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Abstract

Modern time series gene expression and other omics data sets have enabled unprece-

dented resolution of the dynamics of cellular processes such as cell cycle and response to

pharmaceutical compounds. In anticipation of the proliferation of time series data sets in the

near future, we use the Hopfield model, a recurrent neural network based on spin glasses,

to model the dynamics of cell cycle in HeLa (human cervical cancer) and S. cerevisiae cells.

We study some of the rich dynamical properties of these cyclic Hopfield systems, including

the ability of populations of simulated cells to recreate experimental expression data and the

effects of noise on the dynamics. Next, we use a genetic algorithm to identify sets of genes

which, when selectively inhibited by local external fields representing gene silencing com-

pounds such as kinase inhibitors, disrupt the encoded cell cycle. We find, for example, that

inhibiting the set of four kinases AURKB, NEK1, TTK, and WEE1 causes simulated HeLa

cells to accumulate in the M phase. Finally, we suggest possible improvements and exten-

sions to our model.

Author summary

Cell cycle—the process in which a parent cell replicates its DNA and divides into two

daughter cells—is an upregulated process in many forms of cancer. Identifying gene inhi-

bition targets to regulate cell cycle is important to the development of effective therapies.

Although modern high throughput techniques offer unprecedented resolution of the

molecular details of biological processes like cell cycle, analyzing the vast quantities of the

resulting experimental data and extracting actionable information remains a formidable

task. Here, we create a dynamical model of the process of cell cycle using the Hopfield

model (a type of recurrent neural network) and gene expression data from human cervical

cancer cells and yeast cells. We find that the model recreates the oscillations observed in

experimental data. Tuning the level of noise (representing the inherent randomness in

gene expression and regulation) to the “edge of chaos” is crucial for the proper behavior
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of the system. We then use this model to identify potential gene targets for disrupting the

process of cell cycle. This method could be applied to other time series data sets and used

to predict the effects of untested targeted perturbations.

Introduction

Originally proposed by Conrad Waddington in the 1950s [1] and Stuart Kauffman in the

1970s [2], analysis of biological processes such as cellular differentiation and cancer develop-

ment using attractor models—dynamical systems whose configurations tend to evolve

toward particular sets of states—has gained significant traction over the past decade [3–12].

One such attractor model, the Hopfield model [13], is a type of recurrent artificial neural net-

work based on spin glasses. It was designed with the ability to recall a host of memorized pat-

terns from noisy or partial input information by mapping data directly to attractor states. A

great deal of analytical and numerical work has been devoted to understanding the statistical

properties of the Hopfield model, including its storage capacity [14], correlated patterns

[15], spurious attractors [16], asymmetric connections [17], embedded cycles [18], and com-

plex transition landscapes [19]. Due to its prescriptive, data-driven design, the Hopfield

model has been applied in a variety of fields including image recognition [20, 21] and the

clustering of gene expression data [22]. It has also been used to directly model the dynamics

of cellular differentiation and stem cell reprogramming [23, 24], targeted inhibition of genes

in cancer gene regulatory networks [25], and cell cycle across various stages of cellular differ-

entiation [26].

Techniques for measuring large scale omics data, particularly transcriptomic data from

microarrays and RNA sequencing (RNA-seq), have become standard, indispensable tools

for observing the states of complex biological systems [27–29]. However, analysis of the sheer

variety and vast quantities of data these techniques produce requires the development of new

mathematical tools. Inference and topological analysis of gene regulatory networks has gar-

nered much attention as a method for distilling meaningful information from large datasets

[30–36], but simply analyzing the topology of static networks without a signaling rule (e.g. dif-

ferential equations, digital logic gates, or discrete maps) fails to capture the nonlinear dynamics

crucial to cellular behavior. The non-equilibrium nature of life implies that it can only be truly

understood at the dynamical level, necessitating the development of new methods for analyz-

ing time series data. As experimental methods continue to improve, more and more high-reso-

lution time series omics and even multi-omics [37] data sets will inevitably become available.

Here, we demonstrate that time series omics data (in this case, transcriptomic data) represent-

ing cyclic biological processes can be encoded in Hopfield systems, providing a new model for

analyzing the dynamics of, and exploring effects of perturbations to, such systems.

The dynamics of cell cycle (CC)—the process in which a parent cell replicates its DNA and

divides into two daughter cells—is both scientifically interesting and therapeutically impor-

tant, and has been modeled extensively using differential equations, Boolean models, and dis-

crete maps [38–55]. Even relatively simple simulated systems such as an isolated, positively

self-regulating gene subject to noise can exhibit rich dynamical behavior [56]; but like many

biological processes, the proper functioning of CC requires the decentralized, coordinated

action of hundreds of genes. CC thus provides researchers with a convenient case study of self-

organization in a noisy environment. CC is also an upregulated process in many forms of can-

cer [57–60], and control of CC using pharmaceutical compounds such as kinase inhibitors is a

critical goal in cancer research. The combinatorics of selectively inhibiting sets of genes makes
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exhaustive experimental searches difficult or impractical [61]. However, network-based math-

ematical models such as the one presented here enable researchers to examine the effects of

perturbations to complex systems [62, 63] by testing potential inhibition targets in silico. The

efficacy of these predictions can then be experimentally validated or invalidated, providing

new information and insights to further refine models.

The remainder of this article is structured as follows. In the Models subsection of the

Results section we first discuss how periodic genes were identified in the time series gene

expression data sets, and how Boolean attractors were extracted from the continuous data

(explained in greater detail in the Methods section). We then introduce the Hopfield model

and discuss the specific form of the coupling matrix used in this application. We discuss how

to interpret the results of Hopfield simulations in the context of gene expression and cells. We

also explain the objective function used by the genetic algorithm to identify potential inhibi-

tion targets, designed with the intention of disrupting CC. In the Dynamical behavior subsec-

tion, we show that this model qualitatively recreates experimental gene expression data, and

we demonstrate and analyze some dynamical properties of the delayed Hopfield model,

including the role played by noise. We include supplementary videos to emphasize the dynam-

ical nature of this model. Optimal control fields for both unconstrained searches (in which any

gene may be inhibited) and searches constrained to kinases are discussed. Finally, we recap

our results and suggest possible improvements and generalizations to our methods in the Dis-

cussion section.

Results

Model

Periodic gene selection. Microarray and RNA-seq time series data sets were obtained

from Eser et al. (S. cerevisiae) [64] and Dominguez et al. (HeLa, human cervical cancer) [65].

For consistency and due to its higher resolution, the S. cerevisiae data set was chosen to pro-

duce all images and movies in this article, but both data sets were analyzed. In order to encode

these CC data sets into the Hopfield model, periodic genes needed to be identified, their fre-

quencies and phases computed, and their expression converted from continuous to Boolean

form. As detailed in the Methods section, decaying sinusoids were fitted to the trajectory of

each gene i, and genes with sufficiently high quality fits were kept. This resulted in 379 periodic

genes in S. cerevisiae and 722 periodic genes in HeLa cells. Fig 1A shows a heat map of the

expression of all periodic genes detected in the Eser data set sorted by their fitted phases, and

Fig 1B shows the same genes with the fitted expression curves. These fitted curves were con-

verted from continuous values xi(t)� 0 to Boolean values ξi(t) = ±1 (over/underexpressed)

as shown in Fig 1C. Finally, one CC period was divided into eight uniformly spaced states

fx
m

i g ¼ fx
0

i ; x
1

i ; . . . ; x
7

i g with x
m

i ¼ �1. These states, shown in Fig 1D, were used as the eight

attractor patterns in the Hopfield model. p = 8 was chosen because the embedded cycle lost sta-

bility for p> 8 due to the finite capacity of the Hopfield model.

Note that this work is based on the simplifying assumption that cell cycle genes exhibit peri-

odic expression, in line with other studies of cell cycle genes [64–70]. This method cannot

detect non-periodic cell cycle effectors, but our goal here is to model cell cycle based solely on

time series gene expression data.

The Hopfield model. The Hopfield model [13] is an Ising model whose configuration is

defined by N spins σi(t) at integer time t. The state of each node (gene) takes one of two values,

σi(t) = ±1 (over/underexpressed). The coupling matrix Jij defines the strength and sign of the

signal sent from node j to node i, and its construction is discussed in the following subsection.
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The total field at node i at time t is given by

hiðtÞ ¼
X

j

JijsjðtÞ þ h
ext
i ; ð1Þ

where ∑j Jij σj(t) is the internal field at node i due to its coupling with all nodes j and hext
i is an

optional external field applied to node i representing the action of therapeutic compounds, e.g.

kinase inhibitors. The dynamical update rule is given by

siðt þ 1Þ ¼
þ1 with probability ð1þ e� 2hiðtÞ=TÞ

� 1

� 1 otherwise
;

8
<

:
ð2Þ

where the factor of 2 in the exponent is conventional and T is an effective temperature repre-

senting the level of noise (not a physical temperature). Biologically, this noise represents

the effects of all kinds of biochemical fluctuations present in cells. Note that for hi(t)! ±1,

σi(t + 1) = ±1; for T!1, σi(t + 1) = ±1 with equal probability; and for T! 0, σi(t + 1) = sign

(hi(t)).
The update rule from Eq 2 may be implemented in various ways. The synchronous scheme

updates the state of all nodes in the system at every time step, but this is sensible only if the

simulated system has a central pacemaker coordinating the activity of all nodes. A more appro-

priate choice for decentralized systems like gene regulatory networks is the asynchronous

Fig 1. Obtaining attractors from expression data. (A) Heat map of the expression of all detected periodic genes from [64] sorted by their fitted phases.

(B) Fitted gene expression. (C) Boolean form of fitted expression, separated into periods by dashed black lines. (D) Final set of p = 8 attractors taken from

one period.

https://doi.org/10.1371/journal.pcbi.1005849.g001
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scheme in which the state of a randomly chosen subset of nodes is updated at each time step.

Here, we use the asynchronous scheme with update probability 0.2 for each node.

Coupling matrix. In the canonical Hopfield model, the coupling matrix is constructed to

store a set of p linearly independent (i.e. distinct) Boolean patterns x
m

i ¼ �1 as point attractors,

where i = 0, 1, . . ., N − 1 is the node index and μ = 0, 1, . . ., p − 1 is the pattern index. The

point attractor coupling matrix J 0ij is given by

J 0ij ¼
1

Np

X

mn

x
m

i ðQ
� 1Þ

mn
x

n

j ; ð3Þ

where [15, 71]

Qmn ¼
1

N

X

i
x

m

i x
n

i : ð4Þ

With this coupling matrix and T = 0, if at some time t the configuration is given by

siðtÞ ¼ x
m

i þ di for a small perturbation δi, then lim t!1siðtÞ ¼ x
m

i . Note that this formula-

tion means�x
m

i are both attractors of the system.

A simple modification [19] to Eq 3 produces a cyclic attractor coupling matrixeJ ij, con-

structed according to

eJ ij ¼
1

Np

X

mn

x
modpðmþ1Þ

i ðQ� 1Þ
mn

x
n

j : ð5Þ

At T = 0, this coupling matrix cyclically maps through the sequence of p patterns

x
0

i ! x
1

i ! . . .! x
p� 2

i ! x
p� 1

i ! x
0

i ! x
1

i ! . . . ð6Þ

or their negatives. For the remainder of this article, all attractor indexing is understood to be

modulo p.

A delayed cyclic Hopfield model may be constructed by combining the point and cyclic

attractor matrices into one coupling matrix,

JijðlÞ ¼ ð1 � lÞJ 0ij þ leJ ij ; ð7Þ

for an adjustable transition strength parameter λ with 0� λ� 1. If sðtÞ ¼ x
m

i , λ� 1, and

T = 0, the point attractor term dominates and σi(t) = σ(t + Δt) for all Δt = 1, 2, . . .. If T> 0,

however, stochastic fluctuations eventually push the configuration out of the basin of attrac-

tion of the μth attractor and into the (μ + 1)th basin, then eventually to the (μ + 2)th basin, and

so on. The dynamics of the delayed cyclic Hopfield model are thus governed by noise-induced

transitions.

Due to the sinusoidal nature of the gene expression in these CC data sets, however, the

attractors are structured such that x
m

i ¼ � x
mþ4

i , making Qμν rank deficient and thus noninverti-

ble. Because the definition of Jij automatically guarantees that if any sequence fþx
m

i g is an

attractor, then f� x
m

i g is also an attractor, encoding the sequence

x
0

i ! x
1

i ! x
2

i ! x
3

i ! x
4

i ð¼ � x
0

i Þ ð8Þ

automatically encodes the sequence

x
4

i ! x
5

i ! x
6

i ! x
7

i ! x
0

i ð¼ � x
4

i Þ : ð9Þ
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In this special case of sinusoidal trajectories, the limits of summation in Eqs 3–5 need only run

over the first four indices, μ = 0, 1, 2, 3.

Finally, to reflect the fact that real gene regulatory networks are sparse, weak edges were

removed by setting all elements of the coupling matrix with |Jij|< median(|J|) to zero, where

|J| is element-wise absolute value. The cyclic attractor was not preserved when using stricter

thresholds due to the reduced capacity of diluted Hopfield networks [17].

Biological interpretation of the dynamics. Extracting biological meaning from this

model requires defining some convenient coarse-grained quantities. The overlap of the state

vector σi(t) with the μth pattern is given by

mmðtÞ ¼
1

N

X

i
siðtÞx

m

i ; ð10Þ

where −1�mμ(t)� + 1. The overlap measures the similarity between the (discretized) experi-

mental and simulated gene expression profiles, andmμ(t) = + 1 means there is perfect agree-

ment between the simulated cell’s expression and pattern μ.

A single configuration vector σi(t) represents the expression profile of a single cell. For

many cells κ, let σik(t) be the expression of gene i in cell k. Define

mm

kðtÞ ¼
1

N

X

i
sikðtÞx

m

i ð11Þ

as the overlap of cell k with attractor μ. Because the microarray and RNA-seq data used here

report the gene expression averaged over many cells, it is appropriate to define the population-

averaged (i.e. ensemble-averaged) expression,

hsiðtÞiK ¼
1

k

Xk� 1

k¼0

sikðtÞ ; ð12Þ

which has � 1 � hsiðtÞiK � þ1.

Rather than work with a continuous vector quantity likemm

kðtÞ, each cell can simply be

identified as being in a discrete phenotypic state at any given time. Define the state of cell k as

skðtÞ ¼ arg max
m

mm

kðtÞ ; ð13Þ

i.e. the index of the attractor with maximum overlap, which may be interpreted as cell k’s

phenotype. To better understand population-level dynamics, define the discrete probability

distribution Pμ(t) as the fraction of κ cells with sk(t) = μ; that is, Pμ(t) is the probability that a

randomly chosen cell is in state μ at time t. Finally, define the time-averaged distribution of

states as

hPmiT ¼
1

t

Xt� 1

t¼0

PmðtÞ ð14Þ

for a window of time τ.
For each data set, T, λ, and the single-node update probability were tuned to the “edge of

chaos” [72] such that the cyclic attractor was preserved and the time between transitions was

approximately constant, but the system was sensitive enough to perturbations that some tar-

geted inhibitions produced noticeable changes in hPmiT . See S1 Table for a list of parameters

used for each data set.
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Gene inhibition optimization. In this application, the goal is to identify perturbations

that halt or retard the encoded cyclic attractor. A standard genetic algorithm (GA; explained in

S1 Text) was employed to identify an optimal control field hopt
i that maximized a given objec-

tive function f ðhext
i Þ,

hopt
i ¼ arg max

hext
i

f ðhext
i Þ ; ð15Þ

where hext
i is the control vector given by

hext
i ¼

� 1 if gene i is targeted

0 otherwise

(

ð16Þ

for a fixed number of targets (nonzero elements) ntarg. Only negative control fields are used

here to simulate the effects of targeted gene inhibition from pharmaceutical compounds. The

objective function used here is hPmiT , meaning that the optimal control field maximizes the

time-averaged number of cells occupying a particular attractor state μ. This search was con-

ducted across all attractors μ to determine the controllability of each attractor state. Note that

while the numerical value of hPmiT depends on the choice of parameters such as T, λ, and the

single-node update probability, varying these parameters by ±5% gave comparable results for

the optimal sets of controllers.

Dynamical behavior

Fig 2 shows the time evolution of sk(t) for a single simulated cell using the attractors derived

from [64]. As expected, the system progresses cyclically through the eight attractor states. The

duration of each cycle varies somewhat due to the stochasticity in the update rule from Eq 2.

Although the gene expression for each simulated cell k has σik(t) = ±1, the population-aver-

aged expression has � 1 � hsiðtÞiK � þ1, and for many cells initially synchronized with

sikð0Þ ¼ x
0

i for all k, hsiðtÞiK successfully recovers the experimentally observed decaying sinu-

soidal gene expression. Fig 3 shows a comparison between the experimental expression xi(t)
from the Eser data set and the mean simulated expression hsiðtÞiK with κ = 50 for i = SLD2,

Fig 2. Unperturbed cell state versus time. Boxes indicate sk(t), i.e. the index of the attractor with maximum overlap at time t. The system began with the

configuration sið0Þ ¼ x
0
i and was allowed to evolve according to the Hopfield signaling rules with zero external field, mapping cyclically through the set of

eight attractors. The pattern and cycle durations vary due to the system’s stochasticity.

https://doi.org/10.1371/journal.pcbi.1005849.g002
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one of the genes responsible for initiating DNA replication in S. cerevisiae [73, 74]. The simula-

tion time t was rescaled by eye to align the simulated and experimental curves (so that 1 min-

ute corresponds to approximately 7.5 iterations).

Trajectories can be visualized by projecting them onto the first two principal components

(PCs) of the attractor configurations. Fig 4 shows the eight attractors as stars, and a single cell

Fig 3. Measured and simulated gene expression. The measured expression of the S. cerevisiae gene SLD2 from [64] was scaled to the range [−1, +1]

and is shown as a black beaded curve, and the population-averaged expression of the same gene as defined in Eq 12 for κ = 50 cells is shown in green,

with the t axis rescaled by eye to match experimental time. Transient points (red X’s) were ignored when fitting Eq 17.

https://doi.org/10.1371/journal.pcbi.1005849.g003

Fig 4. Principal component projection of unperturbed cell trajectories. The simulated single cell (left panel) and 100 cells (right panel) began with

random initial states (projected near the center of the plot), but quickly settled into the encoded cycle. Line segments were colored according to sk(t), i.e.

which of the eight attractors (labeled stars) had maximum overlap at time t.

https://doi.org/10.1371/journal.pcbi.1005849.g004
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trajectory (left panel) and 100 cell trajectories (right panel) with random initial states as curves

with line segments colored according to sk(t) (as computed in the full N-dimensional space).

Although the cells begin nearly equidistant from all x
m

i , they quickly relax into encoded cycle.

S1 Video shows an animation of a system of κ = 50 cells with random initial conditions pro-

jected onto the same PCs, where cells (circles) are colored according to sk(t). As with the cells

shown in Fig 4, all initially random configurations eventually converge to the cycle. S2 Video

shows an animation of κ = 50 cell trajectories with sikð0Þ ¼ x
0

i . As time progresses, the phases

of the initially synchronized cells slowly decohere because cells stochastically and indepen-

dently transition between attractors due to the finite temperature in Eq 2.

S3 Video demonstrates the effect of temperature on the dynamics. 50 cells were given ran-

dom initial states, and the temperature was increased and decreased in steps. Cells rarely

escape the eight attractor states for T = 0.045, and one cell becomes stuck near the center in a

spurious attractor (unintentional metastable states that arise from the model’s nonlinearity).

At T = 0.06, fluctuations allow the cells to transition somewhat regularly through the encoded

cycle, and the cell trapped in the spurious attractor eventually escapes and joins the cycle. At

T = 0.09 the cells begin to noticeably diverge from the eight attractor states, but still collectively

display a net clockwise flow. The noise is too great for the cells to follow the cycle for T = 0.15,

but lowering the temperature again returns cells to the cycle. This illustrates the fact that the

cycle is preserved only for intermediate temperatures: cells become “frozen” in intended or

spurious attractor states at low temperatures, but at high temperatures the noise is too great

and the couplings between genes become irrelevant to the dynamics.

Optimal control fields

The GA was used to identify some effective combinations of gene targets that slowed progress

through the cyclic attractor for varying numbers of targets, ntarg. The GA found, for example,

that inhibiting the set of eight S. cerevisiae genesHEK2, PRR1, QRI1, RFC4, STB1, TDA7,

VPS17, and ZIM17was sufficient to trap *95% of cells in the μ = 7 state. The effects of this

control field on the time evolution of Pμ(t) for κ = 50 and κ = 5000 are shown in Fig 5. Cells

were given random, independent initial states at t = −200 (not shown), quickly settling into the

cyclic attractor with evenly distributed phases so that Pμ(0� t< 200)� 1/8. The control field

was activated at t = 200, causing the cells to accumulate in the μ = 7 state. The field was then

disabled at t = 1000, allowing the cells to resume cycling with initially synchronized phases, as

shown by the sequence of oscillations in Pμ(t> 1000). The stochastic nature of the transitions

causes the cells’ phases to slowly spread so that Pμ(t!1)� 1/8, eventually returning the sys-

tem to a desynchronized state.

The effects of this control field can also be visualized using a PC projection as shown in Fig

6 and S4 Video. The same set of κ = 50 trajectories from Fig 5 was projected onto the attrac-

tors’ PCs, with cells colored according to sk(t). The control field manages to fix most cells near

the μ = 7 state, but as shown in the t = 910 panel in Fig 6, fluctuations occasionally push indi-

vidual cells out of the μ = 7 basin and back into the cycle.

Further searches were constrained to inhibiting between 1 and 38 kinases in HeLa cells and

between 1 and 12 kinases in S. cerevisiae. For nearly all numbers of targets, the GA found μ = 2

(M phase) to be the most controllable attractor in HeLa cells and μ = 7 (S phase) in S. cerevisiae,
as shown in S1 and S2 Figs, respectively. In HeLa cells, for example, an optimal score of

hP2iT � 0:230 was obtained for ntarg = 4 (0.55% of the 722 periodic genes) when inhibiting

the genes AURKB, NEK1, TTK (all involved in the formation and operation of the spindle

apparatus), andWEE1 (a G2/M checkpoint regulator involved with DNA damage repair). The

effects of inhibiting AURKB and TTK are well documented. AURKB is targetable by the kinase

Cell cycle time series expression data as cyclic attractors in Hopfield systems
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inhibitor barasertib, found to be effective in combating small-cell lung cancer in vitro and in

xenografts [75]. TTK (also known asMPS1) is targetable by the kinase inhibitors Mps1-IN-1

and AZ3146. Mps1-IN-1 has been found to be an effective tool to inhibit proliferation in an

array of cancer cell lines, including HeLa cells [76]. AZ3146 has been effective against hepato-

cellular carcinoma (liver cancer) in vitro [77] and pancreatic ductal adenocarcinoma in vitro
[78]. siRNAs and shRNAs have also been used to inhibit TTK in pancreatic ductal adenocarci-

noma [78].

Discussion

Above we presented a delayed cyclic Hopfield model designed to store CC time series gene

expression data from synchronized S. cerevisiae and HeLa cells, and the behaviors of both indi-

vidual cells and populations of cells were studied. The dynamics of populations of cells success-

fully recreated the experimental gene expression data, including the slow decoherence of

initially synchronized cells due to the stochastic transitions between attractors. Optimal con-

trol fields that freeze or stall the cyclic attractor by inhibiting only a small number of genes

were identified. These predictions could be experimentally tested using kinase inhibitors,

micro RNAs, short interfering RNAs, or knockout studies and confirmed simply by counting

the number of cells as a function of time compared to a control with no inhibitors.

Admittedly, there are several limitations to this model. Additionally, although using the

temporal ordering of the time series gene expression samples provides more information

about potentially causal relationships than static samples, the Hopfield model is ultimately an

effective model that builds gene-gene couplings from pairwise correlations in gene expression,

thereby capturing direct, indirect, and spurious relationships between genes. Independently

Fig 5. Cell state synchronization by targeted inhibition for 50 and 5000 cells. Cells were initialized with random states at t = −200 (not shown) and

allowed to relax into the cyclic attractor so that Pμ(0� t < 200)� 1/8. A set of eight genes was inhibited with an external control field over the range 200�

t < 1000, fixing most cells near the μ = 7 state. After removing the control field, the cells resumed moving through the cycle with initially synchronized

phases that slowly broaden. Eventually the system returns to a desynchronized state, Pμ(t!1)� 1/8.

https://doi.org/10.1371/journal.pcbi.1005849.g005
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Fig 6. Principal component projection of 50 cell trajectories. The trajectories used to make the κ = 50 panel of Fig 5 were projected onto the the first

two principal components (PCs) of the attractor array x
m

i (labeled stars). Cells (circles) are colored according to the closest attractor as computed by Eq 13.

When the external field is activated, most cells become trapped in the μ = 7 state, although occasionally cells break from the group and complete another

circuit before becoming trapped again. After the external field is removed, the cells eventually return to a desynchronized state. See S4 Video for an

animation of these trajectories.

https://doi.org/10.1371/journal.pcbi.1005849.g006
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derived network information with experimentally confirmed molecular regulatory interac-

tions could perhaps be used to refine the construction of the coupling matrix. Other data sets

that explore a more diverse set of expression states other than a simple cycle could also reduce

the number of spurious couplings. We are currently developing these kinds of non-cyclic mod-

els and time series data sets in a separate project.

Our approach can be generalized and improved in many ways. This incarnation of the

model causes simulated cells to continuously undergo CC with no G0 (resting) phase. Adding

a relatively stable G0 attractor between the M and G1 phases could cause cells to pause between

cycles. A GA search could then be conducted to find the best sets of inhibition targets to freeze

cells in the G0 state, or to find the best sets of targets to stimulate entry into CC, mimicking

the effects of environmental signals such as growth factors.

We chose to discretize the continuous gene expression data using a traditional two-state

model, which assumes that each gene is either fully activated or fully deactivated. Using a

multi-level Hopfield model [79] could better reflect the continuous nature of gene expression

data and potentially improve the search results. This model can also incorporate additional

omics information, e.g. proteomics and metabolomics, simply by increasing the number of

nodes in the system. We plan to explore this option as more multi-omics time series data sets

become available. Single-cell experimental techniques and analytical tools are also rapidly

improving in quality, decreasing in cost, and gaining in popularity [80–82], and using tech-

niques like pseudo-temporal ordering [83] could allow the Hopfield model to encode single-

cell RNA-seq data as well.

Although the above simulated populations of cells exhibit intriguing dynamical and statistical

properties, they behave as completely homogeneous, non-interacting particles. The importance

of cell-cell communication and interactions in populations of cells has been demonstrated in a

variety of systems including bacterial quorum sensing [84] and community spatial patterning

[85], neuron synchronization in circadian rhythm [86], and various forms of cancer [87–91]. As

with many nonlinear systems, even seemingly minor changes can produce dramatically different

outcomes. More complex extensions to our model could incorporate cell-cell communication

by, for example, adding couplings between known signaling molecules and receptors between

different cells, and could even allow for interactions between heterogeneous cell types. This

would increase the computational complexity of the model, but could better reflect the underly-

ing biology.

Methods

Gene expression fitting

In order to encode these CC data sets into the Hopfield model, periodic genes needed to be

identified, their frequencies and phases computed, and their expression converted from con-

tinuous to Boolean form. SciPy’s Trust Region Reflective method [92] was used to identify

genes i with periodic expression xi(t) by fitting to the form

xiðtÞ ¼ aie� bit cos ðoit � �iÞ þ xi0 ð17Þ

for amplitude ai, decay rate bi, angular frequency ωi, phase ϕi, and asymptotic mean expression

xi0. The first several time points were ignored to avoid fitting the parameters of Eq 17 to chemi-

cally perturbed (transient) states. A gene was labeled periodic if the maximum relative uncer-

tainty in its parameters from the fit,

rmax
i ¼ max

dxi0
xi0

;
dai
ai
;
dbi
bi
;
doi

oi
;
d�i
2p

� �

; ð18Þ
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was less than the thresholds defined in S1 Table. (Note that because the HeLa data covers only

a little more than one period, many of the bi’s were approximately zero. This resulted in

extremely large rmax
i despite the remaining variables having small uncertainty. The δbi/bi term

was thus ignored for the HeLa data.) Once all frequencies {ωi} for periodic genes were com-

puted, the frequency was fixed to the mean frequency �o and the fits were recomputed for each

periodic gene using the form

xiðtÞ ¼ aie� bit cos ð�ot � �iÞ þ xi0 ; ð19Þ

thus producing the final set of continuous phases {ϕi}. Fig 1A shows a heat map of the expres-

sion of all periodic genes detected in the Eser data set sorted by their fitted phases, and Fig 1B

shows the same genes with the fitted expression curves. These fitted curves were converted

from continuous values xi(t)� 0 to Boolean values ξi(t) = ±1 (over/underexpressed) by assign-

ing

xiðtÞ ¼ sign ðxiðtÞ � xi0Þ ð20Þ

as shown in Fig 1C. Finally, one CC period was divided into eight uniformly spaced states

fx
m

i g ¼ fx
0

i ; x
1

i ; . . . ; x
7

i g. These states, shown in Fig 1D, were used as attractors in the Hopfield

model.

Determining cell cycle phase

The approximate CC phase for each attractor μ in the HeLa data set was determined using a

set of marker genes [65, 93] and over-representation analysis using a hypergeometric distribu-

tion to calculate p-values with the Benjamini-Hochberg procedure [94] to correct for multiple

hypothesis testing. All genes i with x
m� 1

i ¼ � 1 and x
m

i ¼ þ1 were used as the μth input set, and

all detected cyclic genes were used as the background. μ = 2 showed the activation of the G2/M

checkpoint marker CCNA2 and was enriched for the gene ontology (GO) term cell division

(p = 3.1 × 10−2). μ = 3 showed the activation of the G2, G2/M, and M markers BUB1, CCNB1,

NEK2, and PLK1, and was enriched for signaling by Rho GTPases, cell division, midbody,

mitotic prometaphase, mitotic nuclear division, and small GTPase mediated signal transduc-

tion (p = 3.7 × 10−3); M phase (p = 6.2 × 10−3); resolution of sister chromatid cohesion

(p = 7.6 × 10−3); mitotic anaphase, spindle pole, and RHO GTPase effectors (p = 3.0 × 10−2);

and mitotic metaphase and anaphase (p = 3.8 × 10−2). μ = 6 expressed the late G1, G1/S, and S

markers CCNE1,CDC6,E2F1,MCM2, and SLBP, and was enriched for DNA replication initia-

tion (p = 5.9 × 10−4); G1/S-specific transcription, G1/S transition, DNA replication pre-initia-

tion, M/G1 transition, and assembly of the pre-replicative complex (p = 4.3 × 10−2); and G1/S

transition of mitotic cell cycle (p = 4.4 × 10−2). μ = 7 showed the activation of the G1/S and S

markers CDK2 and CDKN2AIP. The database yeastgenome.org [95] was used to determine the

CC phases for the Eser S. cerevisiae data set. μ = 0 was enriched for the GO term DNA replica-

tion (p = 2.02 × 10−12), indicating an attractor in the S phase of CC. μ = 2 was enriched for

mitotic spindle organization (p = 2.3 × 10−3) indicating the beginning of mitosis in S. cerevi-
siae. μ = 6 from Eser was enriched for the GO term pre-replicative complex assembly involved

in nuclear cell cycle DNA replication (p = 3.0 × 10−5), indicating an attractor at the end of G1

phase as the cells prepare for DNA replication.

Supporting information

S1 Video. 50 cell trajectories with random initial conditions. Data was projected onto the

first two principle components of the attractor array x
m

i . Attractors are shown as stars, and cells
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are shown as circles. Cell colors are assigned using sk(t) as measured in the full N-dimensional

space. All cells k were given random initial conditions σik = ±1 with equal probability for all i
and k, but eventually converge to the cyclic attractor.

(AVI)

S2 Video. 50 cell trajectories with identical initial conditions. See the caption of S1 Video

for an explanation of the projection and colors. All cells k were initially synchronized with

sikðtÞ ¼ x
0

i , but progress through the cycle stochastically, causing the distribution of sk(t) to

broaden.

(AVI)

S3 Video. Effects of temperature on 50 cell trajectories. See the caption of S1 Video for an

explanation of the projection and colors. All cells were given initial random states, and the

temperature was increased and decreased in steps as shown in the top panel.

(AVI)

S4 Video. Principal component projection of 50 cells being synchronized. See the caption

of S1 Video for an explanation of the projection and colors. This video is an animation of the

trajectories used in Figs 5 and 6.

(AVI)

S1 Text. Explanation of genetic algorithm.

(PDF)

S1 Table. List of parameters used for each data set.

(XLSX)

S2 Table. Enrichment results for each attractor from the Eser data set.

(XLSX)

S3 Table. Enrichment results for each attractor from the Dominguez data set.

(XLSX)

S1 Fig. GA’s optimal control results versus the number of inhibited kinases for HeLa cells.

Each point indicates the best measured score (mean fraction of cells) for the given attractor

and number of targets. μ = 2 (M phase) is generally the most controllable attractor in HeLa

cells.

(PNG)

S2 Fig. GA’s optimal control results versus the number of inhibited kinases for S. cerevi-
siae. Each point indicates the best measured score (mean fraction of cells) for the given

attractor and number of targets. μ = 7 (S phase) is generally the most controllable attractor in

S. cerevisiae.
(PNG)

S1 File. Raw yeast time series gene expression data. Taken from [64].

(CSV)

S2 File. Raw HeLa time series gene expression data. Taken from [65].

(XLSX)
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