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High Density Lipoproteins (HDLs) have long been considered as “good cholesterol,”

beneficial to the whole body and, in particular, to cardio-vascular health. However,

HDLs are complex particles that undergoes dynamic remodeling through interactions

with various enzymes and tissues throughout their life cycle, making the complete

understanding of its functions and roles more complicated than initially expected. In this

review, we explore the novel understanding of HDLs’ behavior in health and disease as a

multifaceted class of lipoprotein, with different size subclasses, molecular composition,

receptor interactions, and functionality. Further, we report on emergent HDL-based

therapeutics tested in small and larger scale clinical trials and their mixed successes.

Keywords: high density lipoprotein, cardiovascular risk, obesity, endothelial function, HDL-therapy, bariatric

surgery, lipoproteins

HDLs, WHERE ARE WE NOW?

HDLs Historically: “Good Cholesterol”
The term “good cholesterol” is often used with reference to the cholesterol content
(HDL-cholesterol) in high-density lipoproteins (HDLs). The 1980’s Framingham study found
a strong positive association between coronary heart disease and low HDL-C levels (1). Thus,
approaches were developed to increase HDL-C and achieve cardioprotection (2, 3). Notably, the
ILLUMINATE Phase 3 trial, using the drug torcetrapib, increased HDL-C content significantly
through inhibition of cholesteryl ester transfer protein (CETPi), which normally catalyzes the
transfer of cholesterol from HDL to low density lipoproteins (LDL), and triglycerides from
LDL to HDL (see Figure 1A). However, the trial was prematurely terminated as patients on
torcetrapib showed higher risk of death and adverse cardiovascular events than the control group
on atorvastatin (4). Other clinical trials testing different CETPi yielded similarly disappointing
results, where increasing HDL-C resulted in no (5, 6) or marginal improvement in the
cardiovascular end-points (7), either myocardial infarction or mortality (8). Anacetrapib was
the only CETPi to show modest reduction of major cardiovascular events over a follow-up
period of 4 years in the REVEAL trial (7), however the achieved benefits seem more attributable
to the concomitant decrease in LDL-C, than to the HDL-C raising effects of the drug (9).
Pharmacogenetic interactions driven by still unknown genetic variants in the population may
have confounded the CETPi trial results, although there is no clear evidence to date (10).
Beyond the CETPi trial results, the fact that HDL-C per se is not causally associated with
cardiovascular benefits was supported by Mendelian randomization studies, demonstrating
that genetic polymorphisms associated with increased HDL-C had no impact on the risk of
myocardial infarction (11, 12). Evidence coming also from meta-analysis could not find an
improvement in cardiovascular outcome after raising HDL-C levels (13). Interestingly, what was
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proven to be inversely associated with cardiovascular risk
(14) was the pivotal biological function of HDL, known as
reverse cholesterol transport (RCT), whereby HDL accepts
excessive cholesterol from macrophages in peripheral tissues
and carries it to the liver for disposal. Overall, these results
ushered in a new era of research on HDL, focusing more on
quality of whole HDL, rather than merely cholesterol content.
HDLs are a family of particles that can exhibit fundamentally
different metabolism and functions based on their specific
proteomic, lipidomic, and physico-chemical properties. Further,
HDLs carry various proteins, enzymes, miRNAs, bile acids,
and lipids, which all have a potential functional role. HDLs
are dynamic particles, being either protective or deleterious
agents in health or disease. Today’s research aims to gain
new understanding of HDLs to develop novel therapies and
treatments for cardiovascular diseases. This review focuses on
the relationship between structure and function as a multifaceted
determinant of the complexity of HDLs. Moreover, attention is
paid to future perspectives about HDL as a potential vehicle
for drug delivery and therapeutic agent against cardiovascular
atherosclerotic disease.

HDLs’ Lifecycle
The backbone of HDL is apolipoprotein A1 (apoA1), which
is synthesized via forkhead box protein A3 (15) in the liver
and in the intestine. Then ApoA1 is lipidated by ABCA1-
mediated cholesterol efflux to form nascent discoidal pre-β
HDLs. Lipidation, as well as the conversion of free cholesterol
to cholesterol esters, drives the formation of mature spherical α-
HDL (16). Mature HDL undergoes constant dynamic remodeling
in its 4 to 5 day lifecycle through interactions with a variety
of enzymes, such as hepatic and endothelial lipase, generating
smaller subspecies (e.g., pre-β HDL) from larger ones (e.g.,
α-HDL) (16). The dynamic remodeling of HDLs can now
be visualized in-vivo using fluorescent probes (17). Of note,
HDLs play an important role in uptake from the gut and
transport into the systemic circulation of antioxidants, such as
carotenoids and vitamins of dietary origin (18). Indeed, HDL
structure and lipidome are modified post-prandially and in
relation to the magnitude of post-prandial triglyceridemia HDL
may acquire larger size and a triglyceride rich phenotype (19).
Along this evidence, it has been suggested that non-fasting
HDL concentrations may be more appropriate predictors of
cardiovascular events than fasting levels (20, 21). The underlying

Abbreviations: ABCA1, ATP-Binding Cassette Transporter 1; apoA1,
Apolipoprotein A1; ApoA2, Apolipoprotein A2; CD36, Cluster of Differentiation
36; CETP(i), Cholesteryl Ester Transfer Protein (inhibitor); eNOS, Endothelial
Nitric Oxide Synthase; EPC, Endothelial Progenitor Cells; FMD, Flow Mediated
Vasodilation; HDL, High Density Lipoproteins; HDL-C, HDL cholesterol; HDL-
TG,HDL triglycerides; LDL, LowDensity Lipoprotein; miRNA,Micro Ribonucleic
Acid; NO, Nitric Oxide; NMR, nuclear magnetic resonance; PL, Phospholipid;
PON-1, Paraoxonase-1; RCT, Reverse Cholesterol Transport; rHDL, Reconstituted
HDL; RYGB, Roux-en-Y Gastric Bypass; S1P, Sphingosine-1-Phosphate; S1PR,
Sphingosine-1-Phosphate Receptor; SM, Sphingomyelin; S-rHDL, Reconstituted
HDL encapsulated statin; T2DM, Type 2 Diabetes Mellitus; TNF-α, Tumor
Necrosis Factor α; TG, Triglycerides; VEGF-A, Vascular Endothelial Growth
Factor A; VEGFR2, Vascular Endothelial Growth Factor Receptor 2; VLDL, Very
Low-Density Lipoproteins

biological explanation is still unclear as for instance, a major
HDL antioxidant enzyme, paraoxonase-1 (PON-1) activity may
not decrease along the postprandial stage (19). The post-prandial
metabolism of HDL is still poorly detailed and would benefit
from additional investigations in larger groups of individuals in
health and disease conditions.

As previously mentioned, the main function of HDL is to
scavenge excess cholesterol through RCT and shuttle it to the
liver, to organs with high-cholesterol requirements or exchange
it with apoB particles (e.g., LDL) (16) for disposal. HDLs deliver
cholesterol to the liver and steroidogenic tissues through binding
its receptor scavenger receptor B1 (SR-B1), which functions in
stable multimers in the plasma membrane for binding HDLs
(22). HDLs also interact with ATP-dependent transmembrane
transporter proteins, ABCA1 and ABCG1 (23) expressed in
macrophages, adipose tissue, gut and liver at high levels (24, 25)
for cholesterol delivery.

HDL holoparticles are endocytosed into their target cell
types by CD36 and potentially SR-B1 (26, 27), where they
may accumulate in the cell or be rapidly retro-endocytosed
through yet unknown mechanisms (28). HDLs also enter target
cells through micropinocytosis in the lymphatic system (29)
or via clathrin-coated pits in a receptor-independent manner
in endothelial cells (30). Finally, HDLs undergo transcytosis
through polarized cells, mediated by SR-B1 in hepatocytes and
interactions between SR-B1 and vascular endothelial growth
factor receptor 2 (VEGFR2) in endothelial cells (31).

The liver is the major organ responsible for HDL clearance
through the canonical ecto-F1-ATPase/PY213 pathway, wherein
upregulation of its components increases HDL clearance from
the circulation (16). De-lipidated apoA1-particles are cleared,
preferentially by the kidneys, through selective SR-B1 uptake
(16). Recent evidence suggests that HDLs can integrate into the
lipid bilayer of cells (32). Whether this mechanism is permanent
or transient is unknown, but it could prove to be a novel method
of HDL clearance. Figure 1A summarizes the HDL lifecycle in its
key components.

HDLs Structural Diversity
HDLs are complex particles, which can be separated into
several subclasses based on their differing physicochemical
properties (33). There is no consensus regarding the definitive
categories of HDL subclasses or exactly how to define them,
which, combined with the various methods of HDL isolation
(33) (Supplementary Table 1), hampers our understanding
and ability to investigate HDL biology and role in vascular and
metabolic disease. However, considerable efforts were made
to classify HDLs in a systematic way. Experts ranging from
basic science to clinical practice have devised a five-part sub-
classification for HDLs, which encompasses all aforementioned
properties: very large HDL, large HDL, medium HDL, small
HDL and very small HDL (34). Although it has not replaced the
previously detailed, heterogenous classification system, it can be
a useful clinical tool. The function and metabolism of HDLs can
be influenced by the subclass it belongs to (33, 35), and the ability
to distinguish between HDL-subclasses may be both clinically
relevant (36) and a reason for statin-therapy success (37). With
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FIGURE 1 | (A) HDL Lifecycle. Diagram detailing the three key stages of the HDL lifecycle. (1) Synthesis: ApoA1 is synthesized in the liver and the gut, where it can be

gradually lipidated on-site or by the adipose tissue to produce pre-ß HDLs. Further lipidation results in mature HDL formation, which can in-turn become pre-ß HDL

via the catabolic action of endothelial (EL) and hepatic (HL) lipases. (2) Function: HDLs main function are to efflux cholesterol and other lipids from peripheral tissues

(such as the cardio-vascular system) and transport them either to (a) the liver for disposal, (b) steroidogenic tissues to support hormone production or (c) exchange

lipids with apoB-containing particles. (3) Catabolism: finally, after a roughly 4 to 5 day lifecycle, HDLs are permanently catabolized either in the liver via the

ecto-F1-ATPase or through complete delipidation by SR-B1 in the kidney and urinary excretion. (B) Diagram detailing the various actions of HDLs in health and

disease. Healthy HDLs have a high PL content and are highly associated to beneficial molecules, such as S1P and PON-1 enzyme exerting a beneficial role on ECs,

or anti-atherosclerotic miRNA 223. Throughout the pathogenesis of cardiovascular disease, HDLs becomes progressively more dysfunctional. The lipidome and

proteome of HDLs are altered, with increased TG and decreased PL. SAA and SDA are become associated to HDL. Dysfunctional HDLs also present an altered

miRNA profile, with increase in pro-inflammatory miRNA 24. Metabolic interventions have been shown to improve HDL functionality. RYGB, exercise, and diet restore

HDL functionality and alter composition to varying degrees. SAA, Serum Amyloid A; SDA, Symmetric Dimethylarginine.
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new gold-standard techniques of classification, such as nuclear
magnetic resonance (NMR) (38) which has the advantage of
measuring HDL classes from whole plasma without preliminary
isolation, major efforts are now focusing on elucidating the
complex lipidome (39), proteome (40), and structural subtleties
of HDL particles and subclasses (41). We recommend that
further clinical studies should establish reference values
for the technique adopted, in particular NMR, and should
assess whether integration of HDL subclasses measurements
and parameters of HDL functionality with patient-specific
biomarkers can enhance the stratification of patients for
differential diagnosis, disease progression and responses
to therapy.

HDLs ARE AN IMPORTANT PLAYER IN
HEALTH AND DISEASE

HDL Function in Healthy Conditions
The diverse protein and lipid composition of HDL contribute
to its atheroprotective function (41). In the vessel wall,
HDL undergoes transcytosis through endothelial cells into
the sub-endothelial space, where it can efflux cholesterol
from foam cells (cholesterol-loaded macrophages), preventing
plaque formation. Receptors mediating RCT vary between HDL
subtypes, with small pre-β HDL having greater affinity for
ABCA1-dependent cholesterol export and α-HDL for ABCG1
(42). Beyond RCT, HDLs have several other beneficial properties,
such as anti-oxidant capacity, nitric oxide (NO) production
stimulation, anti-inflammatory (i.e., anti-vascular adhesion
molecule-1 expression) and anti-apoptotic actions (43). One of
the most important properties of HDL is its ability to induce
NO-production in endothelial cells, through activation of surface
receptors, such as SR-B1 (44) and S1P3R (45), and intracellular
signaling cascades, involving Akt, PI3K, and MAPK (46),
converging, in-part, on endothelial nitric oxide synthase (eNOS).
HDL may also act to stabilize eNOS away from catabolism
(47). In atherosclerotic coronary artery disease patients, larger
HDL particles have a less anti-oxidative capacity than smaller,
denser ones (48), which could be explained by an altered
proteome. Larger HDL particles are correlated to apolipoprotein
A2, which has been shown to decrease the association between
HDL and PON-1, an HDL-bound detoxifying enzyme, by
displacing it in a broadly concentration-dependent manner
(49). Further, small, dense HDL3 have a more potent anti-
inflammatory effect than larger HDL2, demonstrated by their
highly effective ability to inhibit TNF-α induced VCAM-1
expression in an in-vitro endothelial cell model. Here, proteomic
modifications were not responsible, as the artificial substitution
of apolipoprotein 1 by apolipoprotein 2 in HDL3 did not
alter the beneficial anti-inflammatory profile (50). Interestingly,
increasing evidence seems to point to a disease-specific HDL-
size function relationship, while smaller HDLs seem to protect
against atherosclerosis (51), in dysmetabolic diseases, like Type
2 Diabetes Mellitus (T2DM), larger HDLs seem beneficial
(52), potentially due to improved RCT function or a different
molecular composition.

The lipidome of HDL has been demonstrated to have
functional properties (39). In healthy conditions, phospholipids
(PL) are the dominant HDL lipid component (up to 50% of HDL
lipids) and seem to stabilize the particle (53). A composition shift
toward phosphatidylcholine promotes cholesterol efflux, while an
increase in sphingomyelin decreases influx of cholesterol via SR-
B1 (54). Most recently, the sphingosine-1-phosphate receptors
(S1PR) have garnered increasing attention as an HDL target
receptor, since 50 to 70% of plasmatic S1P is carried by HDL
particles. The activation of S1PR1 and S1PR3 by HDL has
protective effects on endothelial cells, reducing inflammation
and apoptosis (55). Specifically, S1P enrichment of HDL inhibits
oxidized low-density lipoprotein induced apoptosis and increases
NO production (56). In-vitro, apolipoprotein M, a component
of HDL, seems to facilitate the interaction between S1P-HDL
and its receptor (57). Others report that there is crosstalk
between SR-B1 and S1PR following activation by HDL particles,
which would potentiate signaling efficiency. Finally, HDLs are
an effective carrier of circulating microRNA (miRNA) to target
cells (58), with miRNA potentially being important in stabilizing
HDL (59). The miRNA function of miR-223 and miR-24 are
best characterized, with miR-223 conferring a beneficial anti-
inflammatory profile (60), while miR-24may be atherogenic (61).
As with HDL function, proteome and lipidome composition, the
miRNA profile of HDL is altered in pathological conditions (62).

HDL Dysfunction in a
Pathophysiological State
Disease states can cause HDL dysfunction as visualized in
Figure 1B. In 2011, Besler et al. showed that HDLs isolated
from patients with chronic coronary disease and acute coronary
syndrome were significantly less able to stimulate NO production
in-vitro, and exerted pro-oxidative and pro-inflammatory actions
(43). Recently, the strong association with acute coronary
syndrome (63) has been further extended to low cholesterol efflux
capacity values and low HDL levels of S1P and apoA1.

In chronic kidney disease, the increased association of
symmetric dimethylarginine to HDL alters HDL functionality
and directly leads to the development of cardiovascular disease,
as it impairs HDL RCT capacity and decreases its anti-
inflammatory properties (64). HDLs from patients with valvular
heart disease, including rheumatic heart disease, HDLs are
pro-inflammatory and uncouple eNOS, which in turn impairs
endothelial ability to produce NO (65). Similarly, HDLs from
patients with T2DM impair NO production and are pro-
inflammatory (66). Alterations in the lipidome, such as increase
in triglycerides or decrease in phospholipids (67, 68), or a
concomitant increase in surface rigidity due to an altered
sphingomyelin to cholesterol ratio, reduce the RCT ability of
HDLs, and its ability to associate to beneficial enzymes and
proteins (69). Recent studies suggest that HDL-triglycerides
measurement may be a useful biomarker to determine HDL
quality and HDL function over HDL-C (70). While it has
been widely accepted that oxidation and glycation of HDLs
are a major driver of HDL dysfunction in-vivo (71, 72), a few
studies challenge this view, finding either no dysfunction (73)
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or improved function (24, 74) following either endogenous or
artificial oxidation of HDL.

Lipid composition, size and structure of HDLs are closely
linked. In T2DM patients, several studies show that there
is a shift toward smaller HDL particles, and an increase in
triglyceride presence on HDL (75), which may render them
more hydrophobic and therefore challenging the idea that
small HDL is always protective, but rather suggesting a close
interplay between HDL size-composition-function and each
specific disease condition. HDLs are direct players of whole-body
glucose homeostasis (76), through activating AMPK-dependent
glucose uptake (77), increasing insulin secretion (78), and
protecting pancreatic ß-cells from apoptosis (79). Thus, T2DM
may influence HDL function, and HDL function may in turn
influence T2DM pathogenesis. However, to date we do not yet
have clear evidence about the functional consequences of all
structural alterations, which may contribute to the dysfunction
of HDLs in T2DM. Moreover, macrophage-associated enzyme
myeloperoxidase, which is increased in atherosclerotic
cardiovascular disease, can catalyze deleterious changes to
HDL associated proteins, namely apoA1, causing an impaired
RCT ability and increase in inflammatory pathways (51). Serum
amyloid A is a causal factor of HDL dysfunction, inducing a loss
of anti-inflammatory and RCT function and a decreased ability
of HDLs to interact with the plasma membrane of adipocytes
(80). Beyond the above described roles of HDL, there are
additional key roles of HDL in immunity (81, 82), Alzheimer’s
prevention (83), and even cancer survival (84) as mentioned in
Table 1, which could not be covered in this mini-review.

The Paradox of Extremely High HDL
Recent data points to high levels of HDL-C as potentially
deleterious to cardio-vascular health, showing a distinct U-shape
association between HDL-C above 100mg.dL−1 and disease risk
(91, 92) in men. Raised HDL-C may increase disease risk for
several reasons, including potential undisclosed confounders.
Genetic mutations causing elevated HDL may also be a risk
factor for disease, a potential reverse causation arising from
the severity of disease in the studied at-risk population, or the
possibility that HDLs becomes dysfunctional at such elevated
circulating levels. The cut-off for pathologically high HDL is not
clearly defined, but has tentatively been placed as HDL-C levels
ranging from 60 to 80mg.dL−1. A recent cross-sectional study
determined that in men, and after adjusting for cardiovascular
risk factors, extremely high HDL-C was associated to endothelial
dysfunction, as measured in-vivo by flow mediated vasodilation
(FMD), while low HDL-C was not (93). Less than 10% (93) of the
population present extremely high HDL-C levels, but this feature
is more frequent in Type 1 Diabetes Mellitus (T1DM) (94).
HDLs isolated from young T1DM patients are dysfunctional,
less able to induce NO production by endothelial cells and
pro-oxidant. Further, T1DM patients with extremely high HDL
levels and inflammation have a substantially decreased FMD
(94), suggesting that high levels of HDL associated to systemic
inflammation, as found in several cardiovascular and metabolic
disease, may be a driver of vascular dysfunction and not merely a
reflection of an overall pathological state.

HDLs: THERAPEUTIC AVENUES

HDLs Recover After Metabolic
Interventions
Recovery from metabolic and cardiovascular disease parallels
restored HDL functionality and increased HDL concentration
(95). Roux-en-Y gastric bypass (RYGB) is a bariatric surgery able
to decrease cardio-vascular mortality (96) and resolve T2DM in
a rapid and body weight-independent manner (97). We have
demonstrated in both humans and rodent models that RYGB
promotes an early improvement of HDL function, including
cholesterol efflux capacity, anti-apoptotic, anti-oxidant and anti-
inflammatory activity, and increased capacity to produce NO
(98). BMI-matched controls to the 12 week post-surgery patient
group did show impaired HDL function, demonstrating that
post-surgical improvements in HDL function occurred in a
body weight-independent manner (98). Evidence from follow-
up studies indicates that the restoration of HDL function is
stable long term after bariatric surgery. Interestingly, evidence
shows that HDLs tend to be larger post-RYGB, further increasing
the complexity of HDL-size-composition-function relationship
discussed above (99).

Exercise and diet also improve HDL function. In chronic heart
failure patients, a 15 week exercise intervention significantly
improved the ability of HDLs to activate eNOS and produce
NO (100). One study shows that HDLs isolated before and after
an exercise-based weight loss intervention showed significant
correlation between RCT and amount of weight lost (101), and
HDL levels significantly increase post-exercise training across
different studies (101–103). While RYGB seems to acts via
additional mechanisms (Figure 1B) (98), body weight loss has
beneficial effects on HDLs, leading for instance to increased
HDL2 particle number after dieting (103), to improved efflux-
capacity (104) and altered miR223 expression (105). Further,
increases in brown fat metabolism, which is impaired in obese
subjects, correlates to beneficial HDL remodeling, in both
humans and mouse models (106).

HDL-Based Therapies
Manipulation of HDL components have beneficial effects.
Enrichment of S1P to reconstituted HDL (rHDL) induce better
vasorelaxation than control rHDL (107). In humans, a small trial
found that short-term infusion (4 weeks, 1 infusion per week) of
rHDL was able to significantly decrease endothelial progenitor
cell (EPC) apoptosis in patients with acute coronary dysfunction,
and increase the circulating chemokine levels known to be
important in EPC recruitment, such as stromal cell-derived
factor-1 or vascular endothelial growth factor (108). Another
small-scale human trial found that rHDL infusion resulted in
decreased plaque lipid content and decreased expression of
VCAM-1 on the plaque surface (109). Preliminary results from
a larger clinical trial found that while plaque size per se had
not regressed following rHDL infusion, there was a significant
improvement in the plaque characterization index and overall
coronary score (110). Furthermore, increasing apoA1 levels
alone, either through genetic manipulation in animal models
(111) or through exogenous infusion in animals (112) and
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TABLE 1 | HDL as a therapeutic tool.

Disease studied Method HDL-intervention Conclusions PMID

Cardio-

metabolic

Diseases

Acute Coronary

Syndrome

Human Autologous delipidated

serum diffusion

Well-tolerated in patients with ACS 20538165

Human CER-001 Treatment did not reduce coronary atherosclerosis 24780501

Human CSL112 Repeated infusions were safe and well-tolerated 24122814

Coronary Artery

Disease

Human MDCO-216 ↑ atherogenic lipid profile (unexpected) (27816804), ↑

apoA1, ↑ phospholipids, ↑ pre-β HDL, at high doses

(>20 mg/mL) ↑ TG, ↓ HDL-C (27418968)

27816804,

27418968

Human CSL112 ↑ apoA1, ↑ cholesterol efflux, ↑ pre-β HDL 24969776

Mouse and

human

HDL-CAD loaded with

S1P

Restored HDL function (vasodilatation in ex-vivo

myograph mouse aorta), restored ERK and Akt signaling

26403344

Myocardial

Ischemia

Rat rHDL VEGF Efficient delivery of VEGF, 13% ↑ of ejection fraction over

controls

Sun et al. (85)

Type 2 Diabetes

Mellitus

Human Extended release niacin

therapy

↑ improves HDL vaso-protective properties, ↓ oxidation

and ↑ NO production

20026785

Human Pioglitazone

administration

↓ oxHDL, HDL-C remain constant (30740640), ↓HDL-T

(25137425)

30740640,

25137425

Human RVX-208 1 HDL lipidome, HDL-C remain constant 27173469

Mouse HDL infusion ↓ plasma glucose, ↓ inflammation, ↑ muscle glycogen, ↑

pancreatic islet structure (23166092), ↑ glycemic control,

↑ insulin sensitivity, ↑ glucose uptake into muscle, ↑

glucose disposal, ↑ glucose phosphorylation (27193916)

23166092,

27193916

Mouse MDCO-216 Reversed CV dysfunction and heart failure in

T2DM-induced by HSHF diet

30871282

Human rHDL infusion ↓ fasting lipolysis, ↓ FA oxidation, ↓ circulating glycerol,

↑ NEFA (21224289), ↑ Cholesterol Efflux, ↑

Anti-inflammatory properties (19281927)

21224289,

19281927

Atherosclerosis Rabbit and

human, in-vitro

HCAEC

ETC-642 Anti-inflammatory effects via inhibiting TNF-α, VCAM-1

ICAM-1, no change in HDL lipid composition

(22128776), Anti-inflammatory comparable to native

ApoA1, via NFκB inhibition (21571275), Phase-I Clinical

Trial showed it was safe and well-tolerated in humans in

a range of doses (86)

22128776,

21571275, Khan

et al. (86)

Rabbit and

human

ETC-216 6% ↓ soft plaques with ETC-216, 5% ↓with apoA1

Milano and plaque unchanged in placebo group, ↓

macrophage density at plaque (18342230), in humans ↓

mean atheroma volume by 1.06% (14600188)

18342230,

14600188

Human and

mouse

CSL111 ↑ hApoA1, ↑ hpre-β HDL, ↑ total cholesterol, ↑ TG

(22067613), ↓ mean atheroma volume by 3.4%,

treatment group had abnormal liver function (17387133)

22067613,

17387133

Rabbit and

human

CSL112 ↑ HDL-VS, ↑ efflux capacity in treated compared to

native HDL, ↑ ABCA1 dependent efflux

23868939

Human and

mouse

CER-001 ↑ cholesterol elimination, ↓ inflammation, ↓ plaque size,

↓ lipid content of the plaque, 80% ↓ macrophage in

plaque (24401224), CHI-SQUARE trial: treatment did not

reduce coronary atherosclerosis (24780501), CARAT

trial: no reduction of atherosclerotic plaques, no change

in plaque composition (28567351)

24401224,

24780501,

28567351

Human rHDL infusion ↓ VCAM-1, ↓ plaque lipids, ↓macrophage size, ↑ HDL-C 18832751

Mouse ELK-2A2K2E ↑ Cholesterol Efflux, ↓ Atherosclerosis, ↓ Vascular

Inflammation and Oxidation

23874769

Mouse 4F ↓ early atherosclerosis lesions, ↓ inflammation, no

change in mature atherosclerotic lesions

20876212

Mouse and

rabbit

ApoE mimetics ↑ HDL PON-1 activity, ↓ atherosclerosic lesions, ↓

inflammation

20221865

Mouse, rabbit

human cell-lines

rHDL loaded with

anti-atherosclerosis

drugs

Statin: ↓ inflammation in advances plaques, inhibits

progression of inflammation (24445279),

24445279,

23069716,

(Continued)
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TABLE 1 | Continued

Disease studied Method HDL-intervention Conclusions PMID

Tanshinone IIA: ↑ anti-atherogenic capacity than drug

alone (23069716, 21835236), Atorvastatin and dextran

sulfate coat: ↑ delivery of drug to macrophages, ↓

oxLDL uptake (28004910), Lovastatin: Inhibition of

oxLDL internalization and ↓ of 50% of intracellular lipid

load compared to lovastatin alone (29382194),

Simvastatin: ↓ macrophage proliferation, ↓ plaque

inflammation, favorable plaque remodeling (26295063),

Statins and Hyaluronic Acid (HA) encapsulation: HA

encapsulation resulted in ↑ uptake in atherosclerotic

plaques, ↓ uptake in the liver (24947229, 28144137) and

↓ inflammation (29885417)

21835236,

28004910,

29382194,

26295063,

24947229,

28144137,

29885417

Mouse rHDL loaded with

tracer agent

Can be used to detect atherosclerotic lesions

(12007282), Gd-based agent allowed for more effective

contrast imaging of atherosclerotic plaques (19378935),

the use of oxidized ApoA1 improved the uptake in

macrophages significantly (24729189), Fe-O-based

contrast agent allows specific imaging of cellular and

sub-cellular locations of HDL localization (20926130),

P2fA2: Effective imaging of atherosclerotic plaques in

MRI (19072768)

12007282,

19378935,

24729189,

20926130,

19072768

Other

diseases

Alzheimer’s

disease

Mouse, SAMP8 ApoE3-rHDL,

ApoJ-rHDL

rHDL passes the blood-brain barrier and accelerates Aβ

clearance (24527692), accumulation in the cranial region

(29116115)

24527692,

29116115

Cancer Mouse and

human

rHDL with paclitaxel ↑ cytotoxicity in cancer cell lines than drug alone, ↑

tolerance in-vivo than drug alone (18176115), No drug

leakage or remodeling of rHDL, efficient delivery to tumor

(24079327), 30% increase uptake into cancer cells than

drug alone (19637935)

18176115,

24079327,

19637935

Mouse and

human

rHDL loaded with

siRNA

Effective delivery to cancer cells via SR-B1(28717350),

VEGF siRNA: ↓ VEGF expression levels, ↓ tumor

angiogenesis, ↓ intratumoral microvessels (24875759),

Effective co-delivery to cancer cell lines over-expressing

SR-B1 (28753317)

28717350,

24875759,

28753317

Mouse and

human

rHDL loaded with

imaging agents

Imaging and monitoring of tumor associated

macrophages more efficient than (89)Zr-rHDL imaging

agent alone (26112022), rHDL labeled with 99mTc and

hydrazinonicotinic acid is an effective new radio-tracer

for labeling tumors (30543234), apoE3 rHDL-AuNP

results in effective labeling of LDLR overexpressing

cancer cell lines (29225464)

26112022,

30543234,

29225464

Mouse and

human

rHDL loaded with

anti-cancer drugs

PTX-HZ08-rHDL NPs target tumors via SR-B1, ↓ drug

leakage, ↑ anti-tumor capacity than drug alone

(27343697), Triple-negative breast cancer cells better

targeted and less off target effects observed in

cardiomyocytes (rHDL with apatinib and valrubicin)

(28670138), 100-fold improvement in selective

therapeutic efficiency (rHDL with fenretinide) (24459664),

↑ anti-tumor response compared to free drug cocktail, ↑

anti-cancer effects, ↑ in-vitro cell toxicity (rHDL with

paclitaxel and doxorubicin) (27982602), Effective

receptor mediated uptake, overcomes solubility barrier of

AD-32 [rHDL with valrubicin (AD-32)] (22393294)

27343697,

28670138,

24459664,

27982602,

22393294

Human, clinical

trial Phase 1

rHDL loaded with

miRNA (MRX34)

Safe, well-tolerated, preliminary evidence of anti-tumor

activity

27917453

Mouse HDL-NP, gold

nanoparticle

conjugated

Selectively promotes cholesterol efflux, not cholesterol

delivery, to lymphoma cells, resulting in cell starvation

and apoptosis

23345442

Overview of pre-clinical and clinical research, of the last 10-years focusing on HDL. Several excellent reviews exist for further reading (87–90).
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humans (113), was enough to provide beneficial effects on
atherosclerotic plaque regression (114). For certain parameters
HDL still outperformed apoA1 mimetic alone (115). Animal
studies show that raising an apoA1 and functional HDL can
promote atherosclerosis plaque regression through inhibition
of inflammation and decreased activation of immune cells
(116). Larger trials paint a more controversial story, showing
no detectable effect after supplementation of an engineered
pre-β HDL mimetic on atherosclerotic plaque composition or
regression compared to placebo (117).

HDLs for Drug Delivery
For over 10 years, rHDLs have been used in research for
treatment delivery (118). The delivery to organs of interest is
efficient and the cargo is protected from degradation. While
conjugations of HDLs have mostly been used to target the
liver, where SR-B1 expression is high, it has been found
that the addition of folic acid to HDLs expands the target
organ pool to cells expressing the folate receptor (119). The
current understanding of how to encapsulate vaso-protective
compounds within rHDL allows us to consider using it a
treatment (120). The infusion of rHDL loaded with a potent
LXR agonist enabled atherosclerotic plaque regression in the
apoE-knock out mouse model, with significant accumulation
of the synthetic HDL found in the atherosclerotic lesions
(121). Similarly, rHDL encapsulating statins (S-rHDL) are more
effective at reducing atherosclerosis-induced inflammation than
statin or rHDL alone in mice (122). Moreover, rHDLs have
been used for contrast imaging in MRI (123). Predictions
around the future developments in rHDL-based therapies evolve
around developing rHDL particles that act simultaneously as
drug delivery and imaging systems, termed “theranostics” (120)
included in Table 1.

CONCLUSION: HDL IS AN INCOMPLETELY
UNDERSTOOD, COMPLEX, AND DYNAMIC
PARTICLE WITH THERAPEUTIC
POTENTIAL

Today, HDLs are considered as multifaceted entities beyond
their cholesterol-carrying action. We attempt to understand
the multiple HDL functions and the responsible mechanisms.

Indeed, we are now moving away from the dualistic model
of “good” and “bad” cholesterol and are constructing a more
complex and realistic image of HDLs, including identifying
various subclasses of HDLs using new techniques, and defining
the proteome and lipidome of different HDL subclasses in health,
disease and after therapies. In this review, we report new evidence
about changes in size and composition as determinants of
functionality. Further, the emergence of data from patients with
ultra-highHDL levels challenges our understanding of HDL roles
and functions. While clinical results on HDL-based therapies
remain controversial, a more refined understanding of HDLs can
lead to design more efficient clinical treatments involving these
complex particles. Similarly, HDLs potential as therapeutics,
although promising, is contingent on further research.
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