terminal domain LN40 (EcNTD) has been well characterized

[12,15]. Nevertheless, to better understand the regulation of MutL

CTD endonuclease activity, a deep characterization of NTD from

MutL homologues with endonuclease activity is needed.

Figure 7. PaNTD mixed solvent MD analysis. Three-dimensional
density distribution of iPrOH in ATP bound and unbound PaNTD is
showed from a frontal A), and backside B) view. I: Dimerization
interface; II: DNA binding patch; III: putative interaction surface. Figure
rendering was made using VMD, with an isosurface representation and
density isovalue of 20. C) Quantification of protein-iPrOH contacts
between protein Ca and all iPrOH C1 was made using g_mindist with a
cut-off of 0.15 nm. Ca contacts with iPrOH atom C1 along the MD were
calculated. Dimerization interface (L1–45 and ATP lid) as determined
with sequence alignment is indicated with black horizontal bars.
Residues predicted to bind DNA (residues 259–276 and 307–330) (* and
red bars) using the DNAbinR server and E. coli MutS-MutL interface
mapped by Winkler et al. [45] are indicated (EcNTD r. 131–135; PaNTD r.
135–138) (N and green bar). Finally, a putative interaction interface
(residues 209–230 and 245–252) (# and blue bars) was determined as
high iPrOH density area. The calculated mean contact for all residues is
indicates with a black line across the chart and the areas beneath this
threshold were shadowed with light grey to facilitate the identification
of high iPrOH density residues.
doi:10.1371/journal.pone.0069907.g007

Figure 8. Effect of adenine nucleotide binding on PaNTD
dimers. SBM simulations of PaNTD dimers bound to ATP or ADP were
performed and the average fluctuation per residue (RMSF) was
obtained. RMSF difference (DRMSF) between ADP and ATP bound
dimers is shown. Monomer A: r. 1–329; monomer B: r. 330–658. P:
Putative interaction site.
doi:10.1371/journal.pone.0069907.g008

Figure 9. Analysis of PaNTD-PaCTD interaction using far
Western assays. Purified PaCTD (6.5 pmol) and BSA (20 pmol) with
no Histag were spotted onto nitrocellulose membranes. The mem-
branes were incubated with His6-PaNTD (0.6 mM) with buffer B, buffer
plus ADP 0.1 mM or ATP 0.1 mM followed by immunochemical
detection of His6-PaNTD as described in Material and methods. The
fluorescence intensity was measured using imageJ. Error bars represent
the standard deviation from triplicate experiments. AU: Arbitrary units.
doi:10.1371/journal.pone.0069907.g009
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P. aeruginosa MutL (PaMutL) endonuclease activity has recently

been described, and ATP binding was found to inhibit it [9]. Also,

due to the matchmaker role of MutL in the MMRS, the study of

its different interaction interfaces and the role played by the

nucleotide is of interest. In this work we have focused on the

characterization of the interaction interfaces of PaMutL N-

terminal domain (PaNTD), the role played by the nucleotide

binding and also tried to gain insight into the NTD allosteric

control of CTD endonuclease activity. Our experimental results

indicate that PaNTD is capable of dimerization even in the

absence of nucleotide, and that the addition of ADP or ATP

further displaces the equilibrium toward the dimeric form. On the

contrary, EcNTD only dimerizes when bound to the non-

hydrolysable ATP analogue AMPPNP ([11] and this work).

Structural analysis of the MD trajectories for EcNTD and PaNTD

allowed us to comprehend the differential behavior observed in the

oligomeric state of both proteins. All-atom MD simulations show

that the a-helical structure of the ATP lid of EcNTD in the apo

form is lost, while in the apo form of PaNTD, as well as in the holo

form of both proteins, this structure is retained. This would

indicate that the ATP lid, which is an important segment of the

dimerization interface of the NTD, is intrinsically more stable in

PaNTD than in the homologue EcNTD.

Neither human PMS2 nor yeast ScPMS1 MutL homologue can

form homodimers. In the monomeric hPMS2 NTD crystal

structure the ATP lid residues are disordered, even when

AMPPNP is bound [13] (PDB:1H7U). The same is observed in

the ATP-bound monomeric human Mlh1 NTD structure (PDB:

3NA3) where ATP lid residues do not diffract and are therefore

not observed in the crystal. Therefore, ATP lid could be expected

only to be fully order in the heterodimer hMutla (hPMS2/hMlh1).

In the also monomeric yeast PMS1 NTD, that crystallizes with

two AMPPNP bound molecules in the asymmetric unit, ATP lid

residues are disordered in molecule A, while they are fully order in

molecule B (PDB: 3H4L) [14]. This indicates that PMS1 ATP lid

could be expected only to be fully order in the heterodimer. This is

in agreement with the fact that no differences in RMSF values

were shown in SBM MD simulations when apo, ATP and ADP-

bound form were compared. Taking everything into account, it is

tempting to propose ATP lid ordering as an event related to

nucleotide binding but not necessarily concomitant, but indis-

pensable for NTD dimerization.

Although secondary structure is maintained, apo PaNTD SBM

simulations show an increased mobility in ATP lid residues, in

agreement with results with mix solvent MD which evidence

density loss around it. RMSF values obtained from MD

simulations using structure based models indicate that dimeriza-

tion interface APO and ADP bound EcNTD would be similar and

differed from the ATP bound. This is in agreement with the fact

that EcNTD dimerizes only in presence of ATP [15]. On the other

hand, ADP and ATP bound PaNTD dimerization interface

behave similarly and differ from the APO state, which reflects on

PaNTD dimerization in presence of either ADP or ATP. SBM

MD simulations gave a more complete picture of the differences

showing that the whole dimerization interface of EcNTD is

destabilized when the ATP is removed or replaced by ADP

(Figure 4). On the other hand, the conformations sampled by

PaNTD are the same regardless of the type of nucleotide bound.

The structure of PaNTD is destabilized only in the apo form, but

in this case the conformational fluctuations observed in the apo

PaNTD are smaller than in the case of EcNTD. A similar

behavior to the observed for PaNTD dimerization interface was

found for Bacillus subtilis and Termotoga maritima MutL NTD

(BsNTD and TmNTD, respectively). SBM simulations are in

agreement with experimental results that indicate that TmMutL

forms a full dimer in presence of ADP.

PaNTD ATP lid possesses a higher a-helix propensity, as

determined using the AGADIR predictor. Thermotoga maritima

MutL (TmMutL) forms a full dimer in presence of ADP [48].

TmMutL ATP lid also has an increased predicted content of a-

helix. These changes in ATP lid sequences could contribute to the

differences with EcNTD observed for PaNTD, and TmMutL [48].

It is interesting to note that the secondary structure prediction

algorithm AGADIR predicts the same order in stability of the

helix in the ATP lid for the two proteins.

The simulations in mixed solvent, as expected, signal the

dimerization interface of PaNTD as a region prone to be

desolvated in the holo form. In the apo form this mark is less

intense, in line with the observed lower tendency to dimerize with

respect to the holo forms. Simulations in mixed solvent also signal

two other regions of PaNTD which are prone to be desolvated. By

comparison with the well caracterized EcNTD, one of these

regions can be assigned to a protein-DNA interaction patch. This

region poses a positive electrostatic potential which is conserved

among the MutL family [15]. Particularly, the important EcNTD

residue Arg-266 involved in DNA interaction is conserved in

PaNTD [15]. The server DNABindR [44] for prediction of

protein-DNA interaction sites was used to predict PaNTD residues

involved in DNA contact. We observed a correspondence between

these residues and the ones spotted out in mixed solvent MD.

These simulations also evidenced a loss in iPrOH density in the

DNA binding patch for nucleotide free PaNTD. This may indicate

that MutL DNA binding is enhanced by nucleotide binding.

However AMPPNP but not ATP enhaces the interaction between

EcMutL and ssDNA, probably because of the dimerization of the

N-terminal [15]. On the other hand, in PMS2 N-terminal domain,

that does not form a homodimer upon association with ATP,

DNA binding is not affected by the presence of ATP [13]. These

results may indicate dimerization rather than nucleotide binding

to be involved in the modulation MutL-DNA interaction, at least

for these two homologues. This, however, does not rule out the

posibility of nucleotide binding to regulate paMutL-DNA inter-

action.

The other region signaled in mixed solvent simulations has no

assigned function and we postulate it to be a putative protein-

protein interaction interface. This interaction interface is located

opposite to the dimerization face, encompassing residues 209–230

and 245–252. Deuterium incorporation assays have previously

allowed the detection of a significant ATP-dependent structural

rearrangement in the homologue region of the Aquifex aeolicus NTD

and that this region may be required for the direct interaction

between the NTD and CTD [17]. SBM simulations of PaNTD

dimers bound to ADP or ATP indicate that adenine nucleotide

binding site is communicated with this putative interaction patch

located in residues 208–230. Thus, nucleotide binding could

differentially modulate protein-protein interactions of PaNTD.

This is also consistent with our experimental results that indicate

that PaMutL NTD-CTD interaction is enhanced in the presence

of ADP, but not in the presence of ATP. The modulation of such

interaction could be significant for PaMutL activity.

Since ATP has been proved to inhibit PaMutL endonuclease

activity [9], and ADP but not ATP enhanced NTD-CTD

interaction, it is tempting to infer a fully dimerized MutL ADP-

bound complex capable of DNA nicking. For PaMutL, one can

hypothesize that while ATP-bound PaMutL can load to the DNA

strand, it is not allowed to cut. ATP hydrolysis and generation of

ADP bound PaMutL would still be able to remain loaded to DNA,
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and nick the newly synthesize strand. Further studies could give

experimental support to this model.

Conclusions
Results obtained in this study provide insight into how P.

aeruginosa MutL activity could be modulated and allow inferring

the mechanistic differences that may arise among Mismatch

Repair System functioning in organism with MutL homologues

that carry or not endonuclease activity.

Supporting Information

Figure S1 PaNTD and EcNTD all atom MD evaluation.
(A) Time evolution of RMSD values for apo and ATP bound

PaNTD and EcNTD. Only Ca atoms were taken into account.

The first 12 and 9 residues of PaNTD and EcNTD, respectively,

were not included. (B) The difference in total secondary structure

content between the apo and the holo forms of PaNTD (black) and

EcNTD (red) along the MD was calculated using do_dssp. The

number of residues within secondary structures was determined.

(TIF)

Figure S2 Time evolution of dimerization interface
secondary structure. Dimerization interface secondary struc-

ture along the 200 ns of the MD simulation was determined for

PaNTD and EcNTD, with or without ATP, using DSSP. A) ATP

lid (PaNTD r. 78–101, EcNTD 74–97); B) L1 (PaNTD r. 6–24,

EcNTD r. 2–20); C) L2 (PaNTD r. 154–166, EcNTD r. 150–162);

D) L3 (PaNTD r. 302–316, EcNTD 299–313) and E) L45

(PaNTD r. 130–135, EcNTD 126–131).

(TIF)

Figure S3 Percentage of predicted helical content of
EcNTD, PaNTD and TmNTD ATP lid using AGADIR.
The sequence of the helical region of EcNTD (r. 79–90), PaNTD

(r. 83–94) and Termotoga maritima NTD (TmNTD, 85–96) ATP

lid were used to calculate the tendency of these peptides to form

alpha helix.

(TIF)

Figure S4 PaNTD oligomeric state after ON incubation
in EDTA. PaNTD (10 mM) in 20 mM HEPES (pH: 7.4),

150 mM KCl, 10% glycerol, 5 mM MgCl2 and 1 mM DTT

and in absence of added nucleotides was incubated ON without

(lane 2) or with 1 mM EDTA (lane 3). The oligomeric state of

incubated proteins was determined by native PAGE in order to

determine if PaNTD dimers were resistant to EDTA incubation.

BSA was used as a molecular weight marker (lane 1).

(TIF)

Figure S5 Oligomeric state of EcNTD. Crosslinking

analysis (DSS 2.5 mM) of the EcNTD oligomeric state incubated

ON in absence (EDTA incubated) or in presence of ADP, ATP or

AMPPNP (lanes 3–6) were performed. Lane 1: molecular weight

markers; Lane 2: control with no DSS.

(TIF)

Figure S6 paNTD putative DNA binding site. DNAbindR

[44] server was used to predict PaNTD residues involved in DNA

binding. (A) The alignment of Subdomain II (SBII) of PaNTD and

EcNTD sequences is shown, along with the residues predicted

with DNAbindR to be involved in DNA contact (#). Secondary

structure of EcNTD residues involved in binding are represented.

The nomenclature used corresponds to the one used in LN40

crystal structure (PDB: 1B63). PASBII: PaNTD sub-domain II

sequence. ECSBII: EcNTD sub-domain II sequence. The

predicted PaNTD DNA binding residues are shown in red in

the 3D model of the PaNTD dimer from a front (B) and bottom

view (C). The figure was generated using VMD [39].

(TIF)

Figure S7 Analysis of PaNTD-PaCTD interaction using
far Western assays. Purified PaCTD with no-tag (1) BSA

(negative control) (2) andHis6-PaNTD (20 pmol) as a positive

control (3) were spotted onto nitrocellulose membranes. The

membranes were incubated with His6-PaNTD with buffer, buffer

plus ADP 0.1 mM or ATP 0.1 mM followed by immunochemical

detection of His6-PaNTD as described in Material and methods.

(TIF)
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