
HIV-1 LATENCY

Coloring hidden viruses
An improved dual-color reporter reveals how the fate of latent HIV-1

depends on where it integrates in the human genome.

MARINA LUSIC

C
urrent antiviral therapies can suppress

HIV-1 in the bloodstream to almost

undetectable levels. Yet, if this therapy

is interrupted, the number of viruses can start to

increase again and go on to conquer the

defenses of the immune system. This occurs

when viruses that are in a dormant, or ‘latent’,

state become reactivated. Characterized by lim-

ited gene expression and zero viral replication,

latent viruses remain hidden from the immune

system and are not affected by antiviral drugs,

unless they are reactivated.

Latent HIV-1 is integrated within the genomes

of immune cells, mainly resting CD4+ T cells and,

to a lesser extent, macrophages (Churchill et al.,

2016). Cells that represent latent reservoirs of HIV-

1 are usually very rare and difficult to separate

from the neighboring non-infected cells. This

means that few of these cells have been available

for study, which in turn has severely hampered our

understanding of the mechanisms behind viral

reactivation. Now, in eLife, Eric Verdin and col-

leagues – including Emilie Battivelli as first author –

report on an improved ‘dual-color virus’ that allows

cells harboring hidden latent viruses to be identi-

fied and isolated (Battivelli et al., 2018).

Over the past decade, much HIV-1 research

has looked for ways to eliminate the latent viral

reservoirs by first using pharmacological mole-

cules to reverse latency in a ‘shock and kill’

approach (Deeks et al., 2012). The increased

levels of gene expression in the reactivated

viruses should lead to viral antigens being pre-

sented on the surface of latently infected cells.

This in turn would allow the immune system to

find and clear these cells and, typically, make

the viruses susceptible to antiviral therapy again

(Churchill et al., 2016; Margolis et al., 2016).

However, this shock and kill approach only had

limited success, mostly because it could not

completely reactivate the virus from its latent

state.

To develop more effective approaches for

reactivating viruses we first need better ways to

obtain resting CD4+ T cells that contain latent

viruses in order to study them. So-called dual-

color viruses – which have two fluorescent

reporters under the control of different pro-

moters – can help with this (Calvanese et al.,

2013; Chavez et al., 2015). With the original

version of this reporter virus (called HIVDuoFluoI),

infected cells would glow red, making them

clearly distinct from non-infected cells. If the

integrated virus was active, a green fluorescent

protein was also produced and the cells

appeared both red and green. Latently infected

cells (i.e., those with integrated yet inactive

virus) could thus easily be distinguished by their

pure red color.

Although this is how the tool should

have worked in theory, there was room for

improvement. Some of the sequences used in

HIVDuoFluoI could readily recombine, meaning

this dual-color virus was prone to losing its

reporters, which made it impossible to track reli-

ably. Battivelli et al. – who are based at the
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Gladstone Institutes, UCSF, the Buck Institute

for Research on Aging and other institutes

across the United States, Sweden and Brazil –

overcame this specific issue by changing some

sequences to create an improved dual-color

virus. The new version, called HIVGKO, contains a

different green reporter (a codon-switched

eGFP) under the control of the HIV-1 specific

promoter. It also has an unrelated orange, rather

than red, fluorescent protein (mutated Kusubira

Orange) under the control of the constitutive

promoter.

HIVGKO allowed Battivelli et al. to examine

the integration sites of latent viruses that could

be reactivated and to understand how the

genetic material around those sites was pack-

aged in the nucleus (also known as the ‘chroma-

tin context’). They could then compare these

results to those from the viruses that could not

be reactivated. Battivelli et al. designed their

study to compare the potency of several drugs

that were known to reactivate latent reservoirs

via different mechanisms (Barton et al., 2016;

Conrad et al., 2017; Mehla et al., 2010).

All the drugs tested showed limited reactiva-

tion unless they were used in combination. Batti-

velli et al. then mapped HIV-1 insertions from

three different groups of infected cells. The first

group contained cells with an integrated virus

that was actively producing copies of itself – or

productively infected cells (Figure 1). The sec-

ond and third groups were non-reactivated and

reactivated latently infected cells, respectively.

Battivelli et al. further defined the chromatin

context of the integrated viruses, and found that

viruses within both productively infected cells

and reactivated latently infected cells reside

mainly in the active chromatin of transcribed

genes and enhancers (Chen et al., 2017). Their

analysis showed that viruses found in non-reacti-

vated latently infected cells are detected within

large genomic regions that interact with the

dense meshwork of proteins that line the inner

surface of the nucleus envelope, the nuclear lam-

ina (Guelen et al., 2008; Marini et al.,

2015). Some repressed viruses that could be

reactivated were also found in the same region

in reactivated latently infected cells.

The fact that all the drugs tested only partially

reactivated a small portion of latent viruses

implies that latent reservoirs of HIV-1 are hetero-

geneous in nature. This finding also clearly

points to the fact that transcriptional repression

of HIV-1 can be influenced by the context of

where it integrates in the host cell’s genome. As

this is a first study where this context could be

connected directly to the fate of HIV-1 infection,

it becomes clear that there are many lessons to

be learned about how HIV-1 explores the human

genome (especially in T cells) to integrate and

persist.
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Figure 1. Scanning electron micrograph of an HIV-infected T cell. The human

immunodeficiency virus (HIV; yellow) buds from the surface of a productively infected T cell

(red).
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