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ABSTRACT: Several naturally occurring dietary polyphenols with chemo-
preventive or anticancer properties are topoisomerase II poisons. To identify
additional phytochemicals that enhance topoisomerase II-mediated DNA
cleavage, a library of 341 Mediterranean plant extracts was screened for
activity against human topoisomerase IIα. An extract from Phillyrea latifolia L.,
a member of the olive tree family, displayed high activity against the human
enzyme. On the basis of previous metabolomics studies, we identified several
polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic
acid) as potential candidates for topoisomerase II poisons. Of these,
hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-
mediated DNA cleavage. The potency of these olive metabolites increased 10−100-fold in the presence of an oxidant.
Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The
activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they
were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα
construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across
the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human
topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement
and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase
IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary
consumption.

A broad spectrum of anticancer drugs comes directly from
natural sources or is derived from natural products. Many of

these compounds are botanical in nature. Plants have been used
for culinary and medicinal purposes for millennia. The
Mediterranean basin is home to a biologically diverse plant
biome and is a particularly rich source of botanicals with
medicinal properties.1−3 Many of these have been used in
traditional Bedouin and Israeli medicine since antiquity.
Phytochemicals derived from Mediterranean plant species have
been shown to provide a variety of health benefits and display
anti-inflammatory, anticancer, cardioprotective, and chemo-
preventative properties.1−3

Type I and type II topoisomerases, which are essential
enzymes, are important targets for plant-derived anticancer
drugs. For example, topotecan, a topoisomerase I-targeted drug,
is derived from camptothecin, which is found in the yew tree
(Camptotheca acuminata).4,5 Etoposide, a topoisomerase II-
targeted drug, is derived from podophyllotoxin, which is found in
Mayapples (Podophyllum peltatum).6−9 Type II topoisomerases

also are targeted by a variety of dietary phytochemicals with
chemopreventative properties,10 including bioflavonoids (from
soy, fruits, and vegetables),11−13 catechins (from green tea),14,15

curcumin (from turmeric),16,17 thymoquinone (from black
seed),18 and isothiocyanates (from cruciferous vegetables).19

Although diverse in structure, these compounds act by increasing
levels of covalent topoisomerase II-cleaved DNA complexes
(cleavage complexes), which are formed as requisite inter-
mediates during the critical DNA strand passage activity of the
enzyme.10,20−24 They are termed “topoisomerase II poisons” to
distinguish them from compounds that inhibit the catalytic
activity of the enzyme without increasing levels of topoisomerase
II-mediated DNA cleavage.10,20−24 Topoisomerase II−DNA
cleavage complexes are intrinsically dangerous to cells. At high
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levels, these complexes can induce cell death pathways or trigger
chromosomal translocations.10,20−24

Humans encode two isoforms of topoisomerase II, α and
β.20,25−28 Topoisomerase IIα is an essential enzyme that is
expressed at high concentrations in proliferating cells. It is the
enzyme responsible for decatenating daughter chromosomes
prior to mitosis. Topoisomerase IIβ is expressed in all cell types
and appears to play important roles in transcription. Both
enzyme isoforms are cellular targets for anticancer drugs and
other topoisomerase II poisons.10,20−24,29

Topoisomerase II poisons function by two distinct mecha-
nisms. Drugs such as etoposide interact noncovalently at the
interface between the enzyme active site and DNA.10,20,30 They
bind to the protein and intercalate into the cleaved scissile bond,
thus inhibiting the ability of topoisomerase II to religate the cut
DNA. Compounds that utilize this mechanism are termed
interfacial topoisomerase II poisons.30 Genistein and several
other bioflavonoids (flavones, isoflavones, and flavonols) utilize
this mechanism.12,13 In contrast, compounds containing reactive
protein modification groups, such as quinones and isothiocya-
nates, form covalent adducts with cysteine (and potentially
other) amino acid residues that are distal to the active site of the
type II enzyme.10,19,20,31−34 Compounds that utilize this
mechanism are termed covalent topoisomerase II poisons.10,20

Although the details underlying the basis for the DNA cleavage
enhancement by covalent poisons have yet to be fully delineated,
these reactive compounds are believed to act by affecting the
closure of the N-terminal protein gate.33,35,36 As examples,
epigallocatechin gallate (EGCG), curcumin oxidation products,
thymoquinone, and sulforaphane appear to function utilizing this
latter mechanism.14,17−19

Covalent poisons can be distinguished from interfacial poisons
by two hallmark characteristics.17,20,31,32 Because the oxidation
state of covalent poisons is critical for their adduction chemistry,
reducing agents, such as dithiothreitol (DTT), abrogate their
activity against topoisomerase II. Second, although covalent
poisons increase the level of DNA cleavage when added to the
enzyme−DNA complex, they inhibit topoisomerase II activity
when incubated with the enzyme prior to the addition of DNA.
In an effort to discover novel phytochemicals with activity

against human type II topoisomerases, we conducted a blind
screen of a library of 341 Mediterranean plant extracts to
determine whether any of them increased levels of DNA cleavage
mediated by topoisomerase IIα. Species in the library were
primarily from arid lands or the Tel Aviv University Botanical
Garden and included plants used in traditional Bedouin
medicine. An extract from Phillyrea latifolia L., a member of
the Oleaceae family of olive trees, displayed high activity against
the human enzyme. Using a metabolomics approach, we
identified several polyphenols as potential candidates for
topoisomerase II poisons. From these compounds, we
determined that hydroxytyrosol, oleuropein, and verbascoside
were covalent poisons. The activities of these compounds were
accentuated under oxidizing conditions. Finally, commercial
olive leaf extract and extra virgin olive oils also poisoned human
topoisomerase IIα.

■ EXPERIMENTAL PROCEDURES
Enzymes and Materials. Recombinant wild-type human

topoisomerase IIα, topoisomerase IIβ, and Top2αΔ1175 [a
deletion mutant (residues 1−1175) of human topoisomerase
IIα] were expressed in Saccharomyces cerevisiae JEL-1Δtop1 and
purified as described previously.37−40 The catalytic core of

human topoisomerase IIα (residues 431−1193) was a gift from J.
Deweese and was expressed and purified as described
previously.41−43 Enzymes were stored at −80 °C as a 1.5 mg/
mL stock in 50 mMTris-HCl (pH 7.9), 0.1 mMEDTA, 750 mM
KCl, and 5% glycerol. The residual concentration of dithio-
threitol was <2 μM in final reaction mixtures.
Negatively supercoiled pBR322 DNA was prepared from

Escherichia coli using a Plasmid Mega Kit (Qiagen) as described
by the manufacturer. Analytical grade etoposide, tyrosol (4-
hydroxyphenylethanol), 3,4-dimethoxyphenylethanol, 4-hy-
droxy-3-methoxyphenylethanol, and oleuropein were purchased
from Sigma-Aldrich. Analytical grade hydroxytyrosol (3,4-
dihydroxyphenylethanol), verbascoside, and caffeic acid (3,4-
dihydroxyphenylpropionic acid) were obtained from LKT
Laboratories. Tyrosol, hydroxytyrosol, oleuropein, verbascoside,
and 4-hydroxy-3-methoxyphenylethanol were prepared as 20
mM stocks in deionized purified water and stored at −20 °C.
Caffeic acid and dimethoxyphenylethanol were prepared as 20
mM stocks in 100% dimethyl sulfoxide and stored at room
temperature. Potassium ferricyanide [K3Fe(CN)6] was obtained
from Acros and stored at −20 °C as a 50 mM stock solution in
deionized purified water. [γ-32P]ATP (5000 μCi) was purchased
from PerkinElmer and stored at −20 °C.
A library of methanol/water extracts from 341 native

Mediterranean plants was used for the initial screening. Plant
species were mainly from arid lands or the Tel Aviv University
Botanical Garden and included plants used in traditional
Bedouin medicine.44−46 On the basis of results with the original
library, a second library of 36 extracts from the leaf, bark, flowers,
or fruit of 11 individual olive tree species was established.
Plant extracts were prepared as described by Kaiser et al.47

Briefly, samples (1 g) of frozen plant material were ground in a
prechilled mortar containing liquid nitrogen. Two milliliters of a
methanol/water mixture [50:50 (v/v)] was added, and slurries
were mixed and kept on ice for 15 min. The mixtures were
centrifuged at 10000 g for 5 min at room temperature using a
Hermle Z160M microfuge. Supernatant liquids were stored at
−80 °C for analysis. Extract concentrations were determined
gravimetrically. Samples were dried in vacuo, de-identified,
numbered, and stored at −20 °C. The 341 plant extracts were
resuspended in deionized purified water at a final concentration
of 2 mg/mL and screened in a blind fashion. Samples from the
olive tree extract library were prepared as described above,
resuspended to a final concentration of 10 or 20 mg/mL in
deionized purified water, and stored at −20 °C.
Commercial olive leaf extract (Olive Leaf Plus, ∼30%

oleuropein) was purchased from Life-Flo and prepared as a 20
mg/mL stock in deionized purified water. The species of olive
leaves used in this preparation was not identified by the
manufacturer. Extra virgin olive oils, pressed from the indicated
subspecies of Olea europea, including Olive Oil Store Ultra
Arbosana (arbosana olives), Olive Oil Store Ultra Koroneiki
(koroneiki olives), and Lucini Select (a mixture of frantoio,
moraiolo, leccino, maurino, and pendolino olives), were stored at
room temperature. Soluble extra virgin olive oil extracts were
prepared by vigorously vortexing a 1:1 mixture of oil and
deionized purified water for 5 min, using 30 s pulses. The oil and
water phases were separated by centrifugation at 8000g for 10
min at room temperature, and the aqueous phase was used for
subsequent experiments.

Cleavage of Plasmid DNA. DNA cleavage reactions were
performed using the procedure of Fortune and Osheroff.48

Reaction mixtures contained 10 nM negatively supercoiled
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pBR322 DNA and 110 nMwild-type topoisomerase IIα, 105 nM
topoisomerase IIβ, 78 nMTop2αΔ1175, or 426 nM topoisomer-
ase IIα catalytic core in a total of 20 μL of cleavage buffer [10 mM
Tris-HCl (pH 7.9), 5 mMMgCl2, 100 mM KCl, 0.1 mM EDTA,
and 2.5% (v/v) glycerol]. DNA cleavage reaction mixtures were
incubated at 37 °C for 6 min, and enzyme−DNA cleavage
complexes were trapped by the addition of 2 μL of 5% sodium
dodecyl sulfate (SDS) followed by 2 μL of 250 mM EDTA (pH
8.0). Proteinase K (2 μL of a 0.8 mg/mL solution) was added,
and samples were incubated at 45 °C for 30 min to digest the
enzyme. Samples were mixed with 2 μL of agarose loading dye
[60% sucrose in 10 mM Tris-HCl (pH 7.9), 0.5% bromophenol
blue, and 0.5% xylene cyanol FF], heated at 45 °C for 2 min, and
subjected to electrophoresis using 1% agarose gels in 40 mM
Tris-acetate (pH 8.3) and 2 mM EDTA containing 0.5 μg/mL
ethidium bromide. DNA bands were visualized by UV light and
quantified using an Alpha Innotech digital imaging system. DNA
cleavage wasmonitored by the conversion of supercoiled plasmid
to linear molecules.
DNA cleavage reactions were performed in the absence or

presence of plant extracts, purified olive metabolites, com-
pounds, extra virgin olive oils, or aqueous extracts from the oils.
In some experiments, DNA cleavage was performed in the
presence of etoposide as a control. Unless stated otherwise,
extracts, metabolites, compounds, or oils were added last to
reaction mixtures. Some reactions were performed in the
presence of an oxidant [K3Fe(CN)6]. In these latter reactions,
extracts, compounds, or oils were incubated with the oxidant at
room temperature for 10 min prior to their addition to DNA
cleavage mixtures.
In reactions that determined whether DNA cleavage by human

topoisomerase IIα was reversible, 2 μL of 250 mM EDTA was
added to samples prior to treatment with SDS. To determine
whether cleaved DNA was protein-linked, proteinase K treat-
ment was omitted. To examine the effects of a reducing agent on
the actions of 1 mM hydroxytyrosol, oleuropein, or verbascoside
against topoisomerase IIα, 100 μM DTT was added for 5 min
before or after establishing enzyme-mediated DNA cleavage
complexes.
To assess the effects of hydroxytyrosol, oleuropein, or

verbascoside on human topoisomerase IIα prior to the addition
of DNA, the enzyme (final enzyme concentration of 110 nM)
was incubated in the presence of 1 mM olive metabolite (final
concentration) or 10 μM olive metabolite and 10 μM oxidant
(final concentration) for 0−3 min at 37 °C in 15 μL of DNA
cleavage buffer. DNA cleavage was initiated by the addition of 10
nM negatively supercoiled pBR322 DNA (final concentration)
to reaction mixtures (final volume of 20 μL), and samples were
incubated at 37 °C for 6 min. Reactions were stopped, and
samples were processed and analyzed as described above.
Ligation of Cleaved Plasmid DNA by Human Topo-

isomerase IIα. DNA ligation mediated by human topoisomer-
ase IIα was monitored according to the procedure of Byl et al.49

DNA cleavage−ligation equilibria were established for 6 min at
37 °C as described above in the presence of 1 mM
hydroxytyrosol, oleuropein, or verbascoside or 10 μM olive
metabolites with 10 μM oxidant. Ligation was initiated by
cooling samples from 37 to 0 °C. Reactions were terminated at
20 s by the addition of 2 μL of 5% SDS followed by 2 μL of 250
mM EDTA (pH 8.0). Samples were processed and analyzed as
described above. Ligation was monitored by the loss of linear
DNA.

Persistence of Cleavage Complexes. The persistence of
topoisomerase IIα−DNA cleavage complexes was determined
using the procedure of Gentry et al.50 Initial reaction mixtures
contained 50 nM DNA and 550 nM topoisomerase IIα in a total
of 20 μL of DNA cleavage buffer. Reactions were conducted in
the presence of 1 mM hydroxytyrosol, oleuropein, or verbasco-
side or 10 μMmetabolite with 10 μMoxidant. Reaction mixtures
were incubated at 37 °C for 10−20 min and then diluted 20-fold
with 37 °CDNA cleavage buffer. Aliquots (20 μL) were removed
at times ranging from 0 to 24 h, and DNA cleavage was stopped
by the addition of 2 μL of 5% SDS followed by 2 μL of 250 mM
EDTA (pH 8.0). Samples were processed as described above for
plasmid cleavage assays. The persistence of cleavage complexes
was determined by the disappearance of the linear reaction
product over time.

DNA Cleavage Site Utilization. DNA cleavage sites were
mapped using a modification of the procedure of O’Reilly and
Kreuzer.51 pBR322 DNA was linearized by treatment with
HindIII, and terminal 5′-phosphates were removed and replaced
with [32P]phosphate by treatment with calf intestinal alkaline
phosphatase followed by T4 polynucleotide kinase and
[γ-32P]ATP. The labeled DNA was treated with EcoRI, and the
4330 bp singly end-32P-labeled fragment was purified from the
short EcoRI−HindIII fragment by passage through a CHROMA
SPIN+TE-100 column (Clontech).
Reaction mixtures contained 4 nM 32P-labeled 4330 bp DNA

substrate and 44 nM human topoisomerase IIα in 50 μL of DNA
cleavage buffer. Assays were conducted in the absence of
compound or in the presence of 20 μM etoposide or the
indicated metabolite at 10 μM in the presence of 10 μM oxidant.
Reactions were initiated by the addition of topoisomerase IIα,
and mixtures were incubated for 1 min at 37 °C. DNA cleavage
intermediates were trapped by adding 5 μL of 5% SDS followed
by 3.75 μL of 250 mM EDTA (pH 8.0). Topoisomerase II was
digested with proteinase K (5 μL of a 0.8 mg/mL solution) for 30
min at 45 °C. DNA products were precipitated in 100% ethanol
and 3MNaOAc, washed in 70% ethanol, dried, and resuspended
in 6 μL of cleavage mapping loading dye (40% formamide, 10
mM NaOH, 0.02% xylene cyanol FF, and 0.02% bromophenol
blue). Samples were subjected to electrophoresis in a denaturing
6% polyacrylamide sequencing gel in 100 mM Tris-borate (pH
8.3) and 2 mM EDTA. The gel was dried and exposed to an
imaging screen (Bio-Rad). 32P-labeled DNA cleavage products
were analyzed on a Pharos Molecular Imager FX (Bio-Rad).

■ RESULTS AND DISCUSSION
An Extract of P. latifolia L. Enhances DNA Cleavage

Mediated by Human Topoisomerase IIα. A number of
dietary polyphenols and isothiocyanates with chemopreventive
or anticancer properties have been found to be topoisomerase II
poisons.10−19 In all of the cases mentioned above, studies were
initiated by examining the effects of purified compounds on the
activity of the type II enzyme. To take a broader and less biased
approach to the discovery of naturally occurring topoisomerase II
poisons, a library of 341 Mediterranean plant extracts44,45 was
screened for its effects on DNA cleavage mediated by human
topoisomerase IIα. Extract 263 prepared from the leaves of P.
latifolia L., a member of the Oleaceae olive tree family, displayed
high activity against topoisomerase IIα and increased levels of
DNA cleavage nearly 8-fold at 200 μg/mL (Figure 1).
Previous metabolomic studies of P. latifolia L. leaves indicate

the presence of several bioflavonoid derivatives, including
glucosides and rutinosides of apigenin, quercetin, and
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luteolin.52,53 Although the three unmodified bioflavonoids are
known interfacial topoisomerase II poisons,11,13 it is not known
whether the glycoside derivatives mentioned above retain activity
within the soluble extract. Therefore, to determine whether these
bioflavonoid glycosides (or other potential interfacial poisons)
represented the topoisomerase II-active compounds in P. latifolia
L., the extract was assayed for activity in the presence of a
reducing agent, dithiothreitol (DTT). As seen in Figure 1, the
extract lost its activity under reducing conditions. This finding
suggests that the active metabolites present in the P. latifolia L.
extract are covalent poisons rather than bioflavonoid-based
interfacial poisons.32

Olive Metabolites Poison Human Type II Topoiso-
merases. Several phenolic compounds with antioxidant activity
are abundant in P. latifolia L.52,53 and have the potential to act as
covalent topoisomerase II poisons.10 Among these metabolites
are hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic
acid. Oleuropein contains an esterified hydroxytyrosol compo-
nent, and verbascoside contains esterified hydroxytyrosol and
caffeic acid components. Tyrosol is a breakdown product of
hydroxytyrosol. The structures of these compounds are shown in
Figure 2.
To determine whether any of the P. latifolia L. metabolites

mentioned above contributed to the activity of the extract against
human topoisomerase IIα, the ability of individual compounds to
enhance enzyme-mediated DNA cleavage was examined (Figure
3). Hydroxytyrosol, oleuropein, and verbascoside all increased
levels of DNA cleavage >3-fold. Conversely, tyrosol and caffeic
acid displayed virtually no activity against the human type II
enzyme.
To ensure that the observed DNA cleavage enhancement was

mediated by the type II enzyme, several control experiments
were performed (Figure 3B). No DNA scission was seen in the
presence of hydroxytyrosol (top), oleuropein (middle), or
verbascoside (bottom) when the type II enzyme was omitted
from reaction mixtures. Furthermore, enzyme-mediated DNA
cleavage induced by the olive metabolites was reversed when the
active site Mg2+ ions were chelated with EDTA prior to trapping
cleavage complexes with SDS. This reversibility is not consistent
with an enzyme-independent reaction. Finally, cleaved plasmid
products were covalently linked to topoisomerase II. In the
absence of proteinase K, the linear DNA band disappeared and
was replaced by a band that remained at the origin of the gel.
These results demonstrate that the DNA cleavage observed in
the presence of the metabolites is mediated by topoisomerase
IIα.
Although hydroxytyrosol, oleuropein, and verbascoside are all

polyphenols, it is likely that they would have to cycle through a
quinone form to become reactive toward topoisomerase IIα.10,54

A previous study found that the buffer used for topoisomerase II-
mediated DNA cleavage reactions does not readily support redox
cycling.17 This is consistent with the high concentrations of

Figure 1. Soluble extract from P. latifolia L. leaves enhances DNA
cleavage mediated by human topoisomerase IIα. The effects of plant
extract 263 (P. latifolia L.) on the cleavage of negatively supercoiled
DNA by topoisomerase IIα were determined in the absence (●) or
presence (○) of 100 μM DTT. DNA cleavage levels were calculated
relative to a control reaction mixture that contained no extract. Error
bars represent the standard deviation of at least three independent
experiments.

Figure 2. Structures of olive plant metabolites. Polyphenols present in P. latifolia L. and other olive species, including hydroxytyrosol, oleuropein,
verbascoside, caffeic acid, and tyrosol, are shown. Hydroxytyrosol (red) is a component of oleuropein and verbascoside, and caffeic acid (blue) is a
component of verbascoside.
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metabolites required to enhance DNA cleavage. Therefore, the
effects of an oxidant, K3Fe(CN)6, on the activity of
hydroxytyrosol, oleuropein, and verbascoside toward topo-
isomerase IIα were examined. This oxidant has little effect on

levels of baseline DNA cleavage mediated by topoisomerase IIα
but had a dramatic effect on the activity of the metabolites
(Figure 4A). DNA cleavage induced by themetabolites plateaued
at 10 μM K3Fe(CN)6 (Figure 4A, left). Consequently, this
concentration was used for all subsequent reaction mixtures that
contained the oxidant.
The presence of K3Fe(CN)6 increased the potency of

hydroxytyrosol, oleuropein, and verbascoside toward topo-
isomerase IIα as much as 100-fold (Figure 4A, right). Whereas
250 μM to 1 mMmetabolite was required to increase the level of
DNA cleavage between 3- and 4-fold in the absence of oxidant
(see Figure 3A), a similar DNA cleavage increase in reaction
mixtures that contained K3Fe(CN)6 required only 5−10 μM
metabolite. Despite the presence of the oxidant, neither tyrosol
nor caffeic acid displayed any significant ability to poison
topoisomerase IIα.
The effects of hydroxytyrosol, oleuropein, and verbascoside on

DNA cleavage mediated by human topoisomerase IIβ also were
assessed (Figure 4B). In the presence of oxidant, all three
polyphenols were potent topoisomerase II poisons and increased
the level of DNA cleavage >8-fold at a metabolite concentration
of 10 μM. The higher relative activity of olive metabolites against
topoisomerase IIβ as compared to IIα primarily reflects lower
baseline levels of DNA cleavage observed with the β isoform in
the absence of poisons.
The effects of hydroxytyrosol, oleuropein, and verbascoside

(10 μM) on DNA cleavage site utilization by human
topoisomerase IIα were determined in the presence of an
oxidant (Figure 5). Similar sites of cleavage were induced by all
three metabolites. Several of the sites induced by the metabolite
were the same as those induced by etoposide, although some
sites were utilized to a different extent. Distinct sites also were
observed in the presence of the metabolites compared to the
drug. Similar DNA cleavage maps were generated in the presence
of 1 mM metabolites in the absence of an oxidant (data not
shown).
Although etoposide and other interfacial poisons increase the

level of topoisomerase II-mediated DNA scission primarily by

Figure 3.Olive metabolites enhance DNA cleavage mediated by human
topoisomerase IIα. (A) The effects of hydroxytyrosol (HT; red),
oleuropein (OE; green), verbascoside (VERB; purple), caffeic acid (CA;
blue), and tyrosol (TY; black) on DNA cleavage mediated by
topoisomerase IIα are shown. DNA cleavage levels were calculated
relative to a control reactionmixture that contained nometabolite. Error
bars represent standard deviations for three independent experiments.
(B) DNA cleavage induced by hydroxytyrosol (top), oleuropein
(middle), or verbascoside (bottom) is reversible and protein-linked.
Ethidium bromide-stained agarose gels are shown. Assay mixtures
containedDNAwith olive metabolites in the absence of enzyme (−TII),
topoisomerase IIα with DNA in the absence of olive metabolites (TII),
or complete reactions stopped with SDS prior to the addition of EDTA
(SDS). To determine whether the reaction was reversible, EDTA was
added prior to SDS (EDTA). To determine whether the cleaved DNA
was protein-linked, proteinase K treatment was omitted (−ProK). The
mobilities of negatively supercoiled DNA (form I; FI), the nicked
circular plasmid (form II; FII), and linear molecules (form III; FIII) are
indicated. Gels are representative of three independent experiments.

Figure 4. Activity of olive metabolites against topoisomerase IIα and IIβ is enhanced by the presence of an oxidant. (A) The effects of an oxidant,
K3Fe(CN)6, on DNA cleavagemediated by topoisomerase IIαwere determined in the presence of 100 μMolive metabolites [hydroxytyrosol (HT; red),
oleuropein (OE; green), verbascoside (VERB; purple), caffeic acid (CA; blue), and tyrosol (TY; black)] or in the absence of a metabolite (TII; gray)
(left). The effects of olive leaf metabolites on DNA cleavage were determined in the presence of 10 μM K3Fe(CN)6 (right). (B) The effects of olive
metabolites on DNA cleavage mediated by human topoisomerase IIβ were determined in the presence of 10 μMK3Fe(CN)6. DNA cleavage levels were
calculated relative to a control reaction mixture that contained no metabolite and no oxidant. Error bars represent standard deviations for three
independent experiments.
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inhibiting the ability of the enzyme to ligate cleaved molecules,
covalent poisons often induce DNA cleavage without displaying
large effects on rates of ligation.10,20,30,32 As seen in Figure 6A,
hydroxytyrosol, oleuropein, and verbascoside had relatively little
effect on DNA ligation mediated by topoisomerase IIα in the
absence or presence of an oxidant. In contrast, no ligation was
observed in the presence of etoposide. These findings are
consistent with the olive metabolites acting as covalent poisons
and suggest that they may increase levels of DNA cleavage
complexes primarily by enhancing the forward rates of DNA
cleavage.
Because covalent poisons adduct topoisomerase II, they

cannot dissociate from the enzyme.10,20,31 Thus, once DNA
cleavage complexes are formed in the presence of covalent
poisons, they can remain intact for hours.18 To address the
stability of cleavage complexes formed in the presence of
hydroxytyrosol, oleuropein, or verbascoside, DNA cleavage
complexes were diluted 20-fold and their decay was monitored
(Figure 6B). In the absence of poisons, topoisomerase IIα−DNA
cleavage complexes undergo a rapid decay and display a half-life
of <1 min.18 In contrast, cleavage complexes formed in the
presence of 10 μM metabolite with an oxidant or 1 mM
metabolite without an oxidant were extremely stable and
remained intact for at least 24 h.

Hydroxytyrosol, Oleuropein, and Verbascoside Are
Covalent Topoisomerase IIα Poisons. The results described
above, together with the finding that P. latifolia L. extracts lost
their ability to poison topoisomerase IIα in the presence of a
reducing agent, strongly suggest that hydroxytyrosol, oleuropein,
and verbascoside are covalent topoisomerase II poisons.
Therefore, a series of experiments was conducted to address
the basis for the actions of the olive metabolites against
topoisomerase IIα.
First, if the olive metabolites are covalent poisons, their ability

to cycle through an activated quinone form should be critical to
their activity.10,13,17 Therefore, to inhibit redox cycling, 1 mM
hydroxytyrosol, oleuropein, and verbascoside were incubated
with 100 μM DTT prior to their addition to DNA cleavage
reaction mixtures. As seen in Figure 7A, treatment with the
reducing agent abrogated the activity of the olive metabolites
(empty bars). Levels of DNA scission were reduced to baseline
cleavage levels generated by the type II enzyme.
Second, once covalent poisons have adducted topoisomerase

II, their redox state no longer affects their activity.10,20,32,55 Thus,
the addition of reducing agents to reaction mixtures after DNA
cleavage−ligation equilibria have been established in the
presence of a covalent poison should not reverse the cleavage
enhancement. As seen Figure 7A (stippled bars), the addition of
DTT after cleavage complexes had been formed in the presence
of hydroxytyrosol, oleuropein, or verbascoside had no significant
effect on levels of DNA scission mediated by the type II enzyme.
Third, to further examine the requirement for the conversion

of olive metabolites to an activated quinone, one or both of the
hydroxyl moieties of hydroxytyrosol were converted to methoxyl
groups (4-hydroxy-3-methoxyphenylethanol and 3,4-dimethox-
yphenylethanol). The loss of the hydroxyl groups should prevent
these compounds from being converted to a quinone during
redox cycling.17 Even in the presence of an oxidant, neither
compound increased the level of DNA cleavage mediated by
topoisomerase IIα above baseline levels (Figure 7B). These
findings provide further evidence that olive metabolites require
redox cycling to enhance topoisomerase II-mediated DNA
cleavage.

Figure 5. Effects of olive leaf metabolites on the sites of DNA cleavage
generated by topoisomerase IIα. An autoradiogram of a polyacrylamide
gel is shown. Reaction mixtures contained no enzyme (DNA), enzyme
in the absence of metabolite (TII), or enzyme in the presence of 10 μM
hydroxytyrosol (HT), oleuropein (OE), or verbascoside (VERB) in the
presence of 10 μM K3Fe(CN)6. A control DNA cleavage reaction
mixture that contained 20 μM etoposide also is shown. The
autoradiogram is representative of three independent experiments.
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Fourth, although covalent poisons enhance DNA scission
when added to cleavage complexes, they irreversibly inhibit
topoisomerase IIα when they are incubated with the enzyme
prior to the addition of DNA. This inhibition is a hallmark

characteristic of covalent poisons and is not seen with interfacial
poisons.10,31−33,56 Hydroxytyrosol, oleuropein, and verbascoside
(1 mM) all inhibited the DNA cleavage activity of topoisomerase
IIα when added to reaction mixtures prior to the addition of
DNA (Figure 8, left). Rates of enzyme inactivation were
increased by the presence of K3Fe(CN)6 (right), despite the
fact that the concentration of the olive metabolites (10 μM) was
100-fold lower than that used in the absence of the oxidant.
Fifth, covalent topoisomerase II poisons are believed to

enhance enzyme-mediated DNA cleavage, at least in part, by
affecting the N-terminal protein clamp.33,36 Consequently, they
require the presence of the N-terminal domain (but not the C-

Figure 6. Effects of olive leaf metabolites on DNA cleavage complex stability. (A) The ability of human topoisomerase IIα to ligate cleaved DNA is
shown. Reactions (20 s) were conducted in the presence of no metabolite (TII; gray), hydroxytyrosol (HT; red), oleuropein (OE; green), verbascoside
(VERB; purple), or 100 μM etoposide (ETOP; black). Reaction mixtures contained 1 mMmetabolite and no oxidant (left) or 10 μMmetabolite in the
presence of 10 μM K3Fe(CN)6 (right). (B) The effects of olive metabolites on the persistence of topoisomerase IIα−DNA cleavage complexes in the
absence or presence of oxidant are shown. Assays were conducted in the presence of 1 mMmetabolite (empty circles) or 10 μMmetabolite with 10 μM
K3Fe(CN)6 (filled circles). Colors are as described above. For the ligation and persistence reactions, DNA cleavage levels at time zero were set to 100%
to allow a direct comparison. Error bars represent the standard deviation of at least three independent experiments.

Figure 7. Olive metabolites are covalent topoisomerase II poisons. (A)
Effects of DTT on the ability of olive metabolites to enhance DNA
cleavage mediated by topoisomerase IIα. DNA cleavage reactions were
performed in the absence of DTT (filled bars, NoDTT), in the presence
of 100 μMDTT that was added after the cleavage−ligation equilibrium
was established (stippled bars, Post DTT), or in the presence of 100 μM
DTT that was added at the start of the reaction (empty bars, Pre DTT).
Reaction mixtures contained 1 mM hydroxytyrosol (HT; red),
oleuropein (OE; green), or verbascoside (VERB; purple). DNA
cleavage levels were calculated relative to a control reaction mixture
that contained no metabolite. (B) Effects of 3,4-dimethoxyphenyletha-
nol and 4-hydroxy-3-methoxyphenylethanol on topoisomerase IIα-
mediated DNA cleavage. The effects of 500 μM 3,4-dimethoxypheny-
lethanol (black bar) or 4-hydroxy-3-methoxyphenylethanol (white bar)
on the cleavage of negatively supercoiled plasmid DNA by topoisomer-
ase IIα were determined in the presence 10 μM K3Fe(CN)6. Data for
reaction mixtures that contained no compounds are colored gray. DNA
cleavage levels were calculated relative to a control reaction mixture that
contained no compounds or oxidant. In all cases, error bars represent
standard deviations for three independent experiments.

Figure 8. Olive metabolites inhibit topoisomerase IIα when incubated
with the enzyme prior to DNA. The effects of hydroxytyrosol (HT; red),
oleuropein (OE; green), and verbascoside (VERB; purple) are shown.
Metabolites were incubated with the human enzyme in the absence of
oxidant (1mMmetabolite, filled circles, left) or in the presence of 10 μM
K3Fe(CN)6 (10 μM metabolite, empty circles, right). DNA cleavage
levels were calculated relative to a control reaction mixture to which the
metabolite was added after the addition of DNA to assay mixtures. Error
bars represent standard deviations of at least three independent
experiments.
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terminal domain) of the protein to exert their effects. Interfacial
topoisomerase II poisons, such as etoposide, require neither the
N-terminal nor the C-terminal protein domain and enhance
DNA cleavage even in a protein construct that contains only the
catalytic core.34 To determine which protein domains are
required for hydroxytyrosol, oleuropein, and verbascoside to
poison topoisomerase II, their effects on DNA cleavage mediated
by topoisomerase IIα constructs lacking the C-terminal domain
or both the N- and C-terminal domains (catalytic core) were
assessed (Figure 9). Etoposide displayed high activity against
both constructs. Although the olive metabolites retained activity
against Top2αΔ1175 (panel A), they lost their ability to enhance
DNA cleavage in the absence of the N-terminal domain (catalytic
core, panel B). The presence of oxidant did not alter this latter
result.
Finally, human topoisomerase IIα was treated with hydrox-

ytyrosol, and the resulting peptides generated by tryptic
digestion were analyzed by mass spectrometry (data not
shown). A change in a peptide containing cysteine 104,
positioned in the ATPase domain of the enzyme, was observed
following treatment with hydroxytyrosol. No significant changes
were observed in peptides that did not contain cysteine residues.
Taken together, the findings mentioned above provide strong

evidence that hydroxytyrosol, oleuropein, and verbascoside are
covalent topoisomerase II poisons.
Extracts from Olive Tree Species Enhance DNA

CleavageMediated by Topoisomerase IIα.Hydroxytyrosol,
oleuropein, and verbascoside (and other polyphenols) have been
reported in several members of the olive tree family.57−60

Therefore, it is possible that other olive tree species may also
produce topoisomerase II poisons.

Eleven different species of plants from the Oleaceae family
grow in Israel. Leaf, bark, and fruit samples were harvested from
these species, and 36 extracts were prepared and tested for
activity against human topoisomerase IIα (Figure 10). A number
of extracts (at 2 mg/mL) increased the level of enzyme-mediated
DNA cleavage. Activity against topoisomerase IIα was observed
across multiple species and was found in the leaf, bark, and fruit
of the trees. Generally, the highest levels of activity were seen in
bark extracts. However, several fruit extracts also displayed high
levels of DNA cleavage enhancement. These results suggest that
topoisomerase II poisons are widely produced bymembers of the
olive tree family.
To further explore the presence of topoisomerase II poisons in

olive species, the ability of a commercial olive leaf extract (species
not identified by the manufacturer) to enhance enzyme-
mediated DNA cleavage was assessed (Figure 11). The herbal
supplement enhanced DNA cleavage mediated by topoisomer-
ase IIα nearly 5-fold at 20 mg/mL. Thus, olive metabolites can
poison the type II enzyme, even in more complex formulations
intended for human consumption.

Effects of Extra Virgin Olive Oils on DNA Cleavage
Mediated by Topoisomerase IIα. Hydroxytyrosol, oleur-
opein, and verbascoside all are present in the fruit of the olive tree
and have been reported in olive oil.57−60 Therefore, the effects of
three commercial extra virgin olive oils on DNA cleavage
mediated by topoisomerase IIα were assessed. Oils were pressed
from a variety of subspecies of O. europea, including arbosana,
koroneiki, or a mixture of frantoio, moraiolo, leccino, maurino,
and pendolino olives. Olive oils were added to DNA cleavage
assay mixtures at a final concentration of 10% by volume.
In the absence of an oxidant, no DNA cleavage enhancement

was observed (data not shown). However, in the presence of 10
μM oxidant, the extra virgin olive oils increased the level of DNA
scission 2−4-fold (Figure 12, left). Because polyphenols are
water-soluble, aqueous extracts of each olive oil were tested for

Figure 9. Olive metabolites require the N-terminal domain to enhance
DNA cleavage mediated by topoisomerase IIα. The effects of olive
metabolites on DNA cleavage mediated by topoisomerase IIα lacking
the C-terminal domain (Δ1175) or both the C-terminal and N-terminal
domains (Catalytic core) are shown in panels A and B, respectively.
DNA cleavage reactions were performed using 1 mM metabolite
[hydroxytyrosol (HT; red), oleuropein (OE; green), or verbascoside
(VERB; purple)] in the absence of an oxidant (filled bars) or 10 μM
metabolite in the presence of 10 μM K3Fe(CN)6. Results with no
metabolite (TII, gray) or 100 μM etoposide (ETOP, black) in the
absence or presence of an oxidant are shown as controls. DNA cleavage
levels were calculated relative to scission generated by restriction
endonucease EcoRI, which was set to 100%. Error bars represent the
standard deviation of at least three independent experiments. Baseline
levels of DNA cleavage generated by the catalytic core are lower than
those generated by full-length topoisomerase IIα.

Figure 10. Effects of soluble olive tree extracts on DNA cleavage
mediated by topoisomerase IIα. Thirty-six leaf, bark, and fruit extracts
were prepared from 11 different species of olive trees that are indigenous
to Israel. DNA cleavage reactions were performed in the presence of 2
mg/mL extract. Abbreviations: O. af, Olea af ricana; O. eu, O. europea; F.
eu, Forsithia europaea; F. la, Fraxinus latifolia; F. pe, Fraxinus
pennsylvanica; F. sy, Fraxinus syriaca; F. so, Fraxinus sogdiana; F. an,
Fraxinus angustifolia; J. f r, Jasminium fruiticans; P. la, Phillyrea latifolia; P.
an, Phillyrea angusifolia. DNA cleavage levels were calculated relative to a
control reaction mixture (dashed line) that contained no extract. Error
bars represent standard deviations of at least three independent
experiments.
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activity against the type II enzyme (Figure 12, right). The extracts
increased the level of enzyme-mediated DNA cleavage to an
extent that was similar to those of each individual extra virgin
olive oil. Thus, olive products that are part of the human diet are
capable of acting as topoisomerase II poisons.

■ SUMMARY
In an effort to identify natural products that function as
topoisomerase II poisons, a library of 341 extracts from
Mediterranean plants was screened for the ability to enhance
DNA cleavage mediated by human topoisomerase IIα. An extract
from P. latifolia L., a member of the olive tree family, displayed
high activity against the human enzyme. Further studies led to
the identification of hydroxytyrosol, oleuropein, and verbasco-
side as covalent topoisomerase II poisons. An herbal supplement
from olive leaf extracts, as well as extra virgin olive oils pressed
from a variety of O. europea subspecies, also enhanced DNA
cleavage mediated by human topoisomerase IIα. Thus, olive
metabolites appear to act as topoisomerase II poisons in complex
formulations intended for human dietary consumption.
Hydroxytyrosol, oleuropein, and verbascoside are well-

established antioxidants. All of them induce cell cycle arrest,
display antiproliferative effects, and show activity against in vivo
tumor models.61−66 Furthermore, hydroxytyrosol is believed to
have chemopreventative properties and currently is in clinical
trials as a preventative agent for women at high risk for breast
cancer.67,68 Olive oil is a key component of the Mediterranean
dietary pattern, and epidemiological observations indicate that
this diet has great potential for cancer prevention.2,58,69,70

Following consumption of 25 mL of virgin olive oil, the
concentration of hydroxytyrosol in blood is estimated to be as
high ∼1 μM.71 Thus, at least under oxidizing conditions,
physiological levels of hydroxytyrosol are in a range at which the
compound displays activity against human type II top-
oisomerases.
Although phenolic olive metabolites display complex cellular

activities, it has been proposed that they exert at least some of
their biological effects by redox-induced oxidation to quinones
and subsequent protein adduction.54 The finding that hydrox-
ytyrosol, oleuropein, and verbascoside are covalent topoisomer-
ase II poisons and that their activity is enhanced by oxidation is
consistent with this hypothesis. Results of this study suggest that
the ability of these olive leaf metabolites to poison topoisomerase
II may contribute to their therapeutic properties.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: neil.osheroff@vanderbilt.edu. Telephone: 1-615-322-
4338.
Funding
This research was supported by Grant GM033944 (N.O.) from
the National Institutes of Health and funding from ICA in Israel,
the Deutsche Forschungsgemeinschaft, and the Richard H.
Holzer Foundation (A.G.-G. and J.G.). K.R.V. was a trainee
under Grants R25-GM062459 and T32-GM08320 from the
National Institutes of Health. She also was supported in part by
an Administrative Research Supplement to Grant GM033944 to
Promote Diversity in Health-Related Research.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We are grateful to Jo Ann Byl for her help with the preparation of
human type II topoisomerases, to Joseph Deweese for the
preparation of the topoisomerase IIα catalytic core, to Ahuva
Vonshak for technical assistance, and to MaryJean Pendleton,
Rachel Ashley, Lorena Infante, and Jo Ann Byl for critical reading
of the manuscript.

Figure 11. Commercial olive leaf extract enhances DNA cleavage
mediated by topoisomerase IIα. The effects of a commercial olive leaf
extract (Olive Leaf Plus) on DNA cleavage mediated by the human type
II enzyme are shown. DNA cleavage levels were calculated relative to a
control reaction mixture that contained no extract. Error bars represent
standard deviations of at least three independent experiments.

Figure 12. Extra virgin olive oils enhance DNA cleavage mediated by
topoisomerase IIα. The effects of extra virgin olive oils (EVOOs) or an
EVOO H2O extract on DNA cleavage mediated by the human type II
enzyme are shown in panels A and B, respectively. Olive oils [Ultra
Arbonsana (A, yellow), Ultra Koroneiki (K, green), or Lucini Select (L,
brown)] or extracts from these oils were included in reaction mixtures at
final concentrations of 10% (v/v) in the presence of 10 μMK3Fe(CN)6.
Results for reaction mixtures that contained no oils or extracts but
contained oxidant (TII; gray) are shown. DNA cleavage levels were
calculated relative to a control reaction mixture that contained no olive
oil or oxidant. Error bars represent the standard deviation of at least
three independent experiments. Statistically significant differences are
noted with asterisks (*p < 0.05; **p < 0.001; ***p ≤ 0.0001).
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