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Abstract
Molecular identification of mixed-species pollen samples has a range of applications 
in various fields of research. To date, such molecular identification has primarily been 
carried out via amplicon sequencing, but whole-genome shotgun (WGS) sequencing 
of pollen DNA has potential advantages, including (1) more genetic information per 
sample and (2) the potential for better quantitative matching. In this study, we tested 
the performance of WGS sequencing methodology and publicly available reference 
sequences in identifying species and quantifying their relative abundance in pollen 
mock communities. Using mock communities previously analyzed with DNA metabar-
coding, we sequenced approximately 200Mbp for each sample using Illumina HiSeq 
and MiSeq. Taxonomic identifications were based on the Kraken k-mer identification 
method with reference libraries constructed from full-genome and short read archive 
data from the NCBI database. We found WGS to be a reliable method for taxonomic 
identification of pollen with near 100% identification of species in mixtures but gen-
erating higher rates of false positives (reads not identified to the correct taxon at the 
required taxonomic level) relative to rbcL and ITS2 amplicon sequencing. For quan-
tification of relative species abundance, WGS data provided a stronger correlation 
between pollen grain proportion and sequence read proportion, but diverged more 
from a 1:1 relationship, likely due to the higher rate of false positives. Currently, a 
limitation of WGS-based pollen identification is the lack of representation of plant di-
versity in publicly available genome databases. As databases improve and costs drop, 
we expect that eventually genomics methods will become the methods of choice for 
species identification and quantification of mixed-species pollen samples.
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1  | INTRODUC TION

The identification of species in pollen mixtures has a variety of ap-
plications, including forensics, paleobotany, allergen monitoring, and 
pollination biology. Identification of pollen by microscopy is limited 
as there are few experts on palynology (Rahl, 2008), many taxa can-
not be identified to the species level based on pollen morphology 
(Khansari et al., 2012; Salmaki et al., 2008), and the methods are time-
consuming. Recent studies have used DNA metabarcoding to over-
come these disadvantages. DNA metabarcoding uses high-throughput 
sequencing methods to simultaneously sequence PCR-amplified DNA 
of one or two molecular markers from all species in a mixture (Bell 
et al., 2016; Cristescu, 2014). DNA metabarcoding approaches have 
several advantages over microscopic identification, including higher 
taxonomic resolution in many instances, greater availability of rele-
vant expertise, and the ability to process many more grains per sample 
and with higher throughput (Bell et al., 2019). Pollen DNA metabar-
coding has been used for monitoring honey quality (Hawkins et al., 
2015), determining the foraging patterns of bees (Keller et al., 2015; 
Richardson, Lin, Quijia, et al., 2015; Richardson, Lin, Sponsler, et al., 
2015) and other pollinating insects (Lucas et al., 2018), monitoring 
allergenic pollen (Brennan et al., 2019; Kraaijeveld et al., 2014), and 
examining historical flower visitation (Gous et al., 2019).

Despite the successful use of pollen DNA metabarcoding, and its 
advantages relative to microscopic identification, metabarcoding has 
limitations. Species-level identification may be impeded by a lack of di-
vergence between related species in the DNA barcoding markers, while 
detection and quantification may be hampered by biases that favor cer-
tain species (Bell et al., 2019). Different species have different DNA iso-
lation yields and vary in organellar or ribosomal genome copy number, 
which could lead to biases in DNA quantity going into PCRs (Kembel 
et al., 2012; Lamb et al., 2019; Pawluczyk et al., 2015). Primers for PCR 
may differ in their binding efficiencies to different species (Pompanon 
et al., 2012), or polymerases may be biased toward different nucleotide 
composition (Nichols et al., 2018), leading to PCR biases.

Whole-genome shotgun (WGS) sequencing is an approach that 
could improve both taxonomic resolution and quantification in the 
molecular identification of pollen. In terms of taxonomic resolution, 
WGS sequences many more loci than DNA metabarcoding, even 
with very low coverage, generating the potential for much finer taxo-
nomic resolution. In terms of quantification, WGS approaches do not 
require PCR and do not target particular gene regions, eliminating 
amplification bias and potentially reducing copy number bias (Bista 
et al., 2018). WGS methods are increasingly used to analyze the spe-
cies composition and functional profiling of microbiomes (Sharpton, 
2014; Venter et al., 2004) and, more recently, eukaryotes, including 
soil invertebrate communities (Andújar et al., 2015), herbivore diets 
(Chua et al., 2021; Srivathsan et al., 2014), organisms in honey (Bovo 
et al., 2018), and ancient plant communities (Parducci et al., 2019). 
The quantitative accuracy (e.g., Morgan et al., 2010) and species de-
tection ability (Ranjan et al., 2016) of WGS has been investigated for 
prokaryote communities and more recently eukaryotic communities 
(Bista et al., 2018; Garrido-Sanz et al., 2020; Gómez-Rodríguez et al., 

2015; Ji et al., 2019; Tang et al., 2014, 2015). However, few have ex-
amined the performance of WGS in identification and quantification 
of species in pollen mixtures, and most of these used only the small 
proportion of sequences from the plastid genome (Lang et al., 2019). 
Furthermore, there are two key limitations of WGS-based pollen 
species identifications that have not been tested: Very few plants 
have had their whole genomes sequenced and publicly available ge-
nome sequence data may contain errors (Breitwieser et al., 2019).

In this study, we test the ability of WGS sequencing and current 
publicly available reference sequences to identify taxa and quantify 
their proportions in pollen mixtures. We specifically examined (1) the 
proportions of false-negative identifications, that is, taxa present in the 
sample that were not identified; (2) the proportions of false-positive 
identifications, that is, reads that were identified to taxa not present 
in the sample; and (3) quantitative matching, that is, the correspon-
dence between the proportion of pollen grains in a sample and the 
proportion of sequence reads matching the respective plant species. 
We also examined the effect of sample complexity (in terms of species 
richness, relatedness of taxa, and rarity of pollen grains in a sample) on 
false-negative and false-positive identifications. Finally, we compared 
WGS to DNA metabarcoding in terms of performance in identification 
and quantification. Considering the current limitations of reference 
genome availability, completeness, and quality, we expected to find 
poorer taxonomic identification relative to metabarcoding. However, 
given the multiple sources of quantitative bias in amplicon sequencing, 
we expected to find improved quantification with WGS.

2  | MATERIAL S AND METHODS

2.1 | Overview

Our overall approach—described in more detail in the subsequent 
paragraphs—was based on shotgun sequencing carefully constructed 
mixtures of pollen (a “mock community”). We had previously studied 
the efficacy of DNA metabarcoding with the same pollen mixtures 
(Bell et al., 2019), and to enhance interpretability, we conducted 
whole-genome shotgun sequencing on the exact same DNA isolations 
that we had previously used for amplicon sequencing. We used the 
Kraken2 bioinformatics pipeline (Wood et al., 2019), which imple-
ments a k-mer approach to taxonomically classify sequencing reads 
relative to a reference database, and subsequently analyzed the clas-
sified reads to assess the performance of WGS in terms of (1) false-
negative reads; (2) false-positive reads; and (3) quantitative matching; 
both on its own and also relative to amplicon-based methods.

2.2 | Pollen mock communities

The mock communities of pollen we sequenced are described in full 
detail in Bell et al. (2019). We designed the samples to vary in (1) 
species richness (1–9 species); (2) relatedness of taxa within samples 
(from two species in the same genus, to species in widely disparate 
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orders, and including all of the major angiosperm lineages); and (3) 
rarity of taxa within samples, ranging from approximately 5%–95% 
of pollen grains in a sample. The pollen mixtures were carefully quan-
tified via microscopy, with several observers, to ensure that we were 
able to assess quantitative matching with high confidence. The nine 
species included in the mixtures cover a broad spectrum of the flow-
ering plant phylogeny, including monocots and all subclasses of eu-
dicots. We included 1–9 species in the mixtures as this represented 
the typical range of species richness in a pollen sample taken from 
an individual pollinator. Pollen mixtures were made from high-purity 
pollen purchased from pharmaceutical companies, to minimize con-
tamination with DNA from other organisms. Details of the suppliers 
and pollen mixtures are shown in Tables 1 and 2.

We extracted DNA from ~1,000,000 pollen grains for each sam-
ple; a quantity similar to what might be expected on the corbicula of a 
honeybee or a pooled sample from the bodies of multiple pollinating 
insects. The DNA isolation methods were described in full in Bell et al. 
(2019) and used the FastDNA™ Spin Kit for Soil (MP Biomedicals) with 
minor modifications as described in Bell et al. (2017). These DNA ex-
tractions were previously analyzed with DNA metabarcoding, based on 
rbcL and ITS2 (Bell et al., 2019). For rbcL, the primers rbcL2 (Palmieri 
et al., 2009) and rbcLa-R (Kress & Erickson, 2007) were used. For ITS2, 
the primers ITS2 S2F and ITS2 S3R (Chen et al., 2010) were used. 
Illumina MiSeq libraries for DNA metabarcoding were prepared using 
Nextera XT dual-index barcodes (Illumina) and run in a single flow cell 
on a 600-cycle run of the MiSeq instrument at the Emory Integrated 
Genomics Core (EIGC). Taxonomic assignments were determined with 
the bioinformatics pipeline of Sickel et al. (2015), using the RDP classi-
fier (Wang et al., 2007), and previously compiled and trained databases 
for ITS2 (Sickel et al., 2015) and rbcL (Bell et al., 2017), with the addition 
of relevant sequences that had become available more recently. For full 
details of the DNA metabarcoding analyses, see Bell et al. (2019).

2.3 | Sample preparation and sequencing

We conducted whole-genome shotgun sequencing of our samples in 
two groups, a first “pilot” group sequenced at the Emory Integrated 

Genomics Core (EIGC) on Illumina HiSeq and a second “full” group 
sequenced at the Georgia Genomics Facility (GGF) on Illumina 
MiSeq. While we recognize that ideally all sequencing would have 
been done in a single location with the same sequencing protocol and 
chemistry, logistical and financial constraints precluded this possibil-
ity. The first set of samples consisted of pollen mixtures 1 and 2 and 
single-species Carya illinoinensis (Wangenh.) K. Koch (Juglandaceae), 
sequenced on an Illumina HiSeq at EIGC, with 2 M paired reads of 
100 bp run for each sample from two flow cells, with library prepa-
ration using the Nextera XT method. Following successful results 
with the sample subset, we prepared mixtures 3–11 for sequencing 
by GGF using the Nextera XT library preparation method (Illumina). 
We also prepared single-species samples (from the set of species 
included in the mixtures), as well as negative controls. Again, to en-
sure comparability of the WGS data with our earlier amplicon-based 
study (Bell et al., 2019), we used the exact same isolated DNA. We 
incorporated a unique Illumina barcode combination to each DNA 
sample, so that all samples could be multiplexed. The multiplexed 
sample was run on Illumina MiSeq; a total of approximately 24–30 M 
paired reads of 150 bp was obtained for each multiplexed sample. 
This sampling strategy provided a similar quantity of data per sample 
as the HiSeq analysis, without the need to share flow cells with other 
projects. The samples run by EIGC (mix 1, mix 2, and C. illinoinensis) 
were run across two replicate flow cells. The samples run by GGF 
were run on a single flow cell. We analyzed data from the two repli-
cate flow cells separately. These were treated as replicates in statis-
tical analyses, so we had two replicate datasets for each sample run 
by EIGC and a single dataset for each sample run by GGF.

2.4 | Bioinformatics

Taxonomic identification of WGS sequences was conducted using 
Kraken2 (Wood et al., 2019). This program compares short sequence 
substrings (k-mers) from the sample sequences to a genomic refer-
ence database, returning the lowest common ancestor of matches 
in the database. A Kraken2 (Wood et al., 2019) database was cre-
ated (March, 2020) using all plant assemblies available in the NCBI 

TA B L E  1   Origin of species pollen samples used in this study

Species Family APG4 lineage Haploid genome size Supplier

Populus tremuloides Salicaceae Rosids 0.5 pg (Bai et al., 2012) Sigma-Aldrich Co

Populus deltoides Salicaceae Rosids 0.5 pg (Bai et al., 2012) Sigma-Aldrich Co

Broussonetia papyrifera Moraceae Rosids 0.7 pg (Ohri & Kumar, 1986) Polysciences Inc

Carya illinoinensis Juglandaceae Rosids 0.83 pg (Bennett et al., 2000) Polysciences Inc

Bassia scoparia Amaranthaceae Caryophyllales 1.12 pg (Kubesova et al., 2010) Sigma-Aldrich Co

Ambrosia artemisiifolia Asteraceae Asterids 1.16 (Kubesova et al., 2010) Polysciences Inc

Artemisia tridentata Asteraceae Asterids 4.09 pg (Torrell & Valles, 2001) Sigma-Aldrich Co

Poa pratensis Poaceae Monocots 4.24 pg (Arumuganathan et al., 1999), 
5.38 pg (Bennett et al., 1982)

Sigma-Aldrich Co

Zea mays Poaceae Monocots 2.73 pg (Bennett & Smith, 1976) Carolina Biological 
Supply
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RefSeq database (O’Leary et al., 2016). Additional plant species were 
included from GenBank (Clark et al., 2016) and the Sequence Read 
Archive (Leinonen et al., 2011) (SRA), to ensure that all species in pol-
len mixtures were represented (Table 3). Genome assemblies were 
downloaded from GenBank with ncbi-genome-download (Blin, n.d.) 
(v0.2.12). Raw FASTQs for six species were downloaded from SRA 
with fasterq-dump (NCBI, n.d.) (v2.10.0) and converted to FASTA 
with reformat.sh (Bushnell, 2016) (v38.75). For SRA projects with 
more than 10 Runs, only 10 randomly selected Runs were down-
loaded to control file sizes. All downloaded FASTAs were formatted 
for Kraken2 and added to the RefSeq plant database.

Raw reads sequenced from this study underwent error correc-
tion and quality filtering using the Nextflow (Di Tommaso et al., 
2017) (v19.10) workflow illumina-cleanup (Petit, n.d.-b) (v1.0.0) with 
the default settings. A file of filenames was generated using the 
Bactopia (Petit & Read, 2020) prepare function and was used as 
input for Illumina-cleanup. Reads were trimmed and quality-filtered 
with bbduk.sh (Bushnell, 2016) (v38.75) and error-corrected with 
Lighter (Song et al., 2014) (v1.1.1). Sequence quality metrics were 
created with fastq-scan (Petit, n.d.-a) and FastQC (Andrews et al., 
2016). The processed FASTQs were queried against the custom 
Kraken2 database.

The tools used in this analysis are each available from Bioconda 
(Grüning et al., 2018). The commands and results are available at 
https://github.com/Brosi​-Lab/Kraken.

2.5 | Data analysis

2.5.1 | Overview and analysis commonalities

Our analysis focused on three outcomes: 1) false-negative identifica-
tions, that is, failure to identify a taxon that was present in a sample; 
2) false-positive identifications, that is, incorrect identification of taxa 
not present in a sample; and 3) quantitative matching, that is, the re-
lationship between the proportion of pollen grains in a sample and 
the proportion of sequence counts corresponding to that taxon in our 
output. For each of these outcomes, we assessed WGS on its own 
and separately compared the performance of WGS with our previous 
amplicon results (again from the exact same DNA extractions). For the 

qualitative outcomes (false negatives and positives), we assessed the 
effect of sample complexity on matching, including the constructed 
pollen mixtures described above, specifically constructed to vary in 
species richness, relatedness of plant taxa, and rarity.

We conducted all statistical analyses in the R language for statisti-
cal programming (R Core Team, 2016), specifically using Rmarkdown 
in the RStudio platform. A fully reproducible Rmarkdown file of 
our analyses is included in the GitHub repository at https://github.
com/Brosi​-Lab/Kraken. To enable comparison to amplicon results, 
we removed identifications to Zea mays L. (Poaceae) through-
out our analyses. We excluded this taxon from amplicon analyses 
to allow comparison with DNA metabarcoding, because it did not 
amplify with ITS2 and was not identifiable to genus with rbcL (Bell 
et al., 2019). We excluded mixture 5, containing Populus deltoides 
W. Bartram ex Marshall (Salicaceae) and Populus tremuloides Michx. 
(Salicaceae), as we could not be certain of the actual species pro-
portions since these species could not be differentiated by micros-
copy. Because all analyses included nonindependent data (multiple 
replicates of the same pollen mixtures; pollen from the same plant 
species occurring in multiple mixtures), all our analyses were con-
ducted with mixed-effects modeling, using mixture identity and 
species identity as crossed random effects (modeled as random 
intercepts). Across our outcomes, in comparing WGS and amplicon 
performance, we pooled WGS and amplicon results together into a 
single data table and conducted analyses with sequencing method 
(WGS vs. amplicon) as a fixed effect.

2.5.2 | Contaminant sequence removal

We removed sequences indistinguishable from sample contamina-
tion using a criterion based on our negative controls. Specifically, 
we removed Kraken2-based taxonomic assignments recorded from 
fewer sequence reads than for the highest number obtained from 
any negative control (DNA isolation and sequencing negative con-
trols) as such reads cannot be distinguished from sample contami-
nation. This was a conservative criterion, as the normalization of 
samples prior to sequencing meant that negative control samples 
were added to the library pool at higher volumes than pollen DNA 
samples.

TA B L E  3   NCBI data for taxa of interest included in our kraken database, in addition to all available RefSeq assemblies

Species Taxon ID Accession Type References

Ambrosia artemisiifolia 4212 PRJNA449949 FASTQ (van Boheemen et al., 2017)

Artemisia tridentata 55611 PRJNA258169 FASTQ (Huynh et al., 2015)

Bassia scoparia 83154 GCA_008642245 Assembly (Patterson et al., 2019)

Broussonetia papyrifera 172644 PRJNA437223 FASTQ (Peng et al., 2019)

Carya illinoinensis 32201 GCA_011037805 Assembly (Huang et al., 2019)

Poa pratensis 4545 PRJNA517968 FASTQ (Y. Chen et al., 2019)

Populus deltoides 3696 PRJNA430966 FASTQ (Zhu et al., 2018)

Populus tremuloides 3693 PRJNA299390 FASTQ No linked publication

https://github.com/Brosi-Lab/Kraken
https://github.com/Brosi-Lab/Kraken
https://github.com/Brosi-Lab/Kraken


     |  16087BELL et al.

2.5.3 | Outcomes 1 and 2: false negatives and 
false positives

The response variables for our first two outcomes were binomial 
(yes / no) in structure. For our first outcome of false negatives, we 
needed to record—for each species present in a pollen mixture—
whether or not that species was identified in that sample. To do 
this, we set up a data file with each species truly present within 
each sample as its own row, which we subsequently scored as 0 / 
1, with a zero for species that were present in the sample but not 
identified in sequencing reads above the contamination thresh-
old, and a one for species that were identified in the sequencing 
reads above the threshold. For our second outcome of false posi-
tives, we assessed the proportion of true vs. false positives. To do 
this, we aggregated the data to one row per sample replicate and 
summed the read counts of true positives (combining counts of all 
species truly present in a particular mix) and false positives in two 
separate columns.

We first asked how WGS performed on its own in terms of 
false-negative and false-positive reads, specifically in terms of 
how sample complexity affected these outcomes. We tested the 
effect of three forms of sample complexity on the ability to de-
tect the presence or absence of a species in a mixture, based on 
pollen mixtures we designed: (1) species richness of the sample; 
(2) taxonomic relatedness within the sample (0  =  same species; 
1 =  same genus; 2 =  same family; 3 =  same class; 4 =  different 
classes); and (3) rarity of the species (proportion of pollen grains in 
a sample). We separately analyzed positive matches at two taxo-
nomic levels: genus and species. We ran separate binomial-errors 
mixed-effects models for each of these three questions of interest 
(species richness, taxonomic relatedness, and rarity) with each of 
those variables included as the sole fixed effect in that respec-
tive model. Subsequently, we pooled both the amplicon and the 
WGS data into new combined data files, and conducted analyses 
of both false-negative and false-positive matching using method 
(DNA metabarcoding vs. WGS) as the sole fixed effect, providing 
a direct comparison of the performance of our WGS method to 
metabarcoding methods.

2.5.4 | Quantitative accuracy

To assess the quantitative accuracy of WGS sequencing for our con-
structed mixtures, we tested the correlation between the (known) 
proportion of pollen grains in a sample (Bell et al., 2019) and the 
proportion of DNA sequencing reads (i.e., the proportion of reads 
assigned to a taxon at the taxonomic level of interest relative to the 
total classified sequencing reads). We used a linear mixed-effects 
model, implemented with the “lmerTest” package in R. The response 
variable was the proportion of sequencing reads, and the explana-
tory variable was proportion of input pollen grains. In parallel with 
our qualitative analyses, we used mixture identity and species as 
crossed random-intercepts effects. This analysis was conducted 

separately for identifications at the level of species, genus, and 
family.

3  | RESULTS

3.1 | Overview

For the three samples run on HiSeq, we obtained 4,188,389 
paired-end sequencing reads of 101bp, ranging from 645,680 to 
765,835 reads per sample per flow cell (Table 4). Of these, 679,753 
to 1,279,514 were retained per sample after combining data from 
both flow cells, quality filtering, and classification. For the remain-
ing samples run on MiSeq, we obtained 13,515,962 total sequenc-
ing reads of 150 bp, ranging from 647,261 to 1,009,158 per sample, 
excluding the Broussonetia papyrifera (L.) Vent. sample where only 
7 sequencing reads were obtained. Of these, 447,215 to 839,951 
were retained per sample after quality filtering and classification. 
Across both sets of samples, Kraken2 identified 11,984,584 reads 
(92.7% of classified reads) to the level of species and 12,644,534 
reads (97.8%) to at least the level of genus. This compares to 
34.5% of reads identified to species and 57.6% to genus with rbcL 
amplicon sequencing and 47.9% to species and 83.4% to genus 
with ITS2 amplicon sequencing (Bell et al., 2019). Negative con-
trol samples were all run on the MiSeq platform and yielded 507 
and 6,621 sequencing reads per sample. Of these, 333 and 5,048 
were retained per sample after quality filtering and classification. 
Therefore, a contaminant threshold of 5,048 was used for retain-
ing taxonomic identifications in samples.

3.2 | Taxonomic Identifications

3.2.1 | False negatives

A list of the species identified from at least 1% of sequencing reads 
in each sample is available in Appendix S1. In all mixtures except 
for the sample containing B.  papyrifera alone, Kraken2 analysis of 
WGS identified all taxa in the mixture to the species level (Table 5; 
Figure 1). The sample containing B. papyrifera alone contained only 
7 reads, which was below the contamination threshold. We were 
unable to conduct mixed-effects modeling of the effect of sample 
complexity on true positive detection, due to the almost 100% suc-
cess rate.

Whether WGS using our full or partial genome reference data-
base was more or less effective than amplicon sequencing using the 
more complete locus-specific barcode reference databases for the 
detection and identification of pollen taxa in a mixture depended on 
the taxonomic level of identification and the barcode used for DNA 
metabarcoding (Table 6). In comparison to either rbcL or ITS2 alone, 
the WGS method identified significantly more taxa correctly at both 
the species and the genus level. After combining rbcL and ITS2 iden-
tifications, DNA metabarcoding still performed significantly worse 
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than WGS for the identification of taxa at the species levels, but 
there was no significant difference at the genus level.

3.2.2 | False positives

False positives occurred in all samples (Appendix S1). Species-level 
false-positive identifications usually occurred as less than 1% of 
the total reads in the sample. Excluding the Broussonetia papyrifera 
single-species sample, which had very few sequencing reads, only 
three false-positive species were identified from greater than 1% of 
the total reads. Helianthus annuus L. was identified in the Ambrosia 
artemisiifolia L. single-species sample at 17.08% of total reads, the 
Artemisia tridentata Nutt. single-species sample at 2.33% of total 
reads, and mixtures containing these two species at up to 2.43% of 
total reads. Populus tremuloides Michx. identifications occurred in the 
single-species samples of Populus deltoides W. Bartram ex Marshall 
at 7.68%, and several other single-species samples and mixtures at 
up to 2.6%. P. deltoides was identified in the single-species P. tremu-
loides sample at 3.17% of total reads. We found no evidence that 
sample complexity (relatedness, species richness, and pollen grain 
proportion) affected the proportion of false-positive identifications 
at the species or genus level (Table 7; Figure 2).

Comparing WGS to amplicon sequencing, we found that the two 
approaches did not produce significantly different rates of false-
positive reads at the species level, irrespective of the marker used 
(rbcL, ITS2, or both markers combined) (Table 8). At the genus level, 
ITS2 amplicon sequencing generated significantly fewer false posi-
tives than WGS. When the two amplicon markers were combined, 
there was no significant difference in false-positive rate between 
amplicons and WGS.

3.3 | Quantitative matching

The proportion of WGS sequencing reads identified to a particular 
taxon was usually less than the proportion of pollen grains of that 
taxon in the mixture (Figure 3), as is expected given the presence of 
false-positive reads. We found that the proportion of DNA sequenc-
ing reads for each taxon increased with an increasing proportion of 
pollen grains within a mixture at the genus (R2 = .62, p < .000001) 
and species (R2 = .60, p = .0007) levels, but the slope of the regres-
sion was well below 1 (0.46 for both genus and species).

Quantitatively, WGS provided a better fit than amplicons in 
terms of the strength of correlation between pollen grain propor-
tion and read proportion, regardless of the barcode or taxonomic 

TA B L E  4   Number of sequencing reads and Kraken2 k-mer fragments retained for analysis WGS sequencing data of pollen samples 
through processing steps of quality filtering and classification

Sample Total reads
Retained 
after filtering

Classified 
Fragments

Unclassified 
Fragments

Level of classification

Genus Species

Mixture 1 2,737,806 2,418,106 706,013 (58.39%) 503,040 (41.61%) 680,193 (56.30%) 669,890 (55.45%)

Mixture 2 2,589,970 2,163,054 679,753 (62.85%) 401,774 (37.15%) 660,046 (61.04%) 653,062 (60.38%)

Mixture 3 1,832,234 1,715,760 639,808 (74.58%) 218,072 (25.42%) 624,267 (72.76%) 603,821 (70.38%)

Mixture 4 1,877,360 1,795,644 682,921 (76.06%) 214,901 (23.94%) 665,730 (74.19%) 635,180 (70.77%)

Mixture 5 1,583,926 1,498,748 744,876 (99.40%) 4,498 (0.60%) 731,490 (97.55%) 563,733 (75.17%)

Mixture 6 1,524,128 1,381,686 525,819 (76.11%) 165,024 (23.89%) 516,610 (74.78%) 513,957 (74.38%)

Mixture 7 1,841,202 1,777,146 581,375 (65.43%) 307,198 (34.57%) 560,525 (63.05%) 550,258 (61.89%)

Mixture 8 1,499,692 1,421,518 543,432 (76.46%) 167,327 (23.54%) 533,301 (75.04%) 530,254 (74.61%)

Mixture 9 1,294,522 1,227,674 458,933 (74.76%) 154,904 (25.24%) 450,772 (73.42%) 448,198 (73.01%)

Mixture 10 1,355,242 1,208,520 447,215 (74.01%) 157,045 (25.99%) 439,119 (72.64%) 436,536 (72.21%)

Mixture 11 2,018,316 1,828,026 673,577 (73.69%) 240,436 (26.31%) 661,246 (72.33%) 657,267 (71.89%)

Ambrosia artemisiifolia 1,924,176 1,877,500 656,579 (69.94%) 282,171 (30.06%) 630,876 (67.23%) 621,140 (66.16%)

Artemisia tridentata 1,770,424 1,722,090 554,707 (64.42%) 306,338 (35.58%) 534,603 (62.09%) 524,307 (60.90%)

Bassia scoparia 1,790,256 1,735,430 839,951 (96.80%) 27,764 (3.20%) 832,989 (96.00%) 831,720 (95.84%)

Broussonetia papyrifera 30 14 5 (71.43%) 2 (28.57%) 5 (71.43%) 5 (71.43%)

Carya illinoinensis 3,049,002 2,687,214 1,279,514 (95.23%) 64,093 (4.77%) 1253842 (93.29%) 1,250,232 (92.97%)

Poa pratensis 1,817,984 1,736,554 640,084 (73.72%) 228,193 (26.28%) 628302 (72.35%) 624,364 (71.89%)

Populus deltoides 1,613,062 1,565,038 773,325 (98.83%) 9,194 (1.17%) 758913 (96.94%) 556,430 (71.07%)

Populus tremuloides 1,664,188 1,613,334 804,651 (99.75%) 2,016 (0.25%) 791915 (98.11%) 624,746 (77.39%)

Zea mays 1,610,926 1,438,576 700,507 (97.39%) 18,781 (2.61%) 689128 (95.76%) 688,837 (95.68%)

Negative control 1 13,242 10,096 152 (45.65%) 181 (54.35%) 141 (42.34%) 128 (38.43%)



     |  16089BELL et al.

rank (WGS results in the preceding paragraph; for rbcL slope = 0.55, 
R2 =  .40 at genus level, slope =0.39, R2 =  .30 at species level; for 
ITS2 slope = 0.48, R2 = .26 at genus level, slope = 0.24, R2 = .09 at 
species level). WGS data, however, departed more strongly from a 
1:1 proportional pollen grain input to sequence read output relation-
ship (greater residuals) relative to amplicon data, with this difference 
being statistically significant compared to rbcL at the genus level 
(differing by a factor of −0.061, p =  .025) but not the species level 
(−0.023, p =  .474), and ITS2 at the species level (−0.068, p =  .003) 
but not the genus level (−0.027, p = .103). This discrepancy from the 
previous result was likely driven by the higher proportion of false-
positive reads in the WGS data.

4  | DISCUSSION

We tested the ability of WGS to identify taxa and quantify their 
relative abundances in pollen mock communities, using ~600,000–
700,000  sequencing reads per sample and Kraken2-based taxo-
nomic identification with publicly available reference sequences 
and compared this to our previous DNA metabarcoding analyses. 
We found our WGS method to be almost 100% successful in iden-
tifying known species in mixtures. Rates of false negatives (failure 
to detect and identify taxa that were present) and false positives 
(reads that were not identified as taxa that were present) in WGS 
data were not sensitive to mixture complexity. In comparison to 
DNA metabarcoding, WGS performed better in terms of false neg-
atives and worse in terms of false positives. We found WGS to give 
improved quantification of the proportions of taxa when compared 
to metabarcoding, although the relationship between input pollen 

TA B L E  5   Qualitative accuracy of WGS of constructed pollen 
mixtures, in terms of correct species, genus and family level 
identification. For complete lists of taxa and numbers of sequencing 
reads, see Supplementary information s2 and s3

Mixture Species

True positive 
identification

Genus Species

1 Broussonetia papyrifera Yes Yes

Artemisia tridentata Yes Yes

Zea mays Yes Yes

2 Broussonetia papyrifera Yes Yes

Bassia scoparia Yes Yes

Artemisia tridentata Yes Yes

Poa pratensis Yes Yes

Zea mays Yes Yes

3 Populus tremuloides Yes Yes

Broussonetia papyrifera Yes Yes

Carya illinoinensis Yes Yes

Bassia scoparia Yes Yes

Artemisia tridentata Yes Yes

Poa pratensis Yes Yes

Zea mays Yes Yes

4 Populus tremuloides Yes Yes

Populus deltoides Yes Yes

Broussonetia papyrifera Yes Yes

Carya illinoinensis Yes Yes

Bassia scoparia Yes Yes

Ambrosia artemisiifolia Yes Yes

Artemisia tridentata Yes Yes

Poa pratensis Yes Yes

Zea mays Yes Yes

5 Populus tremuloides Yes Yes

Populus deltoides Yes Yes

6 Poa pratensis Yes Yes

Zea mays Yes Yes

7 Broussonetia papyrifera Yes Yes

Artemisia tridentata Yes Yes

8 Broussonetia papyrifera Yes Yes

Poa pratensis Yes Yes

9 Broussonetia papyrifera Yes Yes

Poa pratensis Yes Yes

10 Broussonetia papyrifera Yes Yes

Poa pratensis Yes Yes

(Continues)

Mixture Species

True positive 
identification

Genus Species

11 Broussonetia papyrifera Yes Yes

Poa pratensis Yes Yes

Single species Populus tremuloides Yes Yes

Populus deltoides Yes Yes

Broussonetia papyrifera No No

Carya illinoinensis Yes Yes

Bassia scoparia Yes Yes

Ambrosia artemisiifolia Yes Yes

Artemisia tridentata Yes Yes

Poa pratensis Yes Yes

Zea mays Yes Yes

TA B L E  5   (Continued)

F I G U R E  1   Proportion of samples with correct matches at each taxonomic level, as samples vary in complexity. (a, b) mixtures of varying 
species richness; (a) genus-level identifications; (b) species-level identifications. (c, d) mixtures containing pairs of taxa of varying relatedness; 
(c) genus-level identifications; (d) species-level identifications. (e, f) mixtures of two species varying in proportion of the rarest species; (e) 
genus-level identifications; (f) species-level identifications
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(a)

(c)

(e) (f)

(d)

(b)
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grain proportion and read count proportions deviates from the ex-
pected 1:1 relationship.

4.1 | Species-level identification

Compared to DNA metabarcoding, our WGS sequencing method 
generated fewer false negatives. WGS generated more false-
positive reads, though this difference was not statistically signifi-
cant for most comparisons. There have been few studies assessing 
the detection and identification ability of WGS relative to amplicon 
sequencing, and most of these are not directly comparable to our 
study due to differences in experimental design. Bista et al. (2018) 
found better qualitative detection with WGS compared to amplicon 
sequencing of COI for mixtures of invertebrate animals. However, 
their study used mitochondrial data only (<1% of sequencing reads), 
and their reference library was custom-made for their study using 
only the species of interest and assembling the full mitochondrion. 
In contrast, our study uses nuclear, chloroplast, and mitochondrial 

genomes, with a reference database of all available RefSeq genomes. 
Other studies using WGS methods for pollen identification have also 
found that the ability to identify all species in a mixture is close to 
100% (Lang et al., 2019; Peel et al., 2019). It is not possible to com-
pare our false-positive rate to either of these studies based on dif-
ferences in the way identifications to taxonomic levels other than 
species or genus are treated (i.e., removed vs treated as false posi-
tives). It is likely that our false-positive rate is similar to these studies 
as there were few false-positive species-level identifications occur-
ring at greater than 1% in any sample.

Differences in the false-positive rate between WGS and DNA 
metabarcoding could be explained by the relative quality and com-
pleteness of the reference databases. A recent study aiming to ana-
lyze plant diet from fecal samples encountered a high false-positive 
rate using whole-genome reference sequences due to missing spe-
cies, which limited the use of WGS data to a few well-represented 
loci (Chua et al., 2021). Although all the species included in our mix-
tures were present in our reference database for WGS, many were 
downloaded from NCBI as unassembled SRA data and may have had 
lower coverage and more errors than RefSeq genome assemblies. 
Genome assembly data may contain contaminants (e.g., fungi, bacte-
ria, human; Breitwieser et al., 2019) that would not amplify with the 
kingdom-specific primers typically used for DNA metabarcoding, 
but would affect taxonomic matching for WGS methods. As more 
genome sequence data become available and reference genome 
quality improves, false-negative and false-positive reads in WGS are 
likely to diminish, as has been recorded for bacterial metagenomics 
(Nasko et al., 2018).

4.2 | Quantification of relative species abundances

Several studies have found the relationship between DNA meta-
barcoding sequence reads and pollen proportion to deviate sub-
stantially from a 1:1 relationship, especially with ITS2 (Bell et al., 
2019; Richardson, Lin, Sponsler, et al., 2015; Smart et al., 2017). 
Using WGS, we detected a stronger correlation between the pro-
portion of pollen grains of a taxon in a mixture and the proportion 
of sequences assigned to that taxon, relative to DNA metabarcod-
ing. At the same time, we also found that the WGS sequence reads 
departed more strongly from the “true” 1:1 input pollen grain to 
output sequence proportion relationship relative to amplicon-based 
methods. Comparison of WGS of chloroplast genomes with DNA 
metabarcoding for the identification of pollen mixtures has found 
improved quantification with WGS (Lang et al., 2019), and likewise 
for comparison of WGS of mitochondrial genomes with amplicon 
sequencing of animal mixtures (Bista et al., 2018), and this quan-
tification can be further improved by correcting for mitochondrial 

TA B L E  6   Binomial mixed model to assess if method (WGS 
or amplicon sequencing) has a significant effect on the ability to 
identify true positives in a pollen mixture

DNA barcode
Taxonomic 
level p-value N

rbcL Species .0000003 299

Genus .0209759 299

ITS2 Species .0001272 299

Genus .0002302 299

rbcL and ITS2 combined Species .0027829 294

Genus .4333710 294

TA B L E  7   Binomial mixed-effects model to assess if species 
richness, species relatedness, and pollen grain proportion have a 
significant effect on the proportion of false-positive sequencing 
reads identified in a pollen mixture through WGS analyzed with 
kraken

Measure of mixture 
complexity

Taxonomic 
level p-value n

Species richness Species .8957640 17

Genus .3812160 17

Taxonomic 
relatedness

Species .5412578 17

Genus .0984720 17

Pollen grain 
proportion

Species N/Aa 17

Genus N/A 17

aModel did not converge.

F I G U R E  2   Proportion of false-positive sequencing reads at each taxonomic level, as samples vary in complexity. (a, b) mixtures of varying 
species richness; (a) genus-level identifications; (b) species-level identifications. (c, d) mixtures containing pairs of taxa of varying relatedness; 
(c) genus-level identifications; (d) species-level identifications. (e, f) mixtures of two species varying in proportion of the rarest species; (e) 
genus-level identifications; (f) species-level identifications
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genome copy number (Garrido-Sanz et al., 2020; Garrido-Sanz et al., 
2021). Long-read sequencing of nuclear DNA of pollen mixtures has 
been found to be semiquantitative, in that species present in high 
proportions were detected in high proportions and species present 
in low proportions were detected in low proportions (Peel et al., 
2019). Our WGS short-read sequencing could be similarly described 
as semiquantitative.

There are at least three reasons why WGS may only be semi-
quantitative. First, pollen grains vary in their DNA quantity due to 
variation in genome size, which can differ by orders of magnitude 
among flowering plant species (Soltis et al., 2003). Kraken2 was 
not designed for quantification and does not correct for genome 
size bias, so some of the unexplained variance in our analyses may 
be due to this. This could be corrected with knowledge of genome 
sizes, though variation in ploidy within taxa (Kolář et al., 2017) could 
complicate such corrections. Second, the proportion of sequencing 
reads identified to a taxon was always less than the true proportion 
of pollen grains for that taxon in the sample due to false positives. 
Improved coverage and quality of whole-genome reference data-
bases is likely to reduce the false-positive rate and improve quanti-
fication in the future. Third, as with amplicon sequencing, our DNA 
extractions may have been affected by variation among species in 
the effectiveness of the extraction. This source of bias could be cor-
rected with a database of relative DNA extraction efficiencies.

4.3 | Present feasibility of WGS and future 
research directions

Our results highlight the potential of WGS as a method for identi-
fication and quantification of pollen in mixtures. Based on the cur-
rent state of technology and reference databases, WGS provides an 
improvement in quantification, but with a higher rate of false posi-
tives. Currently, we see three disadvantages of WGS over DNA me-
tabarcoding, although solutions may be provided in the near future. 
First, WGS methods are only suitable for study systems where ref-
erence genomes are available for the majority of species. Globally, 
the number of plant species with full-genome sequences in public 
databases is much smaller than the number of species with rbcL or 

ITS2 sequence. Our WGS reference database (assembled in March, 
2020) included 93  flowering plant species with RefSeq genomes, 
2  species with GenBank assemblies, and 6  species represented 
by SRA data (WGS or RNA-seq). The reference databases used in 
our DNA metabarcoding study (assembled January 27, 2016, and 
January 19, 2015, respectively) included 38,409  species with rbcL 
sequence and 72,325 species with ITS2 sequence. This compares to 
an estimated 450,000 flowering plant species on the planet (Pimm 
& Joppa, 2015). Without substantial increases in the number of pub-
licly available reference sequences, the power of WGS will be limited 
by the need to generate reference genomes prior to conducting tax-
onomic identification. Second, sequencing costs are higher for WGS 
than DNA metabarcoding. We used one 600 cycle run of Illumina 
MiSeq for 96 samples in the DNA metabarcoding study (Bell et al., 
2019) and one 300 cycle run of Illumina MiSeq for 22 samples in the 
current study. This represents an approximately 4.5-fold increase in 
per sample sequencing costs for WGS. However, sequencing costs 
are likely to decrease over time, while other costs such as fieldwork 
and staff time, are likely to increase, making the sequencing cost less 
important in selecting the most appropriate method. Currently, the 
biggest cost differential is likely to be in the preparation of refer-
ence databases because there are currently more species with pub-
licly available barcode reference sequences than genomic reference 
sequences. Generating new reference genomes would incur costs 
from fieldwork, laboratory analyses, bioinformatics, storage of se-
quence data, and deposition of herbarium specimens. Third, a higher 
quality and quantity of DNA is required for WGS. In this study, 
we based our analysis on DNA extractions of samples containing 
1,000,000 pollen grains. A similarly high number of pollen grains is 
likely to be achievable for pollen loads from the corbiculae of bees, 
but pollen samples recovered from the bodies of pollinating insects, 
particularly those of small body size, are likely to have much fewer 
pollen grains and would need to be pooled before DNA extraction. 
Improvements in library preparation kits mean that required DNA 
quantities are decreasing. The most recent version of the Illumina 
Nextera XT DNA Library Preparation Kit requires only 1 ng of input 
DNA. This quantity would be achievable from pollen loads from in-
dividual pollinators.

These three disadvantages are likely to be minimized with future 
developments. Currently, the most important requirement to make 
WGS identification of pollen mixtures feasible is improved reference 
sequence databases. While the current number of publicly available 
high-quality genome assemblies represent only a small proportion 
of plant species diversity, it is likely that sequencing rates will in-
crease with new initiatives such as the Earth BioGenome Project, 
which aims to have sequenced the genomes of most eukaryote spe-
cies within a decade (Lewin et al., 2018). New methods using long 
sequencing reads and newly developed bioinformatics pipelines will 
increase the rate at which plant genomes can be assembled (Driguez 
et al., 2021). Database “cleaning” will be possible when there are 
more near-complete genomes from a wider range of species, and new 
bioinformatics methods for removing bacterial contaminants from 
eukaryotic genome assemblies show promise (Fierst & Murdock, 

TA B L E  8   Binomial mixed model to assess if method (WGS or 
amplicon sequencing) has a significant effect on the proportion of 
false-positive sequencing reads identified in a pollen mixture. The 
direction of the trend was always in favor of amplicon sequencing

DNA barcode
Taxonomic 
level p-value N

rbcL Species .5067176 54

Genus .6917513 54

ITS2 Species .9102740 54

Genus .0000454 54

rbcL and ITS2 combined Species .9694023 106

Genus .0993345 106
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2017). With future increases in availability and quality of reference 
genome sequences, WGS will become feasible for the identification 
and quantification of pollen in most applications.

5  | CONCLUSIONS

The limitations of DNA metabarcoding mean that alternatives 
need to be developed. We have demonstrated that WGS is a suit-
able method for identification and quantification of pollen grains in 

mixtures, although it may not currently be practical. The weaknesses 
of WGS are surmountable in the long-term, particularly as the num-
ber of publicly available full-genome sequences increases. Increased 
reference sequence availability will enable WGS to identify species 
(or taxa below the species level) that are not uniquely identifiable via 
DNA barcoding and allow for improved quantification of the propor-
tions of species in a mixture. This higher level of precision would 
allow for finer geographic precision in forensic applications, im-
proved understanding of pollination biology at the plant population 
level, and more accurate assessments of food origins and quality. 

F I G U R E  3   Relationship between the proportion of pollen grains in a mixture belonging to a particular taxon and the proportion of whole-
genome shotgun sequencing reads matching that taxon: (a) genus-level identifications; and (b) species-level identifications

(a)

(b)
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We anticipate that genomics methods will become the methods of 
choice for identification of pollen and other plant mixtures within 
the next decade.
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